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Abstract We constrain scattering length parameters in a Bose–Einstein condensate
dark matter model by using galaxy clusters radii, with the implementation of a method
previously applied to galaxies. At the present work, we use a sample of 114 clusters
radii in order to obtain the scattering lengths associated with a dark matter particle
mass in the range 10−6–10−4 eV. We obtain scattering lengths that are five orders
of magnitude larger than the ones found in the galactic case, even when taking into
account the cosmological expansion in the cluster scale by means of the introduction
of a small cosmological constant. We also construct and compare curves for the orbital
velocity of a test particle in the vicinity of a dark matter cluster in both the expanding
and the non-expanding cases.

Keywords Dark matter · Bose–Einstein condensate · Galaxy clusters · Rotation
curves

1 Introduction

It has long been observed that almost 27 % of the energy density in the Universe is in
the form of a rather mysterious entity dubbed dark matter [1,2]. So far, investigations
on the nature of this sort of matter have presented no definitive conclusions.

When it comes to the dark matter present in structures such as galaxies and clusters,
many proposals have been put forward. We can mention Weakly Interacting Massive
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Particles (WIMP’s) as one of the most popular suggestions. These particles are very
massive (O(GeV)) and present very small coupling constants to the baryonic matter
[3]. Experimental searches for WIMP’s are being presently performed.

Recently, it has been proposed that the dark matter composing structures in the
Universe is in the form of a Bose–Einstein condensate (BEC) [4–7] which suf-
fered a gravitational collapse [8,9]. This condensate allows for the construction of
suitable rotation curves for galaxies. The particles suggested to compose this conden-
sate are sub-eV in mass and have little interaction with baryonic matter. They have
been grouped in the Weakly Interacting Slim Particles (WISP’s) [10] category, which
includes the QCD axion [11,12] as the most prominent member.

Considering axion-like particles (particles in the mass range of the axion but with
the possibility of having spin 0 or 1), the parameters of the condensate have been
constrained by using galaxies’ radii data [13]. In the present work, we apply the same
procedure to galaxy clusters. We use a data set of 114 clusters radii and perform
a statistical analysis to obtain the most representative scattering length value for a
specific particle mass. Moreover, since cluster sizes may be in a scale which can be
affected by the cosmological expansion, we repeat this procedure including a small
valued cosmological constant in a Newtonian approximation [14,15], in the attempt
to obtain noticeably distinct results from the non-expanding case (for a relativistic
version of BEC dark matter, see, e.g, [16]).

This paper is organized as follows: Sect. 2 presents a brief review of the theoretical
background on Bose–Einstein condensate dark matter. Section 3 shows the density
profiles in both static and expanding cases along with the corresponding cluster radii.
In Sect. 4, we perform the statistical analysis that allows us to obtain the scattering
lengths for the dark matter particle, in the mass range 10−6–10−4 eV. We show the
orbital velocity of a test particle under the influence of the cluster mass in Sect. 5. Our
conclusions appear in Sect. 6.

2 Bose–Einstein condensate dark matter

We recall here the theoretical description of the galactic Bose–Einstein condensate
composed of axionlike particles.

At zero temperature, the dynamics of the field destruction operator ψ̂(r, t) (rep-
resenting each dark matter particle) in the Heisenberg picture, −i�∂t ψ̂(r, t) =
[Ĥ , ψ̂(r, t)], yields the time-independent Gross–Pitaevskii equation (GPE) for the
BEC wavefunction ψ(r) [17]

μψ(r) = − �
2

2m
∇2ψ + V (r)ψ(r) + 4π�

2a

m
|ψ(r)|2ψ(r), (1)

wherem is the mass of the particle,a is the s-wave scattering length which characterizes
two-body collisions between particles, V (r) is the trapping potential and μ is the
chemical potential.

When the potential V (r) obeys the Poisson’s equation (which is the case of a self-
gravitating condensate),
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∇2V = 4πGmρDM , (2)

where ρDM is the particle number density of the dark matter concentration, and we
consider a large number of particles (this is the Thomas–Fermi (TF) approximation
[18]), it has been demonstrated [5,13] that (1) has the solution

|ψBH (r)|2 = ρ(r) =
{

ρ0
sin kr
kr for r ≤ R

0 for r > R
, (3)

with k = √
Gm3/�2a, R = π/k and ρ0 is the central particle number density of the

condensate. This is the Boehmer–Harko (BF) solution. It results in a halo radius given
by

R = π

√
�

2a

Gm3 . (4)

Using this relation and considering the dark matter particle mass range 10−6–10−4 eV,
the lower bound of the scattering length has been constrained to 10−29 m in galaxies
[13].

The same results apply to the case of a particle with spin-1, with the important
difference that now the condensate may assume two distinct states, polar (when the
particles spins are antiparallel) and ferromagnetic (parallel spins) [19].

Hence, for the polar state, the radius is given by

Rp = π

√
h̄2(a p

0 + 2a p
2 )

3Gm3 , (5)

where a p
0 and a p

2 are the scattering lengths related to this phase.
For the ferromagnetic phase, one obtains

R f = π

√
h̄2a f

2

Gm3 , (6)

where a f
2 is a new scattering length for this particular state.

The central mass density �0 = mρ0 will be assumed throughout this paper to be
the one of a typical cluster with mass M ∼ 1014 M� and radius R ∼ 1 Mpc, yielding
�0 ≈ 10−24 kg m−3.

3 Density profile and radii of galaxy clusters with a cosmological
constant

Following the assumptions made in [14,15], we can consider the cluster to be embed-
ded in an expanding spacetime background, with the expansion rate given by the
Hubble parameter H = √

�/3 and � being a small cosmological constant.
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For the purpose of describing the cluster dark matter as a condensate, the effect
of the expansion is equivalent to the introduction of an additional repulsive radial
potential

V�(r) = −m

6
�r2 (7)

in the GPE (1). The total potential which confines the cluster is now

V ′(r) = V (r) + V�(r), (8)

where V (r) is the gravitational potential. When V ′(r) obeys the Poisson equation

∇2V ′ = 4πGmρ�, (9)

where ρ� is the particle density in the presence of the cosmological constant, differ-
entiation of equation (1) results in

2πGmρ − m� + 2π�
2a

m
∇2ρ = 0. (10)

With the use of the identification ρ� = m2

2π�
2a

(2πGρ − �), equation (10) can be

recast in the form of the usual Lane–Emden equation

1

ξ2

∂

∂ξ

(
ξ2 ∂θ

∂ξ

)
+ θn = 0, (11)

where we have used ρ� = ρ0θ
n , and θ being a function of the dimensionless coordinate

ξ defined by r = [(n + 1)Kρ
1/n−1
c /4πG]1/2ξ . We recall that for a static condensate

we have the polytropic equation of state, relating the density and the density and the

pressure of the fluid, p = K�
1+ 1

n
� , with K a constant and n the polytropic index.

In the present case, n = 1 and K = 2π h̄2a/m3, making it possible to obtain the
analytical solution for the Lane–Emden equation as

θ(ξ) = sin(ξ)

ξ
. (12)

With the appropriate boundary conditions for the condensate, the particle number
density profile obtained from (1) and (11) for a cluster under the action of a cosmo-
logical constant is thus

ρ�(r) =
{(

ρ0 − �
4πmG

)
sin(kr)
kr + �

4πmG for r ≤ R̄

0 for r > R̄
, (13)
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Fig. 1 Particle number density profile ρBH (in units of (ρ0/π)) corresponding to the Boehmer–Harko
solution in the Thomas–Fermi approximation with and without a cosmological constant (dashed and solid
lines, respectively). The right panel shows a zoom in logarithmic scale in order to stress the difference
between the functions. In both cases x = r/R. A central cluster mass density �0 = 10−24 kg m−3 and a

cosmological constant � = 1.4 × 10−35 s−2 [2] have been used in both plots

where R̄ is the cluster radius in the expanding environment. We can see that the density
has been rescaled and shifted by a small quantity that depends on the magnitude of �.
For the sake of comparison, the density profiles in the expanding and non-expanding
cases are depicted in Fig. 1.

For a spherically symmetric mass distribution, the total mass inside a radius r ,
resulting from (13), is calculated as

M�(r) = 4πm
∫ r

0
ρ�(r ′)(r ′)2dr ′

= 4πm

{(
ρ0 − �

4πGm

)
1

k2

(
sin(kr)

k
− r cos(kr)

)
+ �

12πGm
r3

}
. (14)

For the distance value R̄ for which ρ�(R̄) = 0, we have

sin(k R̄)

k R̄
= − �

(4πmρ0G − �)
. (15)

For physically relevant results, the right hand side (r.h.s.) of (15) is supposed to be
strictly negative. Hence, we have the lower bound for the dark matter density �0 =
mρ0 > �

4πG . An upper bound, of course, is obtained when the dark matter density is
large enough to render the r.h.s. of (15) negligible.

The solution of (15) provides the cluster radius with a cosmological constant

R̄� = 3.19587 ×
√

h̄2a

Gm3 . (16)

The same solution applies for the spin-1 particle, with the appropriate substitution of
the scattering lengths associated with each spin phase.
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4 Statistical analysis

In order to constrain the values for the scattering lengths in cluster condensates, we
use the data obtained from [20] to construct the Likelihood function L for the halo
radius R(a) through

L ∝
N∏
i=1

exp

{
− 1

2 σ 2
i

[R(a) − ri ]
2

}
, (17)

where R(a) represents the theoretical radius obtained from Eqs. (4), (5) or (16), ri
are the data taken from observations and σi are the errors associated with these mea-
surements (not available from [20], and therefore overestimated to half the value of
each measurement). As usual, the maximum value of the probability density function
derived from (17) gives the best fit value for the scattering length parameter a. The data
set consists of 114 galaxy clusters R500 radii (the ones which encompass 500 times
the critical density at each cluster’s redshift) in the range 0.48–1.91 Mpc obtained by
X-ray measurements.

Figures 2, 3 and 4 show the probability density functions obtained by this method
for the scattering length a, considering a dark matter particle with mass ranging from
10−6 eV to 10−4 eV, and with spin-0 and spin-1. Also, the cosmological expansion has
been taken into account in the calculations. These functions enable us to identify the
most probable values for the scattering length, given the data set used. We point that,
for the spin-1 case, we assume that a f

2 = a p
2 = a, and therefore we only constrain the

value for a p
0 [13].

Using the previous analysis and the one presented in [13], we summarize the results
obtained for the galactic and the cluster condensate in Table 1. We note that there is a
difference of five orders of magnitude between the scattering lengths, even when the
cosmological expansion is taken into account.

Considering the upper bound estimated in [21], which implies a < 10−21 m, we
conclude that the mass value m = 10−6 eV is favoured in the present analysis. How-
ever, we can speculate that the significant difference in magnitude between the galactic
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Fig. 2 Probability density function for the scattering length a of a particle with mass m = 10−6 eV. The
left panel refers to a spin-0 particle. The right panel refers to a spin-1 particle in the polar state. The dashed
(dot-dashed) curve in each panel represents the non-expanding (expanding) case
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Fig. 3 Probability density function for the scattering length a of a particle with mass m = 10−5 eV. The
left panel refers to a spin-0 particle. The right panel refers to a spin-1 particle in the polar state. The dashed
(dot-dashed) curve in each panel represents the non-expanding (expanding) case
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Fig. 4 Probability density function for the scattering length a of a particle with mass m = 10−4 eV. The
left panel refers to a spin-0 particle. The right panel refers to a spin-1 particle in the polar state. The dashed
(dot-dashed) curve in each panel represents the non-expanding (expanding) case

Table 1 Values for the
scattering lengths for galaxies
(agal ) and clusters (aclu ) for the
particle masses constrained in
[13]

m (eV) agal (m) aclu (m)

10−6 10−29 10−24

10−5 10−26 10−21

10−4 10−23 10−18

and the cluster cases seems to indicate that the scattering length may present some
scale dependency, perhaps related to the gravitational potential or the total mass of the
structure being analysed.

The analysis performed in this section complements the one performed in [13] for
galactic radii.

5 Orbital velocity

In a Newtonian approximation, the attractive force exerted by a large scale concentra-
tion of mass M(r) on a test particle with mass m is given simply by

F = GmM(r)

r2 , (18)
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which causes the centripetal acceleration on the orbiting body. Using (18), the velocity
v(r) = √

r F/m of the test particle around the more massive object (which we can
consider to be a cluster) is given by

v(r) =
√
GM(r)

r
. (19)

In the case of a cluster that is expanding due to a cosmological constant �, the
centripetal force on the orbiting body is written as [15]

F = GmM(r)

r2 − 1

3
�mr. (20)

From (20), the velocity of a test particle around a cluster expanding through the
influence of a cosmological constant � is

v(r) =
√
GM(r)

r
− 1

3
�r2. (21)

Substituting the mass function M(r) in (19) by the one obtained from the BH
density profile (3), the orbital velocity becomes

vBH (r) =
[

4πG�0

k2

(
sin(kr)

kr
− cos(kr)

)]1/2

. (22)

We can consider the BH density profile modified by the addition of a cosmological
constant, as shown in equation (13). With the input of the mass function derived from
this profile in (21), one obtains

v�(r) =
[

4πGm

{(
ρ0 − �

4πGm

)
1

k2

(
sin(kr)

kr
− cos(kr)

)
+ �

12πGm
r2

}

−1

3
�r2

]1/2

. (23)

As in [15], we can also keep the BH profile unmodified and add an expansion term
such that the velocity takes the form

vBH�
(r) =

[
4πG�0

k2

(
sin(kr)

kr
− cos(kr)

)
− �

3
r2

]1/2

. (24)

For the case of a typical cluster, we can use the values �0 = 10−24 kg/m3, m =
10−6 eV = 1.78 × 10−42 kg, k = 1.8 × 10−22 m−1, � = 1.4 × 10−35 s−2 [2] to plot
the orbital velocity for the test particle, for both the expanding and non-expanding
situations. The plot showing velocity curves is presented in Fig. 5.

In that plot, the point in which the velocity reaches zero value corresponds to null
centripetal force, i.e., the particle ceases to be gravitationally influenced by the cluster
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Fig. 5 Orbital velocity v (in m s−1), of a test particle around a cluster, for m = 10−6 eV. The dashed
curve represents the non-expanding case, and the dotted curve, the expanding one. The vertical lines mark
the cluster radii obtained by the expressions (4) and (16) (dashed and dotted lines, respectively marking
R = 0.544 Mpc and R� = 0.553 Mpc)

and is carried away by the cosmological expansion. The vertical lines mark the radii
obtained by the BH density profile, for the specific parameters chosen to draw the
figure.

We can see that vBH (r) and v�(r) present no significant differences, specially at
large r . This is consequence of the cancellation of the last two terms in (23). On the
other hand, vBH�

(r) is notably different for larger values of the radius r . This is in
accordance with the findings of [15]. Nevertheless, we point out that the approximation
used in (24) does not include an expansion in the mass distribution itself.

As expected, the maximum distance r for which the particle is still under the force
of the cluster is bigger in the case of an expanding cluster [15].

6 Conclusions

In this work we have considered a Bose–Einstein condensate framework for dark
matter in clusters. We have assumed an expanding cluster embedded in a de Sitter
background to include a cosmological constant in a simpler Newtonian approximation.
This approach allowed us to obtain a modified matter density profile for the cluster,
slightly distinct from the Boehmer–Harko profile in the non-expanding situation, and
to set the lower bound �0 > (�/4πG) for the central dark matter density �0 with
respect to the cosmological constant �.

The cluster radius resulting from this density profile has also been derived for
both a spin-0 and a spin-1 particle. Using that information we were able to use a set
of galaxy clusters radii data to constrain the scattering length of the Bose–Einstein
condensate of a particle with masses in the range 10−6 −10−4 eV, in a non-expanding
as well as in an expanding case (by the inclusion of a small cosmological constant
in a Newtonian approximation). The values obtained for this parameter are typically
five orders of magnitude larger than what is obtained in the galactic case. This result
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poses the question whether it makes sense to use the same value of scattering length
parameter for the galactic and the cluster scales. Apparently, at least for the mass
range we are considering, some still undefined scale dependency may take place to
describe the condensate in galaxies and clusters by using its microscopic parameters.
Another speculative possibility is the dominance of a different kind of dark matter
fluid in clusters, composed of particles endowed with distinct parameters from the
ones which form galactic haloes. This possibility could be further explored in the
mixed dark matter scenario [22].

We have used the Newtonian approximation for the gravitationally bound system in
order to calculate the orbital velocity of a test particle around an expanding cluster. The
maximal radius in which the velocity is null sets the greatest distance of influence of
the dark matter cluster. This distance shows no appreciable difference in comparison
to the non-expanding case when the new derived density profile is used, due to the
smallness of the cosmological constant. This result is in contrast with the one found
in [15], which did not consider a modified density profile for the cluster.

The issue of the most adequate values of the parameters of condensate dark matter
in large scale structures has been occupying a considerable space in the literature, and
we hope that the considerations presented here may guide us in future works on this
subject.
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