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Abstract In a recent study Akarsu and Dereli (Gen. Relativ. Gravit. 45:1211, 2013)
discussed the dynamical reduction of a higher dimensional cosmological model which
is augmented by a kinematical constraint characterized by a single real parameter,
correlating and controlling the expansion of both the external (physical) and internal
spaces. In that paper explicit solutions were found only for the case of three dimensional
internal space (n = 3). Here we derive a general solution of the system using Lie
group symmetry properties, in parametric form for arbitrary number n = 1, 2, 3, . . .

of internal dimensions. We also investigate the dynamical reduction of the model as
a function of cosmic time t for various values of n and generate parametric plots to
discuss cosmologically relevant results.
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1 Introduction

The unification of all fundamental interactions of nature achieved in higher dimen-
sional space-times, e.g. the formulation of consistent anomaly-free superstring models
in ten dimensions [1], provides strong motivation for considering higher dimensional
cosmological models. In such approaches, it is generally assumed that all but four
of the space-time dimensions are compactified on an unobservable internal mani-
fold, leaving back an observable (1+3)-dimensional space-time. On the other hand
the dynamical reduction of internal dimensions to unobservable scales, with phys-
ical external dimensions expanding while the internal dimensions contracting, has
also been considered in cosmology (See [2–4] for the very first papers). Such models
are of interest in cosmology particularly since the dynamics of the internal space,
though cannot be observed locally and directly today, could modify the dynamics of
the external space in various ways and may contribute and even lead to a dynamically
accelerated expansion [5–9]. However, then the evolution of the internal space should
be slow enough not to contradict local physics, e.g., the observational constraints on
the (1 + 3)-dimensional gravitational coupling that is inversely proportional with the
volume of the internal space [10,11].

In a recent study, in contrast to the widely considered contracting internal space sce-
narios in cosmology, Akarsu and Dereli [12] have considered an alternative dynamical
reduction scenario in which both of the external and internal dimensions are assumed
to be at comparably small scales during the early stages; yet at later stages of the
evolution of the universe the internal dimensions expand at a much slower rate than
those of the external space and remain unobservable. The idea was demonstrated on
a simple higher dimensional cosmological model that is augmented by a kinematical
constraint characterized by a single parameter. Namely, the product of the Hubble
parameters of the internal and external spaces is set equal to a real constant that cor-
relates and controls the dynamical evolution of the external (physical) and internal
spaces. In this study we utilize the same kinematical constraint for obtaining cosmo-
logical solutions not only for 3-dimensional expanding internal space but for that may
be either expanding or contracting internal space with arbitrary number of dimensions,
thus generalizing our previous paper [12].

Let us now proceed with a brief outline of the model introduced in [12]. A minimal
extension of the conventional (1 + 3)-dimensional Einstein’s field equations to (1 +
3 + n)-dimensions is considered:

Rμν − 1

2
Rgμν = −κTμν, (1)

where the indices μ and ν run through 0, 1, 2, . . . , 3 + n and gμν , Rμν and R are the
metric tensor, the Ricci tensor and the Ricci scalar, respectively, of a (1 + 3 + n)-
dimensional space-time. Tμν is the effective energy-momentum tensor of matter fields
in (1 + 3 + n)-dimensions and κ = 8πG where G is the (positive) gravitational
constant that is to be scaled consistently in (1 + 3 + n)-dimensions. The space-time
is described by the spatially homogenous but not necessarily isotropic (1 + 3 + n)-
dimensional synchronous space-time metric that involves a maximally symmetric
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three dimensional flat external (physical) space metric and a compact n dimensional
flat internal space metric:

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

+ s2(t)
(

dθ2
1 + · · · + dθ2

n

)
, (2)

where t is the cosmic time, a(t) is the scale factor of the external space and s(t) is the
scale factor of the n = 1, 2, 3, . . . dimensional internal space. The energy-momentum
tensor of a (1 + 3 + n)-dimensional ideal fluid is considered to be homogeneous and
isotropic:

Tμ
ν = diag[−ρ, p, p, p, p, . . . , p], (3)

where ρ = ρ(t) and p = p(t) are the energy density and pressure of the fluid. The
(1 + 3 + n)-dimensional Einstein’s field Eqs. (1) for the space-time described by the
metric (2) in the presence of a co-moving fluid represented by the energy-momentum
tensor (3) read:

3
ȧ2

a2 + 3n
ȧ

a

ṡ

s
+ 1

2
n(n − 1)

ṡ2

s2 = κρ, (4a)

ȧ2

a2 + 2
ä

a
+ n

s̈

s
+ 2n

ȧ

a

ṡ

s
+ 1

2
n(n − 1)

ṡ2

s2 = −κp, (4b)

3
ȧ2

a2 + 3
ä

a
+ (n − 1)

s̈

s
+ 3(n − 1)

ȧ

a

ṡ

s
+ 1

2
(n − 1)(n − 2)

ṡ2

s2 = −κp, (4c)

where a dot over a symbol designates derivative with respect to cosmic time t . Our
system consists of three differential equations (4a–4c) satisfied by four unknown func-
tions a, s, ρ, p, and hence is under-determined. The Akarsu–Dereli model [12], on the
other hand, is characterized by an additional constraint which determines the system
fully by fixing the product of the Hubble parameters of the internal and external spaces
to a constant

ȧ

a

ṡ

s
= λ

9
. (5)

Accordingly, for an expanding external space, i.e., ȧ
a > 0, the internal space expands

for λ > 0, is static for λ = 0 and contracts for λ < 0. In Ref. [12], explicit exact
solutions of the field equations were given only for the particular case where the
number of internal dimensions n = 3 and a detailed discussion of the model follows
for λ > 0. It was shown that the external space behaves similarly as in the standard
model of cosmology, say the �-Cold Dark Matter (�CDM) model [13], with the
difference that powers of t are not the same; it is 1

3 in Akarsu–Dereli model while 2
3 in

�CDM. The internal dimensions are found to be expanding but at a much slower rate
than those of the external dimensions. Therefore, since all dimensions are assumed to
be at a comparable size at some early stage of the universe, when they reach the present
time of the universe (∼14 Gyr) the external dimensions have expanded ∼ 1060 times
while the internal dimensions expand only ∼1.5 times their original size.

In what follows, we derive the general solution of the above system in parametric
form for arbitrary number of internal dimensions n. Although we cannot write it down
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explicitly in terms of the cosmic time variable t , the general solution of the system in
parametric form allows us to discuss various features of the model depending on the
number of the internal dimensions and to give parametric plots for demonstrating the
dynamics of the universe in t .

2 The general solution

We start by subtracting (4b) from (4c) in order to eliminate p:

2
ȧ2

a2 + ä

a
− s̈

s
+ (n − 3)

ȧ

a

ṡ

s
− (n − 1)

ṡ2

s2 = 0. (6)

We then obtain the scale factors of the external and internal dimensions by solving this
equation together with the kinematical constraint (5). The energy density and pressure
of the higher dimensional fluid are found by putting these back in (4a) and (4b) [or
(4c)], respectively. We will first discuss the simplest case λ = 0 and investigate the
case λ �= 0 afterwards. We note from the kinematical constraint (5) that in case λ = 0,
unless both of the internal and external spaces are static, either the internal dimensions
or the external dimensions should be static. Accordingly, (6) reduces either to

2
ȧ2

a2 + ä

a
= 0 (7)

for static internal space, i.e. s = constant, or to

(n − 1)
ṡ2

s2 + s̈

s
= 0 (8)

for static external space, i.e. a = constant. Considering the solution of (7) and s =
constant in (4a) and (4b) we obtain

a = (c0t+c1)
1
3 , s = s0 and p = ρ = c0

2

3κ
(c0t+c1)

−2 (Case I for λ = 0) (9)

for static internal space. Similarly considering the solution of (8) and a = constant
we obtain

a=a0, s = (c2t+c3)
1
n and p = ρ = c2

2

2κ

n − 1

n
(c2t+c3)

−2 (Case II for λ = 0)

(10)
for static external space. It maybe noteworthy that if the external space is static and
there is only one extra dimension (n = 1), then the universe should be empty.

The solution of the system (4a–5) in case λ �= 0 is not straightforward in contrast to
the case λ = 0. This is because (6) cannot be solved explicitly in terms of cosmic time
t for arbitrary values of n but only for n = 3. Now using the kinematical constraint

123



General solution of a cosmological model induced from. . . Page 5 of 25 61

(5) in (6) to eliminate s we arrive at a single second order differential equation with
one unknown a = a(t)

ä

a
+ λ

9

äa

ȧ2 = −2
ȧ2

a2 + nλ2

81

a2

ȧ2 + (4 − n)

9
λ. (11)

Symmetry group analysis yields only two obvious Lie point symmetries of this Eq.
(11), namely translations in t , since there is no explicit t in (11), and scaling in a, since
Eq. (11) is homogeneous in a, i.e. it does not change under the scaling transformation
ã = ka with constant k. According to the theory of Lie, the existence of a two parameter
Lie group of point symmetries implies the integrability of the second order ODE in
quadratures. The corresponding symmetry generators are

X1 = 1

nλ
∂t , X2 = a∂a (12)

where ∂t = ∂/∂t and similarly for ∂a . We could skip the constant factor in X1
but it would complicate calculations at later steps. These two generators commute,
[X1, X2] = 0, and are linearly independent since the determinant of the matrix of their

components is nonzero δ =
∣∣∣∣
X1
X2

∣∣∣∣ =
∣∣∣∣
1/(nλ) 0
0 a

∣∣∣∣ = a
nλ

�= 0. Therefore, the abelian

symmetry Lie group acts transitively on the representation space with the coordinates
(t, a) and we have the case G2Ia of the book by Stephani [14]. In this case there exist
such canonical variables τ and σ , where we consider σ as a function of τ , σ = σ(τ),
which are functions of the original variables t and a such that the symmetry generators
(12) take the normal forms

X1 = ∂σ , X2 = ∂τ . (13)

Variables τ and σ satisfy the equations, obvious from (12) and (13)

X1(τ ) = 1

nλ
τt = 0, X2(τ ) = aτa = 1 (14)

and

X1(σ ) = 1

nλ
σt = 1, X2(σ ) = aσa = 0 (15)

where the letter subscripts denote partial derivatives with respect to corresponding
variables. Simplest solutions of Eqs. (14) and (15) together with the inverse transfor-
mation from τ, σ to t, a have the form

τ = ln |a|, σ = nλt, t = σ

nλ
, a = εeτ (16)

where ε = sign(a). We also need to transform the derivatives ȧ and ä to σ, τ and to the
derivatives σ ′ = dσ/dτ , σ ′′ = dσ ′/dτ of the new unknown σ = σ(τ) with respect
to the new independent variable τ . (From now on, the primes denote derivatives with
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respect to τ while the dots designate derivatives with respect to time t .) This is done as

follows: σ ′ = dσ/dτ = nλdt/((ȧ/a)dt) = nλa/ȧ. We obtain ȧ = nλa

σ ′ = nλεeτ

σ ′ . To

transform ä, we consider σ ′′ = dσ ′/dτ = nλ
d(a/ȧ)

da/a
= nλ

(a/ȧ)̇

ȧ/a
= nλ

a

ȧ3 (ȧ2 − aä).

Using here the transformations ȧ = nλεeτ

σ ′ , a = εeτ and solving algebraically for ä

we obtain ä = n2λ2εeτ

(
1

σ ′ 2 − σ ′′

σ ′ 3

)
.

Now we insert the transformed a, ȧ, ä into Eq. (11) to obtain after some arithmetics
the equation transformed to the canonical variables τ and σ = σ(τ)

σ ′′ = σ ′

9nλ(σ ′ 2 + 9n2λ)

{
243n3λ2 + 9n(n − 3)λσ ′ 2 − σ ′ 4

}
. (17)

By construction, this equation does not contain σ explicitly because it admits transla-
tions in σ generated by X1 = ∂σ , so that we can reduce its order by one unit choosing
σ ′ for the new unknown: r = σ ′(τ ) and σ ′′ = dr/dτ . Since it also admits another sym-
metry X2 = ∂τ , it does not contain explicitly τ either, so that (17) admits separation
of variables r and τ in the form

− 9nλ
(r2 + 9n2λ) dr

r{r4 − 9n(n − 3)λr2 − 243n3λ2} = dτ (18)

which we immediately integrate. We split the integral on the left-hand side into two
parts J1 and J2, so that the integrated equation (18) becomes the first integral

− 9nλJ = τ − ln |C1| = ln

∣∣∣∣
a

C1

∣∣∣∣, J = 1

2
J1 + 9n2λ

2
J2 (19)

where

J1 =
∫

dψ

P(ψ)
, J2 =

∫
dψ

ψP(ψ)
(20)

with ψ = r2 and P(ψ) = ψ2 −9n(n−3)λψ −243n3λ2. This polynomial admits the
factorization: P(ψ) = (ψ − 9n2λ)(ψ + 27nλ). The expansion of the denominators
of J1 and J2 leads to the following results

J1 = 1

9n(n + 3)λ
ln

∣∣∣∣
ψ − 9n2λ

ψ + 27nλ

∣∣∣∣,

J2 = 1

243n3(n + 3)λ2 ln

∣∣∣∣
(ψ + 27nλ)n(ψ − 9n2λ)3

ψn+3

∣∣∣∣. (21)

Using (21) in (19) and eliminating logarithms, we obtain

a = C1r
1/3|r2 + 27nλ|− (n−3)

6(n+3) |r2 − 9n2λ|− 1
n+3 . (22)
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According to the routine, e.g. in [14], we had to replace here a by εeτ and solve
algebraically Eq. (22) for r = dσ/dτ as an explicit function of τ and then integrate
once to get σ = σ(τ). Performing the inverse transformation from canonical variables
τ and σ in the solution to t and a we will obtain the required dependence a(t).
However, such strategy would not work here because for n �= 3 it is impossible to
solve explicitly the Eq. (22) for r . Therefore, our approach will be to regard the result
(22) as determining a as a function of parameter r . Then we need to have also another
variable t as a function of r . For this purpose let us rewrite our previous relation

r = σ ′ = nλa/(da/dt) in the form dt = r

nλ
d(ln |a|) with ln |a| calculated from (22)

and differentiated afterwards with the following result

dt = 9

n + 3

{
n − 3

r2 + 27nλ
− 2n

r2 − 9n2λ

}
dr. (23)

Integration of this equation yields

t = 9

n + 3
{(n − 3)I1 − 2nI2} , I1 =

∫
dr

r2 + 27nλ
, I2 =

∫
dr

r2 − 9n2λ
. (24)

Calculation of the integrals I1, I2 depends on the sign of λ:
Case 1: λ > 0.

I1 = 1

3
√

3nλ
arctan

(
r

3
√

3nλ

)
, I2 = 1

6n
√

λ
ln

∣∣∣∣∣
r − 3n

√
λ

r + 3n
√

λ

∣∣∣∣∣. (25)

Case 2: λ = −μ2 < 0.

I1 = 1

6
√

3nμ
ln

∣∣∣∣∣
r − 3

√
3nμ

r + 3
√

3nμ

∣∣∣∣∣, I2 = 1

3nμ
arctan

(
r

3nμ

)
. (26)

Using these values of the integrals I1 and I2 in (24) we obtain the following final
expressions for t in both cases:

Case 1: λ > 0.

t =
√

3

(n + 3)
√
nλ

{
(n − 3) arctan

(
r

3
√

3nλ

)
− √

3n ln

∣∣∣∣∣
r − 3n

√
λ

r + 3n
√

λ

∣∣∣∣∣

}
+ C2. (27)

Case 2: λ = −μ2 < 0.

t =
√

3

(n + 3)
√
nμ

{
(n − 3)

2
ln

∣∣∣∣∣
r − 3

√
3nμ

r + 3
√

3nμ

∣∣∣∣∣ − 2
√

3n arctan

(
r

3nμ

)}
+ C2. (28)

Equation (22) for a(r) together with either (27) for λ > 0 or alternatively (28) for
λ < 0 with μ = √−λ > 0, which determine t (r), yields the required general solution
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of Eq. (11) in a parametric form with the parameter r . HereC1 andC2 are two arbitrary
constants which should be present in the general solution. We note here that, Eq. (22)
on the other hand is valid for both signs of λ; for λ < 0 we use it with λ = −μ2.

We gave the general solution for the scale factor a in terms of parameter r in (22)
and the cosmic time t in terms of parameter r depending on the sign of the constant
λ in (27) and (28). Hence, we have now the general solution of (11) and we further
need to obtain the solution of s, ρ and p to obtain the general solution of the model
determined by Eqs. (4a–5). We now proceed with determining the scale factor of the
internal space s(t) which is in general possible only in a parametric form. We use
the kinematical constraint (5) where a is already known in a parametric form. We
need only our previous result ȧ/a = nλ/r which by (5) implies ṡ/s = r/(9n) or
equivalently d(ln |s|) = rdt/(9n), where we will use Eq. (23) for dt which is valid
for both signs of λ. We obtain

d(ln |s|) = 1

n + 3

{
(n − 3)

n(r2 + 27nλ)
− 2

r2 − 9n2λ

}
rdr (29)

which by introducing the new variable ψ = r2 is easily integrated in the form

ln |s| = 1

n + 3

{
n − 3

2n
ln |ψ + 27nλ| − ln |ψ − 9n2λ|

}
+ lnC3.

We finally obtain s(t) in the parametric form

s = C3|r2 + 27nλ| n−3
2n(n+3) |r2 − 9n2λ|− 1

n+3 (30)

together with t (r) determined by (27) or (28) depending on the sign of λ. To drop the
module signs correctly in the equations given in (30) for s(r) and (27), (28) for t (r),
we have again to distinguish different subcases considered above.

Now we use Eq. (4a) with a(r) and s(r) already determined to find the unknown
ρ.

ρ = 1

κ

(
3n2λ2

r2 + nλ

3
+ n − 1

162n
r2

)
(31)

which again together with t (r) determined by (27) or (28) yields ρ(t) in a parametric
form.

Finally we will determine p(t) from (4b) [or (4c)] with a and s already found, so
that we use ȧ/a = nλ/r , ä/a = (ȧ/a)̇ + (ȧ/a)2 where (ȧ/a)̇ = −(nλ/r2)dr/dt and
dr/dt is determined by (23) as a function of r as

dr

dt
= −

(
r2 + 27nλ

) (
r2 − 9n2λ

)

9
(
r2 + 9n2λ

) . (32)
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This implies the result

ä

a
= nλ

9r2
(
r2 + 9n2λ

)
[
r4 + 9n(4 − n)λr2 − 162n3λ2

]
.

We determine s̈/s in a similar way, using ṡ/s = r/(9n), s̈/s = (ṡ/s )̇ + (ṡ/s)2 and
(ṡ/s )̇ = (1/(9n))dr/dt with dr/dt again determined by (32). We obtain

s̈

s
= (1 − n)r4 + 9n2(n − 2)λr2 + 243n4λ2

81n2(r2 + 9n2λ)
.

Using all these results (4b) (or (4c)) after some arithmetical simplifications we obtain

p = 1

κ

{
3n2λ2

r2 − (n + 4)λ

3
− (27λn2 − r2)(n − 1) − 216nλ

162n(9n2λ + r2)
r2

}
(33)

which yields p(t) in a parametric form together with t (r) determined by (27) or (28).
Equation of state parameter (EoS) of the (1 + 3 + n)-dimensional fluid defined as
w = p

ρ
then can also be given in parametric form using (33) and (31).

3 Cosmological models

Up to this point, the general solution of our model is obtained in parametric form in
terms of λ, n and a new variable r . We determined the scale factors of the external
space a in (22) and of the internal space s in (30), as well as the energy density ρ in
(31) and pressure p in (33) of the higher dimensional effective fluid. Unfortunately
it is not possible to write down an analytic expression for r as a function of the
physically relevant cosmic time variable t . Yet numerical techniques can be used to
generate parametric plots of physical quantities such as the Hubble and deceleration
parameters of both external and internal spaces as functions of cosmic time t . In order
to do that the sign of λ should be taken into account and different ranges of r over
which the solutions are valid must be determined. Accordingly, in what follows we
distinguish between different cases depending on the sign of λ and the ranges of r
over which the general solution is valid. We provide in each case parametric plots
given in terms of t for various values of n = 1, 2, 3, . . ., thus demonstrating the
cosmological consequences of our model focusing on the behavior of the (physical,
three dimensional) external space.

3.1 Case λ > 0

λ > 0 is the case in which the external and internal spaces behave in the same way,
namely, as the external space expands/contracts the internal space expands/contracts
too. In this case, the cosmic time t is given as
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t =
√

3

(n + 3)
√
nλ

{
(n − 3) arctan

(
r

3
√

3nλ

)
− √

3n ln

∣∣∣∣∣
r − 3n

√
λ

r + 3n
√

λ

∣∣∣∣∣

}
+ C2. (34)

The scale factor of the external space is given as

a = C1r
1/3

(
r2 + 27nλ

)− (n−3)
6(n+3) |r2 − 9n2λ|− 1

n+3 , (35)

which yields the following Hubble and deceleration parameters

Ha = ȧ

a
= n

λ

r
and qa = − äa

ȧ2 = (r2 + 27nλ)(9n2λ − r2)

9nλ(9n2λ + r2)
− 1, (36)

respectively. The scale factor of the internal dimensions is obtained as

s = C3(r
2 + 27nλ)

n−3
2n(3+n) |r2 − 9n2λ|− 1

3+n , (37)

which yields the following Hubble and deceleration parameters

Hs = ṡ

s
= r

9n
and qs = − s̈s

ṡ2 = −n(r2 + 27nλ)(9n2λ − r2)

r2(9n2λ + r2)
− 1, (38)

respectively. We note that there are two different sets of solutions according to the
sign of r2 − 9n2λ. We note also that t ′ = 0 has real solution neither for the case
r2 − 9n2λ > 0 nor for the case r2 − 9n2λ < 0, which implies that we will not need
to further concern with the ranges once we consider one of these two ranges provided
that λ > 0. It is evident from (36) that the positive values of r should be considered
for expanding universe solutions in this case λ > 0.

3.1.1 Subcase r2 − 9n2λ < 0

This subcase implies r ∈ (−3n
√

λ, 3n
√

λ). Because we are interested in expanding
external space then we consider only the range 0 ≤ r ≤ 3n

√
λ. We note that a → 0,

Ha → ∞, qa → 2 and s → smin = const., Hs → 0, qs → −∞ as r → 0 while

a → ∞ and s → ∞ such that Ha → Hs →
√

λ
3 and qa → qs → −1 as r → 3n

√
λ.

We note further that t → C2 as r → 0 and t → ∞ as r → 3n
√

λ and also that
the cosmic time t (r) evolves monotonically between these two limits. Hence external
dimensions start expanding from a zero size while internal dimensions start expanding
with a non-zero size at t = 0 (we set C2 = 0). External dimensions expand always
with a higher rate than the external dimensions. All the dimensions, on the other
hand, approach the exponential expansion with a same power as t → ∞. However,
we note that their evolution trajectories are dependent on the number of the internal
dimensions n. To demonstrate to behavior of the model in cosmic time t we presented
the parametric plots of the scale factor in Fig. 1a and the deceleration parameter in
Fig. 1b of the external dimensions versus cosmic time t for n = 1 to n = 10. The
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(a) (b)

(d)(c)

Fig. 1 The evolution of some parameters of the model in cosmic time t for (4 + n)-dimensions. The plots
are given for n = 1 to n = 10 by choosing λ = 1. The curves are in an order such that the dashed curves
correspond to the case n = 3 and dotted curves correspond to the case n = 6. a The scale factor of the
external dimensions, a. b The deceleration parameter of the external dimensions, qa . c The energy density
of the higher dimensional fluid, ρ. d Equation of state (EoS) parameter of the higher dimensional fluid, w

dashed curves in the figures represent the case n = 3 whose explicit solution in terms
of cosmic time t is available and given below in (41) and the dotted curves represent the
case n = 6. Hence, one may have an idea about the behavior of the model depending on
the number of internal dimensions n by checking the explicit functions of cosmic time
t given in Eq. (41) for n = 3. We note a difference in the evolution of the deceleration
parameter in accordance to whether the universe has more than 10 dimensions or not:
In the range we consider in this solution, q ′ = 0 has only one real root (r1 = 0)

if n ≤ 6 while it has two real roots (r1 = 0 and r2 = 3
√

−n2λ + nλ
√

2n2 − 6n)
if n > 6. Accordingly, as can also be seen in Fig. 1b, if the number of the internal
dimensions are higher than 6, then the deceleration parameter first increases to a
certain value and then evolves to −1, while in the cases for n ≤ 6 the deceleration
parameter evolves monotonically to −1 as the universe expands. The energy density
of the higher dimensional fluid is always positive and evolves from infinitely large
values t = 0 to a non-zero constant ρ → λ(n + 3)(n + 2)/18 as t → ∞. The EoS
parameter of the fluid w, on the other hand, starts with the value of w = 1 at t = 0
and approaches w → −1, i.e. cosmological constant/vacuum energy, as t → ∞. In
Fig. 1c and Fig. 1d, we present the parametric plots of the cosmic time t evolution of
the energy density and EoS parameter of the higher dimensional fluid for n = 1 to
n = 10.
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3.1.2 The particular case n = 3

In the particular case n = 3 we can obtain the explicit solution of the model in terms
of the cosmic time t . In this case we have r2 − 81λ < 0, i.e. r ∈ (−9

√
λ, 9

√
λ). Now

substituting n = 3 in (34) we obtain cosmic time t as

t = − 1

2
√

λ
ln

(
9
√

λ − r

9
√

λ + r

)
+ C2 (39)

which is solved for r(t) as follows

r = 9
√

λ tanh [√λ(t − C2)]. (40)

Using (40) for r(t) and substituting n = 3 in Eqs. (35–38) we obtain

a = C1 sinh1/3
[√

λ(t − C2)
]
, Ha =

√
λ

3
coth

[√
λ(t − C2)

]
and

qa = −1 + 3 sech2
[√

λ(t − C2)
]

(41)

for the external space, and

s = C3 cosh1/3
[√

λ(t − C2)
]
, Hs =

√
λ

3
tanh

[√
λ(t − C2)

]
and

qs = −1 − 3 cosech2
[√

λ(t − C2)
]

(42)

for the internal space. We note that this is the solution investigated in detail in [12], and
hence one may see reference [12] for a comprehensive discussion on the cosmological
aspects of this solution.

3.1.3 Subcase r2 − 9n2λ > 0

This subcase implies r ∈ {(−∞,−3n
√

λ)
⋃

(3n
√

λ,+∞)} and the expanding exter-
nal space solution we want to consider is possible in the range 3n

√
λ ≤ r ≤ ∞. We

note that a → amin = const., Ha → 0, qa → −∞ and s → 0, Hs → ∞, qs → 2 as

r → ∞ while a → ∞ and s → ∞ such that Ha → Hs →
√

λ
3 and qa → qs → −1

as r → 3n
√

λ. We note further that t → C2 + π
2
n−3
n+3

√
3
nλ

as r → ∞ and t → ∞ as

r → 3n
√

λ and also that t (r) evolves monotonically between these two limits as in
the case 0 ≤ r ≤ 3n

√
λ discussed in Sect. 3.1.1. On the other hand, in contrast to the

case 0 ≤ r ≤ 3n
√

λ, in this case qa is monotonic for all values of n. We present the
parametric plots of the scale factor in Fig. 2a and the deceleration parameter in Fig. 2b
of the external dimensions versus cosmic time t for n = 1 to n = 10. The dashed
green curves in the figures represent the case n = 3 whose explicit solution in terms of
cosmic time t is available and given below in (45) and the dotted curves represent the
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(a) (b)

(c) (d)

Fig. 2 The evolution of some parameters of the model in cosmic time t for (4 + n)-dimensions. The plots
are given from n = 1 to n = 10 by choosing λ = 1. The curves are in an order such that the dashed curves
correspond to the case n = 3 and dotted curves correspond to the case n = 6. a The scale factor of the
external dimensions, a. b The deceleration parameter of the external dimensions, qa . c The energy density
of the higher dimensional fluid, ρ. d Equation of state (EoS) parameter of the higher dimensional fluid, w

case n = 6. Hence, one may have an idea about the behavior of the model depending
on the number of internal dimensions n by checking the explicit functions given in
Eq. (45) for n = 3. When we consider the higher dimensional fluid in this solution,
we note that the case n = 1 exhibits a qualitatively different behavior than the cases
n ≥ 2. For all values of n, the energy density of the higher dimensional fluid ρ is
always positive and ρ → λ(n + 3)(n + 2)/(18κ) and w → −1 as r → 3n

√
λ (viz.

t → ∞). However, at the limit r → ∞ (viz. when the external space starts to expand),
ρ → ∞ and w → 1 for the cases n ≥ 2, while ρ → λ

(3κ)
and w → −1 for the case

n = 1. Accordingly, in the case n = 1 the higher dimensional fluid yields the form of
vacuum energy both at the beginning of the expansion of the external space and in the
infinite future, though it starts with an energy density equal to 2

(3κ)
λ and ends up with

an energy density equal to 1
(3κ)

λ. In Fig. 2c, d, we present the parametric plots of the
cosmic time t evolution of the energy density and EoS parameter of the higher dimen-
sional fluid for n = 1 to n = 10. We should, however, note that this solution cannot
be considered as a viable higher dimensional cosmological model for any values of
n due to two obvious reasons: (1) The internal dimensions expand always faster than
the external dimensions. (2) The deceleration parameter of the external dimensions is
always less than −1.
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3.1.4 The particular case n = 3

In the particular case n = 3 we can obtain the explicit solution of the model
in terms of the cosmic time t . In this case we have r2 − 81λ > 0, i.e. r ∈
{(−∞,−9

√
λ)

⋃
(9

√
λ,+∞)}, and the case r ∈ (9

√
λ,+∞) corresponds to the

expanding external space solution. Substituting n = 3 in (34) we obtain cosmic time
t as

t = − 1

2
√

λ
ln

(
r − 9

√
λ

r + 9
√

λ

)
+ C2 (43)

which is solved for r(t) as follows

r = 9
√

λ coth [√λ(t − C2)]. (44)

Using (44) for r(t) and substituting n = 3 in Eqs. (35–38) we obtain

a = C1 cosh1/3
[√

λ(t − C2)
]
, Ha =

√
λ

3
tanh

[√
λ(t − C2)

]
and

qa = −1 − 3 cosech2
[√

λ(t − C2)
]

(45)

for the external space and

s = C3 sinh1/3
[√

λ(t − C2)
]
, Hs =

√
λ

3
coth

[√
λ(t − C2)

]
and

qs = −1 + 3 sech2
[√

λ(t − C2)
]

(46)

for the internal space.

3.2 Case λ = −μ2 < 0

λ = −μ2 < 0 is the case in which the external and internal spaces behave in the
opposite ways; namely, as the external space expands/contracts the internal space
contracts/expands. In this case, the cosmic time t is given as follows:

t =
√

3

(n + 3)
√
nμ

{
(n − 3)

2
ln

∣∣∣∣∣
r − 3

√
3nμ

r + 3
√

3nμ

∣∣∣∣∣ − 2
√

3n arctan

(
r

3nμ

)}
+ C2. (47)

The scale factor of the external space is given as

a = C1r
1/3|r2 − 27nμ2|− (n−3)

6(n+3)

(
r2 + 9n2μ2

)− 1
n+3

, (48)
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which yields the following Hubble and deceleration parameters

Ha = −n
μ2

r
and qa =

(
27nμ2 − r2

) (
9n2μ2 + r2

)

9nμ2
(
9n2μ2 − r2

) − 1, (49)

respectively. The scale factor of the internal dimensions is obtained as

s = C3|r2 − 27nμ2|− (n−3)
2n(n+3)

(
r2 + 9n2μ2

)− 1
n+3

, (50)

which yields the following Hubble and deceleration parameters

Hs = r

9n
and qs = n

(
27nμ2 − r2

) (
9n2μ2 + r2

)

r2
(
9n2μ2 − r2

) − 1. (51)

We note that, in contrast to the case for λ > 0 and n = 3, here in this solution for
λ = −μ2 < 0 and n = 3 the solution becomes free from terms involving absolute
value, which implies that the case n = 3 is determined uniquely regardless of the sign
of r2 − 27nμ2. The cases n �= 3, on the other hand, should be treated by considering
the sign of r2 − 27nμ2 as in the case for λ > 0, though it is not enough. We note
that t ′ = 0 has two real solutions; r = 3nμ for positive values of r and r = −3nμ

for negative values of r . This implies that, once the sign of r is chosen for obtaining
solution, t (r) is not monotonic, namely it has one turning point and hence there could
be two different branches of the solutions for a chosen sign of r . If we give the complete
list, in this case λ = −μ2 < 0, there are the following solutions differing in the ranges
of parameter r and the number of internal dimensions n:

1. If n = 3, then either r ∈ (−∞, 0) or r ∈ (0,+∞).
2. r2 − 27nμ2 < 0:

(a) For n = 1 and n = 2, with the ranges r ∈ (−3nμ, 0) or r ∈ (0, 3nμ).
(b) For n = 1 and n = 2, with the ranges r ∈ (−3

√
3nμ,−3nμ) or r ∈

(3nμ, 3
√

3nμ).
(c) For n ≥ 4, with the ranges r ∈ (−3

√
3nμ, 0) or r ∈ (0, 3

√
3nμ).

3. r2 − 27nμ2 > 0
(a) For n = 1 and n = 2, with the ranges r ∈ (−∞,−3

√
3nμ) or r ∈

(3
√

3nμ,+∞)

(b) For n ≥ 4, with the ranges r ∈ (−3nμ,−3
√

3nμ) or r ∈ (3
√

3nμ, 3nμ).
(c) For n ≥ 4, with the ranges r ∈ (−∞, 3nμ) or r ∈ (3nμ,+∞).

In contrast to the case λ > 0 where the energy density is always positive, the energy
density in this case is given as follows

ρ = 1

κ

(
3n2μ4

r2 − nμ2

3
+ n − 1

162n
r2

)
, (52)
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and, it should be further investigated since it can obtain either negative or positive
values:

ρ < 0 for 9nμ2 3n − √
3n2 + 6n

n − 1
< r2 < 9nμ2 3n + √

3n2 + 6n

n − 1
. (53)

Its first and second derivatives with respect to parameter r as follows:

κρ′ = −6n2μ4

r3 + 1

81

(n − 1)r

n
and κρ′′ = 18n2μ4

r4 + 1

81

(n − 1)

n
. (54)

Accordingly we have

ρ′ = 0 at rc = ±3μ61/4 n3/4

(n − 1)1/4 . (55)

Using rc in the second derivative we find that

d2ρ

dr2

∣∣∣∣
r=rc

= 4

81κ

(
1 − 1

n

)
, (56)

which is always positive since n ≥ 1. Hence, the energy density of the higher dimen-
sional fluid reaches a negative minimum as

ρmin = −nμ2

3κ

(
1 −

√
2

3
− 2

3n

)
< 0, (57)

as long as rc is covered by the range of r in the solution under consideration. Substitut-
ing r = rc from (55) in (33), we find further that the pressure of the higher dimensional
fluid becomes

p = −ρmin at r = rc. (58)

We note that the energy density of the higher dimensional fluid takes negative values
at r = rc but its EoS takes the form of vacuum energy at r = rc. Therefore the
minimum of the energy density of the fluid can be shifted to zero by adding a negative
cosmological constant � = ρmin

κ
< 0 into the model.

3.2.1 The particular case n = 3

As we mentioned above, there is no restriction on the range of r for the particular case
n = 3 and it can be chosen either as r ∈ (−∞, 0) or as r ∈ (0,+∞). In this case the
cosmic time t is given by

t = − 1

μ
arctan

(
r

9μ

)
+ C2, (59)
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which implies
r = −9μ tan [μ(C2 − t)]. (60)

The scale factor on the other hand reduces to

a = C1r
1/3

(
r2 + 81μ2

)−1/6
. (61)

Using r from (60) in (61) and redefining C1 as −C1, we obtain the explicit solution
a(t) in the form

a = C1 sin1/3 [μ(t − C2)] (62)

which yields

Ha = μ

3
cot [μ(t − C2)] and qa = 3 sec2 [μ(t − C2)] − 1, (63)

and
s = C3 cos1/3 [μ(t − C2)] (64)

yielding

Hs = −μ

3
tan [μ(t − C2)] and qs = 3 csc2 [μ(t − C2)] − 1, (65)

with no restrictions on the range of r . We present plots of the scale factor in Fig. 3a,
the deceleration parameter in Fig. 3b of the external dimensions versus cosmic time
t for n = 3. In Fig. 3c, d, we present plots of time t evolution of the energy density
and EoS parameter of the higher dimensional fluid. We note that both of the external
and internal spaces oscillate with a period Pn=3 = π

μ
(time between the consecutive

beginnings of the expansion of the external space). The constantsC1 andC3 determine
the oscillation amplitudes of the external and internal dimensions respectively.

3.2.2 Subcase r2 − 27nμ2 < 0

Within the range r2 − 27nμ2 < 0 we have the following two cases that can be of
interest in cosmology:

1. n = 1 and n = 2, with the ranges r ∈ (−3nμ, 0) or r ∈ (0, 3nμ)

If there are only one or two internal dimensions, i.e. n = 1 or n = 2, then we
have oscillating solutions within the ranges r ∈ (−3nμ, 0) or r ∈ (0, 3nμ). The

oscillation periods are Pn=1 = 3
4μ

π −
√

3
2μ

ln(2+√
3), Pn=2 = 3

5μ
π −

√
6

10μ
ln(5+2

√
6)

for n = 1 and n = 2 respectively. One may check that a → 0, Ha → ∞ and
qa → 2 as r → 0. The Hubble parameters of the external and internal dimensions
approach to non-zero constants as r → −3nμ, which give a delusive impression that
the universe is dynamical at this limit. In fact, at this limit the expansion/contraction of
the external/internal space ends and the contraction/expansion of the external/internal
space starts: One may check that dt

dr → 0 as r → −3nμ, and that da
dr → 0 and

ds
dr → 0 as r → −3nμ, which means that the external space reaches its maximum
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(a) (b)

(c) (d)

Fig. 3 The evolution of some parameters of the model in cosmic time t for n = 1, n = 2 and n = 3,
which give oscillating universes. The plots are given by choosing μ = 1 and hence their periods are as

follows: Pn=1 = 3
4 π −

√
3

2 ln(2 + √
3), Pn=2 = 3

5 π −
√

6
10 ln(5 + 2

√
6) and Pn=3 = π . The plots are

given for the half period. a The scale factor of the external dimensions, a. b The deceleration parameter of
the external dimensions, qa . c The energy density of the higher dimensional fluid, ρ. d Equation of state
(EoS) parameter of the higher dimensional fluid, w

size while the internal space reaches its minimum size at the limit r → −3nμ. The
behavior of the model can also be investigated at the limit r → −3nμ by considering
the deceleration parameters qa and qs that are dimensionless and hence don’t involve

t explicitly. One may check qa = d
dt

(
1
Ha

)
− 1 → ∞ and qs = d

dt

(
1
Hs

)
− 1 → ∞ as

r → −3nμ, which also shows that the expansion/contraction of the external/internal
space stops at the limit r → −3nμ. The energy density of the higher dimensional
fluid ρ starts with infinitely large values at r = 0 both for n = 1 and n = 2, while, as

r → −3nμ, it approaches zero and −μ2

3 for n = 1 and n = 2 respectively. The EoS
parameter of the higher dimensional fluid starts with the value of 1 and approaches
+∞ as r → −3nμ both for n = 1 and n = 2. We present parametric plots of the
scale factor in Fig. 3a, the deceleration parameter in Fig. 3b of the external dimensions
versus cosmic time t for n = 1 and n = 2. In Fig. 3c, d, we present parametric plots
of the cosmic time t evolution of the energy density and EoS parameter of the higher
dimensional fluid for n = 1 and n = 2.

2. n ≥ 4, with the ranges r ∈ (−3
√

3nμ, 0) or r ∈ (0, 3
√

3nμ)

If there are more than three internal dimensions, i.e. n ≥ 4, then we have solutions,
for which the external space exhibits type of behaviors similar to that of the �CDM
model, within the ranges r ∈ (−3

√
3nμ, 0) and r ∈ (0, 3

√
3nμ). One may check
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that a → 0, Ha → ∞ and qa → 2 as r → 0 and that a → ∞, Ha → 1
3

√
n
3 μ

and qa → −1 as r → −3
√

3nμ. Accordingly, for all values of n ≥ 4, the external
space starts with a decelerated expansion rate, enters into the accelerated expansion
phase and eventually approaches exponential expansion. We note that q ′

a = 0 has two

real roots for n = 4 and n = 5 (r = 0 and r = ±
√
n2 − n

√
2n2 − 6n), while there

is only one for n ≥ 6 (r = 0). According to this, only the cases n ≥ 6 approaches
exponential expansion (qa = −1) monotonically. We present the parametric plots of
the scale factor in Fig. 4a and the deceleration parameter in Fig. 4b of the external
dimensions versus cosmic time t for n = 4 to n = 10. In Fig. 4c, d, we present
the parametric plots of the cosmic time t evolution of the energy density and EoS
parameter of the higher dimensional fluid for n = 4 to n = 10. Note that the plots
in these figures are depicted by redefining times as t → −t and r → −r , so that
the time parameter appears positive and the external space expands as t increases in
the figures. In these figures the dotted curves represent the case n = 6. This solution
possesses a noteworthy feature that should not be passed without mentioning. We
note that the energy density of the higher dimensional fluid approaches a non-zero
constant and its EoS parameter approaches the value of 1 as a → ∞. Considering
the conservation of the energy-momentum tensor for a minimally coupling energy
source, i.e. ρ̇ + (3Ha + nHs)(1 + w)ρ = 0, constant energy density is possible only
if the EoS parameter is equal −1 or if the volume is constant V = a3sn = constant,
i.e., 3Ha + nHs = 0. Indeed using the Hubble parameters of the external and internal
dimensions from (49) and (51) we find that

V̇

V
= 3Ha + nHs = −3nμ2

r
+ r

9
(66)

and that Ha → 1
3

√
n
3 μ, Hs → − μ√

3n
and V̇

V → 0 as r → −3
√

3nμ. Hence the total

volume of the universe approaches a finite size as t → ∞, while the external(internal)
space keeps on expanding(contracting) forever. Accordingly, in this model, the uni-
verse approaches a higher dimensional steady state universe, that is characterized by
dynamical external and internal spaces having a constant (3+n)-dimensional volume
and a constant mean energy density in (3 + n) dimensions [8,9].

3.2.3 Subcase r2 − 27nμ2 > 0

As it is listed above in this section for r2 − 27nμ2 > 0 we have three different set of
solutions when we consider the evolution of the universe in terms of cosmic time t . In
comparison with the cases discussed above, the behavior of the external space in all
these three cases is less interesting from the cosmological point of view. Therefore, for
the sake of brevity, our discussion in this section will be confined by the kinematics
of the external space.

1. n = 1 and n = 2, with the ranges r ∈ (−∞,−3
√

3nμ) or r ∈ (3
√

3nμ,+∞)

We note that a → 0, q → −1 as r → 3
√

3nμ and a → amax = const. �= 0,
q → ∞ as r → ∞. The cosmic time t , on the other hand, ranges from t = ∞ to
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(a) (b)

(c) (d)

Fig. 4 The evolution of some parameters of the model in cosmic time t for (4 + n)-dimensions. The plots
are given from n = 4 to n = 10 by choosing μ = 1. The curves are in an order such that the dotted curves
correspond to the case n = 6. a The scale factor of the external dimensions, a. b The deceleration parameter
of the external dimensions, qa . c The energy density of the higher dimensional fluid, ρ. d Equation of state
(EoS) parameter of the higher dimensional fluid, w

t = − 3π
(3+n)μ

+ C2 as a ranges from a = 0 to a = const. �= 0. According to this
the external space starts to contract from its maximum size and keeps on contraction
forever by approaching exponential contraction at infinite future. We can interpret this
result in another way. If we redefine time as t → −t , then we have an expanding
external space that approaches to a finite maximum size coming from a de Sitter
expansion phase in the infinite past. We present deceleration parameter of the external
space qa versus cosmic time t in Fig. 5a for the latter interpretation.

2. n ≥ 4, with ranges r ∈ (−3nμ,−3
√

3nμ) or r ∈ (3
√

3nμ, 3nμ)

We note that a → ∞, q → −1 as r → 3
√

3nμ and a → amin = const. �= 0,
q → −∞ as r → 3nμ. The cosmic time t , on the other hand, ranges from t = const.
to t = −∞ as a ranges from a = amin to a = ∞. Accordingly, redefining the cosmic
time as t → −t , we find that the external space starts expansion from its minimum
size and then keeps on expanding forever by approaching an exponential expansion.
We present deceleration parameter of the external space qa versus cosmic time t in
Fig. 5b.

3. n ≥ 4, with ranges r ∈ (−∞,−3nμ) or r ∈ (3nμ,+∞)

We note that both the cosmic time t and the scale factor factor of the external space
a ranges between two different finite values between the limits r → 3nμ and r →
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+∞, while the deceleration parameter of the external space qa is identically becomes
infinitely large at these limits. All these indicate the oscillating behavior of the universe
in this case, i.e., the external space oscillates between its finite extremums. We present
deceleration parameter of the external space qa versus cosmic time t in Fig. 5c.

4 Concluding remarks

In this paper we studied the general solution of a higher dimensional cosmological
model [12] that is characterized by a single real parameter λ, the product of the
Hubble parameters of the internal and external spaces, that correlates and controls
the dynamical evolution of the cosmology. In the original study the solutions of the
field equations were given only for the particular case for which an explicit solution
exists, that is when the number of internal dimensions is n = 3, and λ > 0 only. In
the present paper, on the other hand, we obtain the general solution of the system for
arbitrary values of n = 1, 2, 3, . . . and λ, expressed in parametric form with the help
of Lie symmetry properties. We also provide explicit analytic solutions of the system
in terms of the cosmic time t for special cases (1) λ = 0 for arbitrary values of n and
(2) λ �= 0 for n = 3.

1. We show that depending on the range of r , the values n = 1, 2, 3, . . . may take,
as well as the sign of λ our parametric solution may lead to very different types of
cosmological evolution in t . Such a diversity of cosmological dynamics depending
on the parameter values wouldn’t be apparent if we looked for analytic solutions
in terms of cosmic time t only. In this sense our parametric solution is important.

2. Even though we cannot express our general solution analytically in terms of t , we
are able to generate plots for all n = 1, 2, 3, . . . of physically relevant quantities
such as the scale factors, Hubble and deceleration parameters of both the internal
and external spaces as functions of t . The energy density, pressure and EoS in each
case are also plotted as functions of t . It is remarkable that the cases n = 3 and
n = 6 stand out among others as critical dimensions at which qualitative changes
in the evolutionary behavior of the universe occur.

3. In this paper we obtained different cosmological models depending on the sign of
λ, the number of internal dimensions n and the range of the parameter r . To be con-
cise we haven’t discussed some aspects of the models, such as the 4-dimensional
effective universe as it was done for the particular case λ > 0 and n = 3 in the
original study [12]. However, it might be useful to comment on the 4-dimensional
effective gravitational coupling κ̃ as it is dynamical in our solutions. It is well
known that 4-dimensional effective gravitational coupling is inversely propor-
tional to the volume of the internal space Vint = sn while it is proportional with
the (1 + 3 + n)-dimensional gravitational coupling κ [10,11]. Accordingly, as
κ is a constant in our model, the rate of change of the 4-dimensional effective
gravitational coupling simply reads

˙̃κ
κ̃

= −n
ṡ

s
= −nλa

ȧ
. (67)
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Since ṡ/s = r/(9n), this also leads to a simple relationship between the parameter
r and the rate of change of 4-dimensional effective gravitational coupling as

˙̃κ
κ̃

= −r

9
. (68)

Using the above relationship in (32), we find that the differential equation that
describes the rate of change of the 4-dimensional effective gravitational coupling
is as follows:

d

dt

( ˙̃κ
κ̃

)
=

(
9(

˙̃κ
κ̃
)2 + 3nλ

) (
9(

˙̃κ
κ̃
)2 − n2λ

)

9
(

9(
˙̃κ
κ̃
)2 + n2λ

) . (69)

We would like to note that (68) also reveals the physical meaning of r which has
been utilized for obtaining the exact parametric solution of the model and then
lets us give various cosmological scenarios in cosmic time t depending on the
considered range of r that we gave in different sections. Hence the ranges of r
that correspond to different models in cosmic time t amount to setting the ranges
for the rate of change of 4-dimensional effective gravitational coupling in cosmic
time. Accordingly we can utilize the ranges of the solutions to have an idea about
the ˙̃κ/κ̃ in our models. The most promising two models among all are those where
the value of the deceleration parameter of the external space evolves from 2 to −1
as the external space expands: the case λ > 0 and 0 ≤ r ≤ 3n

√
λ [given in Sect.

(3.1.1)] and the case λ = −μ2 > 0 and −3
√

3nμ ≤ r ≤ 0 for n ≥ 4 [case (2)
given in Sect. (3.2.2)]. In these two cases the ˙̃κ/κ̃ is null when a = 0 (r = 0). As
the external space expands, in the former case κ̃ decreases and ˙̃κ/κ̃ → −n

√
λ/3

as a → ∞. In the latter one κ̃ increases and ˙̃κ/κ̃ →
√

n
3 μ as a → ∞. We note that

in neither of the cases the magnitude of ˙̃κ/κ̃ does not grow indefinitely and hence
may be set to sufficiently small values that couldn’t be detected through the history
of the universe. On the other hand, we give also solutions where the magnitude
of r and hence that of ˙̃κ/κ̃ tends to infinitely large values. It is interesting that
the evolution of the external space in these cases is also drastically different from
the expansion history of the universe we observe. The detailed discussion of the
observational constraints on all of these models is out of the scope of this paper.
However, a detailed discussion on ˙̃κ/κ̃ for the particular case λ > 0 and n = 3
can be found in [12]. There the average value of ˙̃κ/κ̃ from t = 0 to the present
age of the universe 13.7 (Gyr) was calculated as ∼ 10−11 year−1 and it was found
that ˙̃κ/κ̃ ∼ −10−25 year−1 for the time scale ∼ 10−2 second which is the time
scale when the primordial nucleosynthesis took place that sets the most severe
constraints on ˙̃κ/κ̃ as ∼ 10−12 year−1.

4. The last point we wish to emphasize concerns the sign of our correlation para-
meter λ. If we consider only the accelerated expansion of the external space (as
the observations dictate) then the internal space contracts for λ < 0 while it also
expands for λ > 0. The picture in the first case is typical for many higher dimen-
sional cosmological models that are discussed in the literature. It often happens in
such models that as t gets very large ρ and/or p as well as the scale factor of the
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internal space may hit singularities. We also observe in this case solutions where
the energy density of the higher dimensional fluid ρ goes negative. One may try
to shift it to positive values by introducing a negative vacuum energy, which is
the only allowed negative energy source satisfying the dominant energy condition
[15] and often appears in unified theories such as string theory [13,16,17]. On the
other hand, the choice λ > 0, that is the case in which the internal space expands
too, discussed here is not typical as far as we know and allows us to avoid running
into such difficulties. Moreover, the notion of an expanding internal space may
be tempting in the context of hierarchy problem (See [10] and references therein
for hierarchy problem). If the fields of standard theory of particles are confined to
our 3-dimensional space by a suitable mechanism, then the expansion of the inter-
nal space will dynamically reduce only the 4-dimensional effective gravitational
coupling. Provided that there are sufficiently large number of internal dimensions,
the volume of the internal space may increase to a size large enough to explain
the weakness of gravity relative to other fundamental forces but yet the internal
dimensions remain at an unobservable size.

We thus demonstrated the viability of a new class of higher dimensional cosmological
models for which both external and internal dimensions are at comparably small scales
during the early stages of their evolution and at later stages the internal dimensions
expand at a much slower rate than those of the external space and remain unobservable.
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