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Abstract The energy content of the Reissner–Nordstrom black hole surrounded by
quintessence is investigated using approximate Lie symmetry methods. It is mainly
done by assuming mass and charge of the black hole as small quantities (ε), and
by retaining its second power in the perturbed geodesic equations for such black
hole while neglecting its higher powers. Due to the presence of trivial second-order
approximate Lie symmetries of these perturbed geodesic equations, a rescaling of the
geodetic parameter gives a rescaling of the energy in this black hole. Interestingly we
obtain an explicit relation of the rescaling factor that depends on the square of the
charge to mass ratio of the black hole, the normalization factor α, which is related to
the state parameter of the quintessence matter, and the coordinate r . A comparison
of this rescaling factor with that of the Reissner–Nordstrom black hole (Hussain et
al. in SIGMA 3:115, 2007), without quintessence is given. It is observed that the
presence of the quintessence field reduces the energy in this black hole spacetime.
Further it is found that there exists a point outside the event horizon of this black hole
where the effect of quintessence balances the energy content in this black hole without
quintessence, and where the total energy of the underlying spacetime becomes zero.
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1 Introduction

To give a well accepted definition of energy is a long standing problem in general
relativity (GR) since the time of Einstein (for detail one may see [1]). To resolve this
problem many scientists have given their own notions of energy in GR [2]. These
attempts to define energy in GR include several pseudo-tensors and approximate sym-
metry approaches. A review of these approaches is available in the literature [3–5].
The pseudo-tensors are coordinate dependent quantities and therefore violates the
basic principle of GR. On the other hand approximate symmetry approaches, except
the approximate Lie symmetry approach have their own drawbacks which are pointed
out in [5]. The approximate Lie symmetry method [6], to define energy in GR is
comparatively new and free of the drawbacks.

The approximate Lie symmetry methods for differential equations [6], have been
applied to the approximate (perturbed) geodesic equations of different gravitational
wave spacetimes and some black hole spacetimes of GR and other theories of gravity
[5,7–10]. For all these spacetimes energy rescaling factors have obtained. These space-
times include plane-fronted and cylindrical gravitational waves [11,12], Reissner–
Nordstrom [4], Kerr–Newman [13], Kerr–Newman AdS [14], BTZ [7], Bardeen [8],
stringy black hole [9] and a slowly rotating black hole in the Horava–Lifshitz theory
of gravity [10].

The evidence for the accelerated expansion of our Universe is supported by some
Cosmological observations like the Supernovae Ia, the Cosmic Microwave Back-
ground radiation anisotropies and X-ray experiments [15–17]. Astrophysicists and
cosmologists consider a missing energy component with negative pressure called dark
energy, responsible for this accelerated expansion of the Universe. There are different
candidates for dark energy (see e.g., [18]). One of these is known as quintessence.
This is defined as a scalar field with the equations of negative state parameter, which
is the ratio of the pressure and density [19]. In 2003, Kiselev derived a charged black
hole solution with quintessence term, of the Einstein field equations (EFEs) [20]. This
solution reduces to the Reissner–Nordstrom black hole solution of the EFEs in the
absence of the quintessence term. The energy expression (rescaling factor) in the case
of Reissner–Nordstrom black hole was obtained in [4] via approximate Lie symme-
try methods. In this paper we are interested to apply the approximate Lie symmetry
methods to the Reissner–Nordstrom black hole with quintessence to look at its energy
content and compare it with that of the Reissner–Nordstrom black hole. In particu-
lar we want to study the effect of the quintessence term in the energy of this black
hole.

This paper is organized as follows. In the next section mathematical definitions to
be utilize are given. In Sect. 3 we will discuss the exact, first-order and the second-
order approximate symmetries of the geodesic equations of the perturbed Reissner–
Nordstrom black hole surrounded by quintessence. In the same section we will derive
the energy rescaling factor for this black hole. In Sect. 4 the effect due to the presence
of quintessence field is discussed in detail. A summery of the work done here is given
in the last section.
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2 Basic definitions

Under a point symmetry transformation [6,21],

V = ζ(τ, xα)
∂

∂τ
+ ψβ(τ, xα)

∂

∂xβ
, (1)

where α, β = 0, 1, 2, 3, a second-order approximate Lie symmetry is a vector field

V = V0 + εV1 + ε2V2 + O(ε3), (2)

for a system of perturbed ordinary differential equations (here the system of geodesic
equations)

G = G0 + εG1 + ε2G2 + O(ε3), (3)

if the following condition holds

(V)(G)G=O(ε3) = O(ε3). (4)

In (2) V0 is the exact (when ε = 0) symmetry generator for the system of the exact
geodesic equations G0. The exact Lie symmetry can be determined from

(V0)(G0)G=0 = 0. (5)

The vector fields V1 and V2 are the first-order and second-order approximate parts
of the approximate symmetry generator V, respectively. Similarly G1 and G2 are the
first-order and second-order perturbed parts of the system of geodesic equations G,
respectively. Since the geodesic equations are second order ordinary differential equa-
tions, therefore the second prolongation of the vector fields V0, V1 and V2 should be
used in (4) and (5), which is available (for example) in [5]. The second-order approx-
imate symmetry generator is said to be nontrivial approximate symmetry generator
if it is not proportional to any one of the lower-order (i.e. exact or first-order) sym-
metry generators. The second-order approximate symmetry generator is also called
nontrivial if at least one of the lower-order symmetry generators are nonzero for it. In
the case of trivial approximate symmetry generators it is also possible that the lower-
order symmetry generator cancel out in the set of determining equations which can be
obtained from (4). It is worth remarking that the interesting result of energy rescaling
(explained in the next section) comes from the applications of the perturbed system
of geodesic equations in the subscript of (4), as required (for more detail see [5]).

The first prolongation of the vector field (1) is

V[1] = V + (ψ̇α
,τ + γ α

,β ẋ
β − ζ,τ ẋ

α − ζ,β ẋ
β ẋα)

∂

∂ ẋα
. (6)

The vector field V is called a Noether gauge symmetry generator for the Lagrangian
L(τ, xβ, ẋβ), if the following condition satisfies

V[1]L + (dζ )L = dg. (7)
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Here g(τ, xβ) is a gauge function and the total derivative operator d is given by

d = ∂

∂τ
+ ẋβ ∂

∂xβ
. (8)

Throughout this article the dot stands for derivative with respect to the geodetic parame-
ter τ and Einstein summation convention is assumed. The following Noether theorem
[22], reveals the significance of Noether symmetries.

Theorem 1 If V is a Noether gauge symmetry generator corresponding to a
Lagrangian L(τ, xβ, ẋβ) of the Euler–Lagrange equations of motion, then

I = ζ L + (ψβ − ẋβζ )
∂L

∂ ẋβ
− g, (9)

is a constant of motion associated with the symmetry generator V. The proof of this
theorem can be seen for example in [23].

3 Approximate Lie symmetries and the energy content of the
Reissner–Nordstrom black hole surrounded by quintessence

The line element for the static charged black hole surrounded by quintessence is [24]

ds2 = f (r)dt2 − dr2

f (r)
− r2d
2. (10)

where d
 is the solid angle defined by d
2 = dθ2 + sin2 θdφ2 and f (r) is a function
of the form

f (r) = 1 − 2M

r
+ Q2

r2 − α

r3ωq+1 . (11)

In (11) M is the mass and Q is the total charge of the black hole. The factor α is related
with the state parameter ωq by

α = −2ρqr3(ωq+1)

3ωq
, (12)

where ρq is the energy density of the quintessence matter. The pressure pq for the
quintessence matter has the relation with ρq as

pq = ωqρq . (13)

The range of ωq for quintessence matter is given in the literature (see e.g., [24]). In
this paper we take ωq = − 2

3 , for which the charged black hole with quintessence,
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given by (10) and (11), becomes the simplest nontrivial case [24]. For this value of ωq

the function in (11), takes the following form

f (r) = 1 − 2M

r
+ Q2

r2 − αr, (14)

in which case the black hole is non-asymptotically flat.
To discuss the approximate symmetries of the charged-quintessence Reissner–

Nordstrom black hole, we assume both of its mass and charge to correspond to first
and second order perturbation of ε, i.e.,

2M = ε, Q2 = kε2. (15)

To avoid the naked singularity [1], we must have

M2 ≥ Q2, (16)

therefor 0 < k ≤ 1
4 . Equation (14) now becomes

f (r) = 1 − αr − ε

r
+ ε2

r2 . (17)

By retaining the second power of ε and neglecting its higher powers in the perturbed
geodesic equation of this spacetime we get

ẗ = − αṙ ṫ

αr − 1
+ ε

(2αr − 1)ṙ ṫ

r2(αr − 1)2 − ε2

(
6kα2r2 − 2α (5k − 2) r + 2(2k − 1)

)
ṙ ṫ

r3(αr − 1)3

+ O(ε3),

r̈ = α(ṙ2 − (αr − 1)2 ṫ2)

2(αr − 1)
+ r(1 − αr)(θ̇2 + sin2 θφ̇2)

+ ε

(
(1 − 2αr)ṙ2 − (αr − 1)2 ṫ2

2r2(αr − 1)2 − (θ̇2 + sin2 θφ̇2)

)
+ ε2

r3(αr − 1)3

×
(

− kα4r4 ṫ2 + (5k + 1)α3r3 ṫ2 + 3α2r2(kṙ2 − (3k + 1)ṫ2)

+αr((7k+3)ṫ2 − (5k−2)ṙ2) − (2k+1)ṫ2 + (2k − 1)ṙ2 + k

r
(θ̇2 + sin2 θφ̇2)

)

+ O(ε3),

θ̈ = sin θ cos θφ̇2 − 2

r
ṙ θ̇ ,

φ̈ = −2

r
ṙ φ̇ − 2 cot (θ)θ̇ φ̇., (18)

where the last two equations are the same as for the unperturbed case because there was
no perturbation in the solid angle. In order to investigate the second-order approximate
symmetries of the above system we first need to obtain the exact and the first-order
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approximate symmetries of the exact and the first-order perturbed system of geodesic
equations. For the exact case we substitute ε = 0, in the above system (18) and get
six Lie symmetry generators from (5)

V0 = τ
∂

∂τ
, V1 = ∂

∂τ
, V2 = ∂

∂t
, V3 = ∂

∂φ
,

V4 = sin φ
∂

∂θ
+ cot θ cos φ

∂

∂φ
, V5 = − cos φ

∂

∂θ
+ cot θ sin φ

∂

∂φ
. (19)

In the above symmetry generators V2, V3, V4, and V5, are the Killing vectors for the
underlying spacetime, which correspond to energy, azimuthal angular momentum and
angular momentum conservation. The four Killing vectors together with the symme-
try generator V1 are the Noether symmetries, i.e., symmetries of the corresponding
Lagrangian for the geodesic equations. The corresponding conserved quantities or first
integrals of the equations of motion can be obtained by using the Noether theorem
given in Sect. 1. The symmetry generator given by V0, is the proper Lie symmetry
generator for the spacetime under consideration that correspond to rescaling transfor-
mation of the proper time τ .

Using these six exact Lie symmetry generators given in (19), in the definition of
first-order approximate Lie symmetry conditions [which can be obtained by retaining
only the first power of ε in (3) and (4)] we obtain the same six symmetry generators
which are trivial first-order approximate symmetry generators. Now the second-order
approximate symmetry generators can be obtained by retaining the second-order per-
turbed term ε and neglecting higher-order terms in the perturbed geodesic equations
(18), and by employing the six symmetry generators given in (19) as the exact and
the first-order approximate symmetries generators. From the solution of (4), it turns
out that we do not get any new symmetry generator for the second-order perturbation
and retain those six trivial symmetry generators. Therefore the six exact symmetry
generators given in (19) are obtained as trivial second-order approximate symmetries
generators.

The trivial second-order approximate symmetry generators V0 and V1 in (19),
correspond to

ζ = a0 + a1τ, (20)

It is observed that in the set of determining equations for the first-order approximate
symmetries of the first-order perturbed geodesic equations the terms involving ζτ =
a1 cancel out. Whereas in the case of second-order approximate symmetries of the
second-order perturbed geodesic equations for Reissner–Nordstrom spacetime with
quintessence the terms involving ζτ = a1, do not cancel automatically. Interestingly
these collect a scaling factor to cancel out for consistency of the determining equations.
In which case we get the scaling factor

[
(1 − 2k) + αr(5k − 2) − 3kα2r2

]
. (21)

The time translation is related with energy conservation and ζ is the coefficient of
∂/∂τ in the point symmetry transformation (1), where τ is the proper time. The scaling
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factor (21) corresponds to the rescaling of energy in the Reissner–Nordstrom spacetime

surround by quintessence. By substituting k = Q2

4M2 , in (21) we get

[(
1 − Q2

2M2

)
+ αr

(
5Q2

4M2 − 2

)
− 3Q2

4M2 α2r2
]

. (22)

By putting α = 0, (22) reduces to the same scaling factor which was obtained for
the Reissner–Nordstrom spacetime without quintessence [4]. We see that like the
Reissner–Nordstrom spacetime [4], this scaling factor involves the second power of
ratio between Q and M . Therefore it relates the electromagnetic self-energy to the
gravitational self-energy.

4 Effect of quintessence

The pressure pq of the quintessence field which is assumed to be responsible for the
accelerated expansion of the Universe is negative [15]. It is evident from Eq. (13), that
ρq has to be positive because ωq is negative. Therefore, from Eq. (12) we see that α

is positive. Thus the energy in the field of Reissner–Nordstrom black hole surrounded
by quintessence is differ by

EQ(r) = αr(5k − 2) − 3kα2r2, (23)

from the energy in the field of Reissner–Nordstrom black hole without quintessence
[4]. It may be pointed that due to the presence of quintessence the energy of black
hole varies in the radial direction and has at most quadratic dependence on r . We now
investigate the variation in the energy of such a black hole. Notice that the presence of
the quintessence field will enhance the energy content of this black hole spacetime if
EQ in (23), is positive. This possibility can be ruled out easily by studying the graph
of function EQ . The function increases for all values of r in the range

r <
5k − 2

3kα
. (24)

Since 0 < k ≤ 1/4 and α > 0, therefore the quantity on the right hand side of (24) is
always negative. This leads to a contradiction because r denotes radial distance and
cannot be negative. Thus the enhancement of the energy content is not possible of the
Reissner–Nordstrom black hole surrounded by quintessence, due to the presence of
the quintessence field. The function EQ , attains a maximum value at

r = 5k − 2

6kα
< 0

(
for all 0 < k ≤ 1

4

)
(25)

and then decreases with a negative slope

E ′
Q = α(5k − 2) − 6kα2r < 0, (26)
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Fig. 1 Behavior of energy due
to quintessence for 0 < α < 1.
In the case, the radial distance
r+ is outside the horizon re of
black hole

for all values of r in the range

5k − 2

6kα
< r < ∞. (27)

Therefore we conclude that in the above region the contribution due to quintessence
term EQ , is to decrease the energy in the spacetime of this black hole. This supports
the idea of mass reduction of black holes by the accretion of dark energy on black
holes [25–27].

Finally we find the value of r at which the term due to quintessence balances
the energy content in the absence of this term. This can be done by equating the
quintessence term EQ to the negative of energy term (1 − 2k), that corresponds to the
energy without quintessence. We get two values of r , namely

r(±) = (5k − 2) ± √
4 − 8k + k2

6kα
. (28)

The discriminant is positive for 0 < k ≤ 1/4 which gives the first root r(+) as a
positive quantity, i.e., r(+) > 0. On the other hand r(−) < 0, which is not a feasible
solution. Therefore, at the radial distance r = r(+), the effect of quintessence balances
the energy content of the black hole without quintessence. While for r > r(+), the
effect due to the quintessence term goes on decreasing. Figure 1 illustrates the behavior
of EQ , for different values of r .

It would be interesting to locate the point r(+), and check if it lies inside or outside
the event horizon of the black hole. A detailed discussion on the event horizons of
the Reissner–Nordstorm black hole surrounded by quintessence is given in [24]. We
consider the case in which Reissner–Nordstorm black hole with quintessence has a
single event horizon (re), that correspond to a single real root of f (r), in the metric.
In this case equation for event horizon f (r) = 0, is a cubic equation in r and has three
roots in general, one in the real and two on the complex plane. Since the complex
roots leads to naked singularities therefore violate Roger Penrose’s cosmic censorship
hypothesis. Thus, the only possible real root correspond to a real singularity with a
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Fig. 2 Behavior of energy due
to quintessence for α ≥ 1. In the
case, the radial distance r+ is
inside the horizon re of black
hole

single event horizon. By taking suitable values of Q and M , satisfying M2 ≥ Q2, it
can easily be verified that (1) if 0 < α < 1, then the point r = r+ lies outside the event
horizon and (2) for α ≥ 1, the point r = r+ lies inside the event horizon. Therefore
we obtain critical bounds on the parameter α, in the Reissner–Nordstorm black hole
surrounded by a quintessence field. The case 0 < α < 1, is important because there
exists a point outside the event horizon of black hole with quintessence where the
energy of this spacetime vanishes completely. The other case α ≥ 1, brings r+ inside
the event horizon of the black hole (see Fig. 2) where fundamental laws of Physic fail
to exist and nothing can be said about it.

5 Summary

In this paper we have investigated the energy content of the Reissner–Nordstrom
black hole surrounded by quintessence field, by using second-order approximate Lie
symmetries. For this purpose we have considered mass M and charge Q of the black
hole as small parameter ε. To determine the second-order approximate symmetries of
the second-order perturbed geodesic equations we have first studied the exact (when
ε = 0) and the first-order approximate (when second and higher powers of ε are
neglected) symmetries. In the exact case we have found the six dimensional Lie algebra
with generators given in (19). In the first-order and second-order approximate cases
we have no non-trivial approximate Lie symmetry generator. We have recovered the
six exact symmetry generators as trivial first-order and second-order approximate
symmetry generators.

From the application of the definition of the second-order approximate Lie sym-
metries we have obtained an energy rescaling factor (22) for the Reissner–Nordstrom
black hole surrounded by quintessence. This energy rescaling factor depends on the
ratio of the charge Q and mass M of the black hole and relates to the electromag-
netic self-energy to the gravitational self-energy. These two parameters M and Q of
the black hole appears quadratically in the energy rescaling factor (22). Further this
rescaling factor for the Reissner–Nordstrom black hole with quintessence term also
involve r and α. The comparison of this rescaling factor with that for the Reissner–
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Nordstrom black hole [4], was given in Sect. 3. By taking α = 0 in (22), one can
recover the energy rescaling factor for the Reissner–Nordstrom black hole [4]. The
energy rescaling factor for the Reissner–Nordstrom black hole [4], do not depends on
the coordinate r , while the factor (22) obtained here for the black hole in the presence
of the quintessence matter involves r , which appears as a multiple of α and does not
appear separately. Taking α = 0, the r dependent terms will also disappear from the
rescaling factor (22). Here it is observed that the presence of the quintessence field
may reduce the energy in the spacetime field of the Reissner–Nordstrom black hole
surrounded by quintessence. Besides, we have obtained critical bounds on the value
of the normalization factor α i.e. it lies between 0 and 1. It is also seen that outside
the event horizon of the Reissner–Nordstrom black hole surrounded by quintessence,
there exist a point at which the effect due to the quintessence term balances by the
energy term of the black hole without the quintessence. The effect of quintessence
then decreases beyond that point.
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