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Abstract We employ a perturbative scheme to study the evolution of a spherically
symmetric stellar body undergoing gravitational collapse in the presence of heat dis-
sipation and anisotropic stresses. The Bowers and Liang static model is perturbed,
and its subsequent dynamical collapse is studied in the linear perturbative regime.
We find that anisotropic effects brought about by the differences in the radial and
tangential pressures render the core more unstable than the cooler surface layers. An
analysis of the temperature profiles in the interior of the collapsing body shows that
the temperature is enhanced in the presence of pressure anisotropy.

Keywords Dissipative collapse · Anisotropic stresses · Causal thermodynamics

1 Introduction

In 1916 Karl Schwarzschild published an exact solution to the Einstein field equations
for a spherically symmetric bounded matter distribution having a vacuum exterior.
Physically viable models of gravitational collapse became attainable when Vaidya [1]
published an exact solution to the field equations describing the exterior gravitational
field of a radiating, spherically symmetric mass distribution. Since the star is radiating
energy to the exterior spacetime its atmosphere is nonempty and is filled with null
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radiation. The Santos [2] junction conditions obtained by matching the interior space-
time of the collapsing star to Vaidya’s outgoing solution paved the way for studying
dissipative gravitational collapse.

It became possible to study more realistic scenarios of gravitational collapse which
incorporated dissipative fluxes such as heat flow [3,4], shear viscosity [5], bulk vis-
cosity [6] as well as the electromagnetic field [7]. The impact of dissipation on the
stability of a gravitationally collapsing stellar fluid has been extensively studied. It
is well established that relativistic corrections as a result of heat flow decreases the
adiabatic index (which measures the “stiffness” of the collapsing fluid) and renders
the fluid less unstable [4,5].

In order to study the thermal behaviour of a star undergoing dissipative gravitational
collapse one needs to invoke the transport equations for the relevant dissipative fluxes.
To this end, several thermodynamic theories involving irreversible processes have
been proposed. The Eckart theory [8] forecasts propagation velocities, for the thermal
signals, that lie outside the causal cone of propagation and is additionally plagued with
unstable equilibrium states. The “pathological problems” inherent in the Eckart model
were addressed, in the context of extended irreversible thermodynamics, by several
authors [9–12] by taking into account relaxation time associated with the dissipative
fluxes. These models yield hyperbolic transport equations that are of Cattaneo form
[13], which obey the causality principle as well as ensuring stable equilibrium states.
Di Prisco et al. [14] have estimated the relaxation times for neutron star matter, for
early stages of gravitational collapse, to be as small as 0.1 ms for a core temperature
of 109 K and as large as 100 s at 106 K. Work done by Anile et al. [15] also indicate
that relaxational effects are significant and Herrera and Martinez [16] show explicitly
that thermal relaxation time has a direct impact on the luminosity profiles as well as
the compactness of the star.

The effect of the relaxation time on the thermal evolution and luminosity profile of
shear-free gravitational collapse has been investigated with the aid of causal transport
equations of the Maxwell–Catteneo form for the thermodynamical fluxes [16–20].
Other shear-free models with acceleration and constant (and non-constant) collision
time have also been studied in detail [21–23] and they have also found that the star
exhibits higher central temperatures when relaxational effects are taken into account.
One of the first exact models describing shearing, radiating collapse with pressure
anisotropy was presented by Naidu et al. [24]. Their work gives insight into the ther-
modynamic behaviour of the stellar fluid and the impact of shear on the relaxation time
during the collapse process. This model, however, is acceleration-free and results in
infinite central pressure and density, and was later generalised by Rajah and Maharaj
[25]. Maharaj et al. [26] have explicitly shown how perturbations (in the linear regime)
to the temperature profile of a star undergoing shear-free, isotropic dissipative collapse
is enhanced (throughout the stellar range) by relaxation effects. Up to that point none
of the exact models had a shear-free limit, i.e. the shear could not be switched off,
and it was therefore not possible to highlight the effect of shear directly onto the col-
lapse process. A particular collapse model presented by Thirukkanesh et al. [27] has
a shear-free limit, ie., the shear can be switched off and the corresponding shear-free
collapse ensues. Govender et al. [28] were able to highlight the impact of shear on the
temperature and luminosity profiles of this particular model.
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The origin and role of anisotropy has been an area of major interest since the early
70’s. Superdense stars such as pulsars may be anisotropic for certain density ranges due
to phase transitions [29]. Cold matter, above certain high density ranges, may consist
of a solid core that is responsible for local anisotropy [30]. Other possible sources of
anisotropy are strong electric fields within the star [31], strong magnetic fields [32],
the presence of shear [33] and shear viscous pressures [34], amongst numerous other
factors. The pioneering work conducted by Bowers and Liang [35] made it possible to
study the impact of anisotropy on the physical behaviour (radial pressure, critical mass
and maximum surface redshift) of a star undergoing gravitational collapse. By varying
the degree of anisotropy, Dev and Gleiser [36] have reported an increase in the critical
mass with anisotropy when compared with the mass at the isotropic limit. They also
reported a rise in surface redshifts with anisotropy, in particular when the tangential
pressure dominates the radial pressure. Investigations [37] and [38] clearly indicate that
anisotropy leads to more stable configurations. Herrera [39] found that local pressure
anisotropy is one of the factors responsible for energy density inhomogeneities. A
recent paper by Sharma and Das [40] gives insight into the impact of the variation of
anisotropy on the collapse rate as well as the evolution of the surface temperature of
a gravitationally collapsing star with radial heat flux.

In this work we employ the Bowers and Liang static solution as a seed model
to investigate the role played by anisotropy for highly dense matter of the order of
1015 g cm−3. We employ a linear perturbative scheme to analyse the subsequent dis-
sipative collapse starting off from the initially static Bowers and Liang model. Our
investigation centres around the impact of the variation in the anisotropic parameter
on the static property variables as well the perturbed quantities, viz. radial and tan-
gential pressures, heat flow, energy density, expansion scalar and temperature profiles.
The model allows us to directly measure the behaviour of the above mentioned phys-
ical properties starting off with the isotropic case and then seeing the departure from
isotropy as the radial pressure gradually begins to dominate the tangential pressure.

The paper is organised as follows: In Sect. 2 we present the field equations describing
the geometry and matter content for a star undergoing shearing gravitational collapse.
In Sect. 3 we present the perturbative scheme as well as the static and perturbed
quantities including the expansion coefficient, shear and mass functions. In Sect. 4
we present the junction conditions for the smooth matching of the interior spacetime
with Vaidya’s exterior solution across a timelike boundary. In Sect. 5 we present the
temporal equation employed in the perturbative scheme that begins with an initially
static star that is perturbed so that the perturbations decay exponentially with time.
In Sect. 6 we give the results obtained for the static core, and in Sect. 7 we obtain
the results for the nonstatic model. In Sect. 8 we study the thermal behaviour of the
perturbations by employing a causal heat transport equation. Our results are discussed
in Sect. 9.

2 Shearing spacetimes

In this section we follow a similar approach to that of Thirukkanesh et al. [27], Goven-
der et al. [41], Govender et al. [42] and Herrera et al. [43]. The interior spacetime of the
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collapsing sphere is described by the general spherically symmetric, shearing metric
in comoving coordinates

ds2 = −A2dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2) , (1)

where the gravitational potentials A = A(t, r), B = B(t, r) and Y = Y (t, r) are
yet to be determined. The matter content for the interior is described (in geometrized
units) by

T−
αβ = (ρ + pt )VαVβ + pt gαβ + (pr − pt )χαχβ + qαVβ + qβVα, (2)

where ρ represents the energy density, pr the radial pressure, pt the tangential pressure
and qα the heat flux vector. The fluid four-velocity (V α), radial unit four-vector (χα)

and the heat flux (qα) must satisfy the following conditions:

VαV
α = −1, χαχα = 1, χαVα = 0, Vαq

α = 0. (3)

The collapse rate and the fluid four-acceleration are given by

Θ = V α;α, aα = Vα;βV β, (4)

and the shear tensor σαβ by

σαβ = V(α;β) + a(αVβ) − 1

3
Θ(gαβ + VαVβ). (5)

For the comoving line element (1), the fluid four-velocity (V α) and the radial unit
four-vector (χα) are given respectively by:

V α = A−1δα
0 , χα = B−1δα

1 . (6)

The heat flow vector qα takes on the form

qα = (0, q1, 0, 0) (7)

since Vαqα = 0 ensures radial heat flow. Using (4) with (6) yields the four-acceleration
and its magnitude (scalar) in the form

a1 = A′

A
, aαaα =

(
A′

AB

)2

, (8)

and for the collapse rate we get

Θ = 1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
, (9)
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where dots and primes denote differentiation with respect to t and r respectively. With
the aid of (5) and (6) we obtain the following nonzero components for the shear

σ11 = 2

3
B2σ, σ22 = σ33 sin−2 θ = −1

3
Y 2σ, (10)

where

σ = 1

A

(
Ḃ

B
− Ẏ

Y

)
, (11)

and the shear scalar is of the form

σαβσαβ = 2

3
σ 2. (12)

By employing geometrized units (wherein the speed of light c, and the coupling coef-
ficient 8πG/c4 are taken to be unity), the nonzero components of the Einstein field
equations, for the line element (1) and the energy momentum (2), are

G−
00 = T−

00 = ρA2 =
(

2
Ḃ

B
+ Ẏ

Y

)
Ẏ

Y
−

(
A

B

)2[
2
Y ′′

Y
+

(
Y ′

Y

)2

− 2
B ′

B

Y ′

Y

−
(
B

Y

)2]
, (13)

G−
11 = T−

11 = pr B
2 = −

(
B

A

)2 [
2
Ÿ

Y
−

(
2
Ȧ

A
− Ẏ

Y

)
Ẏ

Y

]
+ Y ′

Y

(
2
A′

A
+ Y ′

Y

)

− B2

Y 2 , (14)

G−
22 = T−

22 = ptY
2 = −

(
Y

A

)2 [
B̈

B
+ Ÿ

Y
− Ȧ

A

(
Ḃ

B
+ Ẏ

Y

)
+ Ḃ

B

Ẏ

Y

]

+
(
Y

B

)2 [
A′′

A
+ Y ′′

Y
− A′

A

B ′

B
+

(
A′

A
− B ′

B

)
Y ′

Y

]
, (15)

G−
01 = T−

01 = q1AB
2 = −2

(
− Ẏ ′

Y
+ Ḃ

B

Y ′

Y
+ Ẏ

Y

A′

A

)
. (16)

This is an underdetermined system of four coupled partial differential equations in
seven unknowns, viz. A, B,Y, ρ, pr , pt and q1. Note that q1 is related to the radially
directed heat flow vector whose magnitude Q is given by

Q = (qαq
α)

1
2 = q1B. (17)
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Also note that (16) can be re-written using (9) and (11) as follows

q1B = 1

B

[
2

3
(Θ − σ)′ − 2Y ′σ

Y

]
. (18)

The mass function m(t, r) is given by

m(t, r) = Y

2

[(
Ẏ

Y

)2

−
(
Y ′

B

)2

+ 1

]
. (19)

3 Perturbative scheme

The perturbative scheme used in this study has been used by several authors [4,5,44]
and [45] We assume an initially static fluid described by quantities having only radial
dependence. Such quantities are denoted using the subscript zero. We also suppose
that the metric function A(t, r), B(t, r) and Y (t, r) and their perturbations have the
same time dependence. For mathematical convenience, we assume that the metric and
material functions are given by

A(t, r) = Ao(r) + λT (t)a(r), (20)

B(t, r) = Bo(r) + λT (t)b(r), (21)

Y (t, r) = Yo(r) + λT (t)y(r), (22)

ρ(t, r) = ρo(r) + λρ(t, r), (23)

pr (t, r) = pro(r) + λpr (t, r), (24)

pt (t, r) = pto(r) + λpt (t, r), (25)

m(t, r) = mo(r) + λm(t, r), (26)

Θ(t, r) = λΘ(t, r), (27)

σ(t, r) = λσ(t, r), (28)

q1(t, r) = λq1(t, r), (29)

where 0 < λ � 1 is the perturbation amplitude and quantities with an ‘over bar’
represent perturbed quantities. We should point out that if one starts from spherical
symmetry alone, one indeed has a very large gauge (coordinate) freedom to write
the line element. However, once the line element is assumed as given by (1), all
coordinate freedom is exhausted leaving only the possibility of rescaling the radial
coordinate r and/or the time-like coordinate t . As it is evident by simple inspection,
such rescaling would not change the form of Eqs. (20)–(29). In essence, the choice
of the perturbed variables as given in (20)–(29) is not unique. However, once the
line element is prescribed, the choice of the perturbed variables cannot be changed
to produce the same physical results. The shear-free case within this perturbative
scheme was studied by several authors [4,5] and [44]. In all these investigations the
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static model was taken to be the isotropic Schwarzschild interior solution. Taking into
consideration (20)–(29), we obtain the relationships for the static configuration:

ρo = − 1

B2
o

(
2Yo′′

Yo
+ Yo′2

Y 2
o

− 2Y ′
oB

′
o

YoBo
− B2

o

Y 2
o

)
, (30)

pro = 1

B2
o

(
2A′

oY
′
o

AoYo
+ Y ′

o
2

Y 2
o

− B2
o

Y 2
o

)
, (31)

pto = 1

B2
o

[
A′′
o

Ao
+ Y ′′

o

Yo
− A′

oB
′
o

AoBo
+ Y ′

o

Yo

(
A′
o

Ao
− B ′

o

Bo

)]
, (32)

and from (13) to (16) we obtain the perturbed quantities

ρ = −2bTρo

Bo
− 2T

Bo
2

[(
y

Yo

)′′
− 1

Yo

(
b

Bo

)′
−

(
B ′
o

Bo
− 3

Yo

)(
y

Yo

)′

−
(
Bo

Yo

)2( b

Bo
− y

Yo

)]
, (33)

pr = −2probT

Bo
− 2T̈ y

A2
oYo

+ 2T

YoB2
o

[
Y ′
o

(
a

Ao

)′
+

(
y

Yo

)′ (
Y ′
o + A′

oYo
Ao

)

− B2
o

Yo

(
b

Bo
− y

Yo

) ]
, (34)

pt = −2bT pto
Bo

− T̈

A2
o

(
b

Bo
+ y

Yo

)
+ T

B2
o

[ (
y

Yo

)′′
+

(
a

Ao

)′′

+
(

2A′
o

Ao
− B ′

o

Bo
+ Y ′

o

Yo

)(
a

Ao

)′
−

(
A′
o

Ao
+ Y ′

o

Yo

) (
b

Bo

)′

+
(
A′
o

Ao
− B ′

o

Bo
+ 2Y ′

o

Yo

)(
y

Yo

)′ ]
, (35)

q1Bo = − 2Ṫ

AoBo

[
bY ′

o

BoYo
+ y

Yo

(
A′
o

Ao
− Y ′

o

Yo

)
−

(
y

Yo

)′ ]
. (36)

These equations generalize the recent work by Herrera et al. [46] in which they con-
sidered a similar perturbative scheme with vanishing heat flux. Expressions for the
perturbed expansion coefficient and shear are given respectively by

Θ = Ṫ

Ao

(
b

Bo
+ 2

y

Yo

)
, (37)

and

σ = Ṫ

Ao

(
b

Bo
− y

Yo

)
. (38)
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The static and perturbed configuration for the mass function are respectively

mo = Yo
2

[
1 −

(
Y ′
o

Bo

)2 ]
, (39)

and

m = − T

B2
o

[
Yo

(
Y ′
oy

′ − Y ′
o

2b

Bo

)
+ y

2

(
Y ′
o

2 − Bo
2
) ]

. (40)

4 Exterior spacetime and junction conditions

The exterior spacetime is taken to be the Vaidya solution given by [1]

ds2 = −
(

1 − 2m(v)

�
)
dv2 − 2dvd� + �2

(
dθ2 + sin2 θdφ2

)
, (41)

in the coordinates xi = (v,�, θ, φ) where m(v) represents the Newtonian mass of
the gravitating body as measured by an observer at infinity. The necessary conditions
for the smooth matching of the interior spacetime (1) to the exterior spacetime (41)
have been extensively investigated. We present the main results that are necessary
for modeling a radiating star. The continuity of the intrinsic and extrinsic curvature
components of the interior and exterior spacetimes across a timelike boundary are

A (rΣ, t) dt =
(

1 − 2m(v)

�Σ

+ 2
d�Σ

dv

) 1
2

dv, (42)

Y (rΣ, t) = �Σ(v), (43)

m(v)Σ =
{
Y

2

[(
Ẏ

A

)2

−
(
Y ′

B

)2

+ 1

]}
Σ

, (44)

(pr )Σ = (q1B)Σ . (45)

Equation (44) represents the total gravitational mass that is contained within the bound-
ary (Σ) of the star. Equation (45) clearly shows that the radial pressure at the boundary
of a star undergoing dissipative collapse is equal to the magnitude of the heat flow.
The radial pressure at the boundary vanishes when the heat flow at the boundary is
zero.

5 The temporal equation employed in the perturbation scheme

Relation (45) together with (36) and (pro)Σ = 0 in (34) determines the temporal
evolution of the collapsing star, and is given by

αΣT − T̈ = 2βΣ Ṫ > 0, (46)
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where

αΣ =
{

A2
o

B2
o y

[
Y ′
o

(
a

Ao

)′
+

(
y

Yo

)′ (
Y ′
o + A′

oYo
Ao

)
− B2

o

Yo

(
b

Bo
− y

Yo

) ]}
Σ

, (47)

and

βΣ =
{
− AoYo

2Boy

[
bY ′

o

BoYo
+ y

Yo

(
A′
o

Ao
− Y ′

o

Yo

)
−

(
y

Yo

)′ ]}
Σ

. (48)

Solutions of (46) include exponential functions (growth and decay) as well as oscilla-
tory functions. In order to model collapse we will consider an exponential decaying
function which represents an initially static system at t = −∞, ie. T (−∞) = 0 with
a decreasing luminosity radius as t increases. This temporal behaviour of our model
is fulfilled if αΣ > 0 and β ≤ 0. The temporal evolution of our model is then given
by

T (t) = −e
(
−βΣ+

√
αΣ+βΣ

2
)
t
, (49)

With the aid of (48), Eq. (36) can be expressed as

q1Bo = 4yβ

A2
oYo

Ṫ . (50)

where β = β(r). Note that when βΣ = 0 (ie., no dissipation), the system continues
to collapse.

6 The static core

We take the interior static solution to be the Bowers and Liang [35] model with constant
density. This model is the generalisation of the interior Schwarzschild solution to
include anisotropic pressures. The Bowers and Liang model has been used extensively
to investigate the role played by local anisotropy in highly dense matter distributions
typically of the order of 1015 g cm−3. If we denote the fractional anisotropy by Δ f =
pt−pr
pr

then the Bowers and Liang model exhibits the following features:

(a) Δ f > 0: The maximum equilibrium mass and surface redshift are greater than
their corresponding isotropic (Δ f = 0) counterparts.

(b) Δ f < 0: The maximum mass and surface redshift are less than their correspond-
ing isotropic values.

Moreover, the anisotropy allows for arbitrarily large surface redshifts as observed in
quasars.

123



35 Page 10 of 25 K. P. Reddy et al.

The line element for the Bowers and Liang solution is

ds2 = −
[

3
(
1 − 2M/rΣ

)h/2 − (
1 − 2m/r

)h/2

2

]2/h

dt2 +
(

1 − 2m

r

)−1
dr2

+ r2(dθ2 + sin2 θdφ2), (51)

where h is a constant and 0 ≤ r ≤ R. From the metric (51) it is clear that

A2
o =

[
3
(
1 − 2M/rΣ

)h/2 − (
1 − 2m/r

)h/2

2

]2/h

, (52)

B2
o =

(
1 − 2m

r

)−1
, (53)

and

Yo = r. (54)

In the physical analysis that follows we take

a = −k1(r + 1)−1, b = k2(r + 1)−1, y = k3, m = r3M

R3 , (55)

where k1 = k2 = 10−17 and k3 = 10−1. Using (52)–(55), Eqs. (30)–(32) become,
respectively,

ρo = 6M/R3, (56)

pro =
(

1 − 2Mr2

R3

)[ 4M
(

1 − 2Mr2

R3

) h
2 −1

R3
(
3
(
1 − 2M

R

)h/2 − (
1 − 2Mr2

R3

)h/2)

− 1

r2
(

1 − 2Mr2

R3

) + 1

r2

]
(57)

pto =
[

6M

(
2Mr2

(
−h

(
1 − 2M

R

)h/2 (
1 − 2Mr2

R3

)h/2

− 3

(
1 − 2M

R

)h/2

×
(

1 − 2Mr2

R3

)h/2

+
(

1 − 2Mr2

R3

)h

+ 3

(
1 − 2M

R

)h)

−R3
(
−4

(
1 − 2M

R

)h/2 (
1 − 2Mr2

R3

)h/2

+
(

1 − 2Mr2

R3

)h
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+3

(
1 − 2M

R

)h))]
×

[
R3

(
R3 − 2Mr2

) ((
1 − 2Mr2

R3

)h/2

−3

(
1 − 2M

R

)h/2)2
]−1

(58)

The anisotropy parameter Δ = pt − pr is expressed (for the static case) as

Δ = −
12(h − 1)M2r2

(
1 − 2M

R

)h/2
(

1 − 2Mr2

R3

)h/2

R3
(
R3 − 2Mr2

) ((
1 − 2Mr2

R3

)h/2 − 3
(
1 − 2M

R

)h/2
)2 (59)

We point out that Eqs. (60)–(66) below, including their derivation, can be found in
a review article by Herrera and Santos [33]. We simply state the equations here and
discuss the relationship between the order parameter Δ and the anisotropic factor C .
Δ can also be written as

Δ = 4

3
πCr2

(
ρo + pro

)(
ρo + 3pro

)(
1 − 2m

r

)−1
(60)

where C , the anisotropic factor, measures the degree of anisotropy and is given by

h = 1 − 2C. (61)

It follows from Eq. (60) that the anisotropic parameter can be recast as Δ = Cχ(r),
where χ(r) = 4

3πr2
(
ρo+ pro

)(
ρo+3pro

)(
1− 2m

r

)−1. We also point out that χ(r) > 0
for all r , implying that Δ is directly proportional (and of similar sign) to C . From (61)
it is clear that h = 1 corresponds to C = 0 which is the isotropic case, while h = 2
and h = 4 correspond respectively to C = − 1

2 and C = − 3
2 which imply that the

radial pressure dominates the tangential pressure. The model has a limiting case of
h = 0 which corresponds to the Florides [47] solution which is not considered in our
analysis.

The critical value of 2M/rΣ resulting in infinite central pressure is given by

(
2M

rΣ

)
crit

= 1 −
(1

3

)2/h
, (62)

and the associated critical mass is given by

Mcrit =
(

3

32πρo

)1/2[
1 −

(1

3

)2/h
]3/2

. (63)

It is also worthwhile to note that the ratio of the anisotropic critical mass to that of the
isotropic case is given by
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Fig. 1 Static radial pressure pro
profiles versus radial coordinate
for M = 1 and R = 6.6
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Fig. 2 Static tangential pressure
pto profiles versus radial
coordinate for M = 1 and
R = 6.6
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(Mani)crit

(Miso)crit
= 8

9

[
1 −

(1

3

)2/h
]3/2

. (64)

The redshift z at the star’s surface is expressed as

z =
(

1 − 2M

rΣ

)−1/2

− 1. (65)

Using Eq. (65), the critical value of the red shift is

zcri t = 31/h − 1. (66)

From Fig. 1 we note that static radial pressure is a monotonically decreasing function
of the radial coordinate r . In addition, the radial pressure is enhanced at each interior
point of the stellar distribution as the relative anisotropy increases (larger h values).
Figure 2 shows a peculiar trend in the tangential pressure within the stellar core.
We observe that pto is positive and decreases monotonically from the center until it
vanishes at some radius r = r1 < R and becomes negative as one moves towards
the stellar surface. The effect of a positive tangential pressure is to ‘squeeze’ each
concentric shell of the stellar fluid. For the region 0 ≤ r ≤ r1, the positive tangential
pressure decreases and the effect of this is to have a fluid configuration with more
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relaxed shells as one moves away from the centre towards r1. Equilibrium in this
region is achieved by a balance between the outward radial pressure and the sum of the
inward gravitational force and the squeezing of the shells due to the positive tangential
pressure. At r = r1 the tangential pressure vanishes and equilibrium is achieved by the
balance between the radial pressure and gravity. In the region r1 ≤ r ≤ R, the negative
tangential pressure has the tendency to ‘expand’ each concentric shell of the stellar
fluid. This effect combines with the radial pressure to balance the inwardly directed
gravitational force to produce equilibrium. The variation in the tangential pressure
throughout the stellar interior can be brought out by various physical processes such
as exotic phase transitions, neutrino-trapping, variation of the equation of state amongst
other mechanisms [33]. It is clear from Fig. 2, that anisotropy enhances the behaviour
of the tangential pressure within the stellar interior.

7 The nonstatic model

Using Eqs. (33)–(38) we obtain the perturbation in the density, radial pressure, tan-
gential pressure, heat flow, collapse rate and shear respectively. These have the forms

ρ = 2T (t)

(
k2

(
2Mr2 − R3

) (
2Mr2 + r2(r + 1)R3ρo − R3

)
− 4k3Mr

×(r + 1)2R3

√
1 − 2Mr2

R3

)(
r2(r + 1)2R6

√
1 − 2Mr2

R3

)−1

, (67)

pr =
12k2MT (t)

√
1 − 2Mr2

R3

((
1 − 2Mr2

R3

)h/2 − (
1 − 2M

R

)h/2
)

(r + 1)R3

((
1 − 2Mr2

R3

)h/2 − 3
(
1 − 2M

R

)h/2
)

+ 1

2Mr3 − r R3 2

(
1 − 2Mr2

R3

)
T (t)

[
− (r + 1)−22

1
h

(
3

(
1 − 2M

R

)h/2

−
(

1 − 2Mr2

R3

)h/2)− h+1
h [(

2Mr(2r + 1) − R3
) (

1 − 2Mr2

R3

)h/2

+ 3

(
1 − 2M

R

)h/2 (
R3 − 2Mr2

)]
k1 + k2R

3

√
1 − 2Mr2

R3 (r(r + 1))−1

+ 2MT (t)k3

(
1

3
(
1 − 2M

R

)h/2
(

1 − 2Mr2

R3

)−h/2 − 1
− 1

)]

− 2
h+2
h k3Ṫ (t)

(
3

(
1 − 2M

R

)h/2

−
(

1 − 2Mr2

R3

)h/2
)−2/h

r−1, (68)
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q1Bo = 2
1
h +1T ′(t)

(
3

(
1 − 2M

R

)h/2

−
(

1 − 2Mr2

R3

)h/2
)− h+1

h

×
(

2k3Mr(r + 1)
(

1 − 2Mr2

R3

) h+1
2 − k2

(
R3 − 2Mr2

)2

×
[(

1 − 2Mr2

R3

)h/2

− 3

(
1 − 2M

R

)h/2]
R−3

)

×
(
r(r + 1)

(
2Mr2 − R3

))−1

(69)

Θ = 2
1
h Ṫ (t)

(
3

(
1 − 2M

R

)h/2

−
(

1 − 2Mr2

R3

)h/2
)−1/h

×
(k2

√
1 − 2Mr2

R3

r + 1
+ 2k3

r

)
(70)

σ = 2
1
h Ṫ (t)

(
3

(
1 − 2M

R

)h/2

−
(

1 − 2Mr2

R3

)h/2
)−1/h

×
⎛
⎝k2

√
1 − 2Mr2

R3

r + 1
− k3

r

⎞
⎠ (71)

where T (t) is given by (49). We note from (7) that the perturbed density does not
depend on the anisotropic factor h. We also note that the expression for the perturbed
tangential pressure pt has not been included here due to its length and complexity.
From Fig. 3 (late time collapse) and Fig. 4 (early time collapse) we observe that the
perturbations in the energy density are positive at each interior point of the core and
gradually decrease as one approaches the stellar surface. Figures 5 and 6 illustrate the
evolution of the central and surface perturbations of the density as functions of time.
As expected, the perturbations increase as the collapse proceeds. It is important to

Fig. 3 Profiles of the ratio of
the perturbed energy density ρ

to the static energy ρo for late
time collapse versus radial the
coordinate (M = 1, R = 6.6,
ρo = 0.02 and t = −1)

1 2 3 4 5 6
r

0.05

0.10

0.15

0.20

0.25

0.30
o

1

h 1

h 2

h 4

123



Impact of anisotropic stresses during dissipative gravitational collapse Page 15 of 25 35

Fig. 4 Profiles of the ratio of
the perturbed energy density ρ

to the static energy ρo for early
time collapse versus the radial
coordinate (M = 1, R = 6.6,
ρo = 0.02 and t = −10)

1 2 3 4 5 6
r

0.005

0.010

0.015

0.020

0.025

0.030
o

1

h 1

h 2

h 4

Fig. 5 Profiles of the ratio of
the perturbed energy density ρ

to the static energy ρo near the
centre versus the time coordinate
(M = 1, R = 6.6, ρo = 0.02
and r = 0.01)
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Fig. 6 Profiles of the ratio of
the perturbed energy density ρ

to the static energy ρo near the
surface versus the time
coordinate (M = 1, R = 6.6,
ρo = 0.02 and r = 6.6)
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note that anisotropy plays no significant role in the evolution of the perturbations in
the energy density.

Figures 7 and 8 display the perturbations to the radial pressure as a function of the
radial coordinate for late time and early time collapse respectively. We observe that
the perturbations in the energy density and radial pressure are both positive which lead
to an overall increase in the energy density and radial pressure within the collapsing
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Fig. 7 Profiles of perturbed
radial pressure pr versus radial
coordinate for late time collapse
(M = 1, R = 6.6 and t = −1)
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Fig. 8 Profiles of perturbed
radial pressure pr versus radial
coordinate for early time
collapse (M = 1, R = 6.6 and
t = −10)
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Fig. 9 Profiles of perturbed
radial pressure pr versus time
coordinate near the centre of the
star (M = 1, R = 6.6 and
r = 0.01)
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star. Furthermore, it is evident that the perturbations in the radial pressure increase
with increasing anisotropy (larger h). Figures 9 and 10 display the temporal evolution
of the radial pressure near the centre and and at the surface of the star respectively. It
is evident from Fig.10 that anisotropic effects are enhanced in the central regions of
the collapsing body for late times of the collapse period.

Figures 11 and 12 show the perturbations in the tangential pressure for late times
and early times collapse respectively. It is interesting to note that anisotropy ‘drives’
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Fig. 10 Profiles of perturbed
radial pressure pr versus time
coordinate near the surface of
the star (M = 1, R = 6.6 and
r = 6.6)
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Fig. 11 profiles of perturbed
tangential pressure pt versus
radial coordinate for late time
collapse (M = 1, R = 6.6 and
t = −1)
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Fig. 12 profiles of perturbed
tangential pressure pt versus
radial coordinate for early time
collapse (M = 1, R = 6.6 and
t = −10)
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the perturbations to become positive. This implies that the total tangential pressure
increases with an increase in anisotropy rendering the core more unstable, particularly
in the central regions.

Figures 13 and 14 display the behaviour of the heat flux as a function of the radial
coordinate for late time and early time collapse respectively. We observe that the heat
flux is maximum at the centre where the pressure is the highest, and then gradually
drops off towards the surface. Heat generation is enhanced in the central regions of the
collapsing star as the anisotropy increases. Figures 15 and 16 display the variation of
the heat flux near the centre and at the surface respectively as a function of time. We
observe that the heat flux is maximum at the centre where the pressure is the highest,
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Fig. 13 Profiles of the perturbed
heat flow q1Bo for late time
collapse versus radial coordinate
(M = 1, R = 6.6 and t = −1)
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Fig. 14 Profiles of the perturbed
heat flow q1Bo for early time
collapse versus radial coordinate
(M = 1, R = 6.6 and t = −10)
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Fig. 15 Profiles of the
perturbed heat flow q1Bo versus
time coordinate near the centre
of the star (M = 1, R = 6.6 and
r = 0.01)
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and then gradually drops off towards the surface. Heat generation is enhanced in the
central regions of the collapsing star as the anisotropy increases.

Figures 17 and 18 illustrate the collapse rate for late time and early time collapse
as a function of the radial coordinate respectively. We clearly see a deviation from
isotropy closer to the central regions of the collapsing core. In Fig. 19 we plotted the
ratio of the collapse rate at the centre to the collapse rate at the surface as a function of
time. The collapse rate at the centre is higher than the collapse rate at the cooler surface
layers. Furthermore, this ratio increases with an increase in pressure anisotropy. The
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Fig. 16 Profiles of the
perturbed heat flow q1Bo versus
time coordinate near the surface
of the star (M = 1, R = 6.6 and
r = 6.6)
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Fig. 17 Profiles of the collapse
for late time collapse versus
radial coordinate (M = 1,
t = −1 and R = 6.6)
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Fig. 18 Profiles of the collapse
for early time collapse versus
radial coordinate (M = 1,
t = −10 and R = 6.6)
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heat generation coupled with the anisotropy in the pressure leads to more unstable
central regions resulting in nonhomogeneous collapse.

Figures 20 and 21 display the perturbations in the shear at the centre and surface
as functions of time respectively. We observe that shearing effects dominate closer to
the centre of the collapsing body and the effect of pressure anisotropy becomes more
pronounced in this region for late times. Figures 22 and 23 show the perturbations
in the shear profiles as functions of the radial coordinate for late times and early
times respectively. It is clear that the perturbations to the shear close to the core are
enhanced as the anisotropy increases. An increase in the perturbation to the shear is
likely to result in greater internal friction between adjacent layers of stellar fluid and
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Fig. 19 Profiles of the ratio of
collapse at the centre to the
collapse rate at the surface
versus time (M = 1 and
R = 6.6)
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Fig. 20 Profiles of perturbed shear at the centre versus time (M = 1, R = 6.6 and r = 0.01)

Fig. 21 Profiles of perturbed
shear at the surface versus time
(M = 1, R = 6.6 and r = 0.01)
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Fig. 22 Profiles of perturbed
shear for late time collapse
versus radial coordinate (M = 1,
R = 6.6 and t = −1)
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Fig. 23 Profiles of perturbed
shear for early time collapse
versus radial coordinate (M = 1,
R = 6.6 and t = −10)
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this mechanism is expected to enhance the temperature and heat flow near the core
region.

8 Thermal behaviour

The importance of relaxational effects during dissipative gravitational collapse has
been highlighted by several researchers. Govender and co-workers have shown that
relaxational effects can lead to higher core temperatures and enhanced cooling at the
surface of the collapsing body [19,41,48–50]. In order to explore the contributions
from relaxational effects as the fluid exits from hydrostatic equilibrium we will employ
a causal heat transport equation of Maxwell–Cattaneo form [51]. The truncated causal
transport equation in the absence of rotation and viscous-heat coupling is given by

τr ha
bq̇b + qa = −κ

(
ha

b∇bT + T u̇a
)
, (72)

where hab = gab + uaub is the projection tensor, T (t, r) is the local equilibrium
temperature, κ(≥ 0) is the thermal conductivity, and τr (≥ 0) is the relaxation time-
scale over which causal, stable behaviour is achieved. The noncausal Fourier heat

123



35 Page 22 of 25 K. P. Reddy et al.

transport equation is obtained by setting the relaxation time τr = 0 in (72). With the
aid of the metric (1), Eq. (72) becomes

τr (qB )̇ + A(qB) = −κ
(AT )′

B
. (73)

The thermodynamic coefficients associated with radiative transfer are well motivated
in [19,20,34]. In order to obtain the casual temperature profile from (73) we take

κ = γT 3τc, τc =
(

ξ

γ

)
T −ω, (74)

where τc is the mean collision time, ξ , γ and ω are positive constants. The relaxation
time is taken to be of the order of the mean collision time

τr =
(

ψγ

ξ

)
τc, (75)

where ψ (≥ 0) is a constant. Employing the definitions for τr and κ , it can be shown
that Eq. (73) takes the form

ψ(qB )̇T −ω + A(qB) = −ξ
T 3−ω(AT )′

B
, (76)

where ψ can be considered to be a ’causality index’, that enables us to quantify the
impact of relaxation effects on the system. The noncausal case is obtained when ψ = 0.
We now perturb the temperature as follows

T = To + λT T, (77)

where To is the equilibrium temperature. Using (77) and (76) (for the case of con-
stant collision time i.e. ω = 0), we obtain the following expression for the perturbed
temperature

T (r) = − 2ψ

ξ Ao

T̈

T

∫
1

Ao
To−3

[( y

Yo

)′ − bY ′
o

BoYo
− y

Yo

( A′
o

Ao
− Y ′

o

Yo

)]
dr

− 2

ξ Ao

Ṫ

T

∫
AoToσ−3

[( y

Yo

)′ − bY ′
o

BoYo
− y

Yo

( A′
o

Ao
− Y ′

o

Yo

)]
dr

−aTo
Ao

+ C1

Ao
, (78)

whereC1 is an integration constant. Relation (78) is a generalisation of the temperature
perturbation obtained by Maharaj et al. [26] in which they investigated the collapse of
a shear-free distribution of matter. The zeroth order perturbation of (76) yields

To′ = − A′
o

Ao
To, (79)
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Fig. 24 Profiles of perturbed
non-causal temperature T
versus radial coordinate (M = 1,
R = 6.6, Co = 10, C1 = √

10,
ξ = 100, ψ = 0)

1 2 3 4 5 6
r

3.9

4.0

4.1

4.2

4.3

4.4

4.5 h 1

h 2

h 4

Fig. 25 Profiles of total
non-causal temperature T
versus radial coordinate (M = 1,
R = 6.6, Co = 10, C1 = √

10,
ξ = 100, ψ = 0 and λ = 0.001)
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which can be easily expressed as

(
AoTo

)′ = 0. (80)

Equation (80) easily integrates to give

To = Co

Ao
, (81)

where Co is a positive constant of integration. Herrera and Santos [52] and Maharaj
et al. [26] privide a discussion of the physical significance of Eq. (79), which was first
obtained by Tolman in 1930. They point out that Eq. (79) alludes to the existence of
a temperature gradient which prohibits the movement of heat flux along the gradient
of the gravitational field. This mechanism is responsible for the thermal equilibrium
being maintained in the presence of a gravitational field.

From Fig. 24 we note that the perturbations in the temperature are greatest when
there is a greater divergence from isotropy with pr dominating pt . This is in keeping
with a greater generation of heat within the core due to internal friction between
the neighbouring layers of the stellar fluid. Figure 25 shows that anisotropy leads to
higher core temperatures with the effect being dominant near the central regions of the
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collapsing body. An interesting and surprising result is that the causal and noncausal
temperatures are identical for this particular epoch of the collapse which is markedly
different from the shear–free case with isotropic pressure [26]. Bearing in mind that
the isotropic model corresponds to h = 1 for which we obtain identical profiles for
the perturbations in the causal and noncausal temperatures, it follows that relaxational

effects are sensitive to the presence of shear
(

b
Bo


= y
Yo

)
which can be further enhanced

by density inhomogeneities and heat flow [28].

9 Conclusion

We have investigated the impact of anisotropy on the physical behaviour of a spher-
ically symmetric stellar fluid undergoing shearing dissipative collapse. Our system
is initially static and is then subjected to linear perturbations that drive the system
away from hydrostatic equilibrium. The initial static core is described by the Bowers
and Liang model which is the anisotropic generalisation of the Schwarzschild uniform
density sphere. The effect of pressure anisotropy on the collapse process is clearly evi-
denced on the perturbations to the energy density, radial pressure, tangential pressure,
heat flow, collapse rate and shear. We have shown that the perturbations are enhanced
with growing anisotropy. An interesting finding in our work is that the perturbations
to the temperature profiles in both the Eckart and noncausal regimes are identical.
This is in contrast to the shear-free, isotropic models studied in [26]. We must point
out that the causal temperature perturbations were obtained by using a truncated heat
transport equation of Maxwell–Cattaneo form. It would be interesting to investigate
the evolution of these perturbations by invoking the full causal heat transport equation.
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