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Abstract We study the P–V critical behaivor of N-dimensional AdS black holes in
Einstein–Maxwell–power-Yang–Mills gravity. Our results show the existence of the
Van der Waals like small-large black hole phase transitions when taking some special
values of charges of the Maxwell and Yang–Mills fields. Further to calculate the critical
exponents of the black holes at the critical point, we find that they are the same as
those in the Van der Waals liquid-gas system.
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1 Introduction

Thermodynamical properties of the AdS black hole has been a subject of intense study
for the past decades. In terms of the AdS/CFT correspondence, the thermodynamics
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of black holes in AdS space can be identified with that of dual strong coupled con-
formal field theory (CFT) in the boundary of the AdS space [1]. The thermodynamic
properties in AdS black holes were reported in [2], which represented the existence
for a certain phase transition (Hawking-Page phase transition) in the phase space of
the Schwarzschild AdS black hole.

Recently, the analogy between four dimensional RN-AdS black holes and the Van
der Waals fluid-gas system has been completed in this extended phase space [3], where
the cosmological constant is treated as a thermodynamic pressure with

P = − �

8π
(1)

in the geometric units G N = h̄ = c = k = 1. There exist some more meaningful
reasons to regard the cosmological constant as a variable [3]. Firstly, some more
fundamental theories could be considered, where physical quantities, such as Yukawa
coupling, gauge constant, Newton’s constant, or cosmological constant may not be
fixed values, but can vary arising from the vacuum expectation energy. Moreover, the
lack of the cosmological constant � term in the first law of black hole thermodynamics
can not lead to a consistent Smarr relation for the black hole thermodynamics. In the
extended phase space, however, the Smarr relation is satisfied in addition to the first
law of thermodynamics from the aspect of the scaling arguments. In addition, based
on the mathematical analogies, the β–r+ and Q–� diagrams of the fixed charge RN-
AdS black holes are found to be similar to the P–V diagram of the Van der Waals
fluid-gas system. Nevertheless, these analogies are only an identification of similar
physical quantities. This analogy becomes more natural in this extended phase space.
Until now, these critical behaviour of a lot of black hole systems in this extended
phase space are under discussion in this direction [5–18]. It is worth to noting that,
in four-dimensional Born–Infeld AdS black holes [4], the impact of the nonlinearity
can bring the new phenomenon of reentrant phase transition which was observed in
rotating AdS holes [19,20], while this reentrant phase transition does not occur for
higher dimensional Born–Infeld AdS black holes [21].

So far, the black holes including these two gauge fields (Maxwell field and YM field)
are coupled through gravity have been considered in general relativity [22–29] and
higher order derivative gravities [30–32]. From physics standpoint, electromagnetism
has long range effects and dominates outside the nuclei of natural matter, while YM
field is confined to act inside nuclei. In this paper we will turn to study the black holes
in the Einstein–Maxwell–power-Yang–Mills (EMPYM) gravity. Whether the critical
behaviour of black hole with two gauge fields still exist? It is interesting to explore.
We will find that the existence for the Van der Waals like small-large black hole phase
transition depends on dimension N , various values of parameter q, charges Q and C of
the YM and Maxwell fields. However, this reentrant phase transition will not emerge
for the black holes with two gauge fields.

This paper is organized as follows. In Sect. 2, we examine the critical behaviors of
the EMPMY black holes. Then, we will study the critical exponents near critical point
in Sect. 3. By using the Ehrenfest equations, we will evaluate the phase transition of
the EMPMY black holes at the critical point in Sect. 4. Finally, Sect. 5 is devoted to
the closing remarks.
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2 Critical behavior of Einstein–Maxwell–power-Yang–Mills black holes

The N -dimensional action for Einstein–Maxwell–power-Yang–Mills gravity with a
cosmological constant � is given by

I = 1

2

∫
dx N √−g

(
R − (N − 1)(N − 2)

3
� − Fμν Fμν − (Tr(F (a)

μν F (a)μν))q
)

,

(2)

where Tr(.) = ∑(N−1)(N−2)/2
a=1 (.), R is the Ricci scalar, q is a positive real parameter,

YM and Maxwell fields are defined respectively as

F (a)
μν = ∂μ A(a)

ν − ∂ν A(a)
μ + 1

2σ
C (a)

(b)(c) Ab
μ Ac

ν, (3)

Fμν = ∂μ Aν − ∂ν Aμ. (4)

Here C (a)
(b)(c) represents the structure constants of (N − 1)(N − 2)/2 parameter Lie

group G and σ is a coupling constant, A(a)
μ are the SO(N − 1) gauge group YM

potentials, and Aμ is the usual Maxwell potential.
Our metric ansatz for N dimensional spherically symmetric line element is chosen

as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d	2

n (5)

with the line element of a unit n-sphere d	2
n . Depending on different dimensions

N and values of q, the action Eq. (2) admits various black hole solutions. As we
known, the black hole solutions in the standard Einstein–Maxwell–Yang–Mills theory
with q = 1 [30] and Einstein–power-Yang–Mills theory [32] have been investigated.
Here we present the black hole solutions in the Einstein–Maxwell–power-Yang–Mills
theory, and then discuss the thermodynamics and critical behavior for each possible
black hole solution in the extended phase space.

2.1 N (= n + 2) ≥ 4, q �= (n + 1)/4

The solution of N -dimensional EMPYM black hole with negative cosmological con-
stant under the condition of q �= (n + 1)/4 is given by

f (r) = 1 − 2m

rn−1 − �

3
r2 + 2(n − 1)C2

nr2n−2 + Q1

r4q−2 , Q1 = [(n − 1)nQ2]q

n(4q − n − 1)
, (6)

where the integration constant m denotes the mass parameter of black hole, C and
Q are the charges of Maxwell field and Yang–Mills field respectively. Note in order
to keep the power Yang-Mils term satisfying the weak energy condition (WEC), one
must take q > 0 [32], which is discussed in detailed in what follows. In case of q = 1,
Eq. (6) reduces to the black hole solution in the Einstein–Maxwell–Yang–Mills gravity
[30].
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In term of the black hole radius r+, the Hawking temperature, mass and entropy of
black hole in the extended phase space read as

T = f ′(r+)

4π
= n − 1

4πr+
+ 2(n + 1)P

3
r+ − (4q − n − 1)Q1

4πr4q−1
+

− (n − 1)2C2

2πnr2n−1+
, (7)

M = nωn

48π

(
8π Prn+1+ + 3rn−4q+1

+ Q1 + 3rn−1+ + 6(n − 1)C2

nrn−1+

)
, (8)

S = ωnrn+
4

, (9)

and the YM potential �Q and the electromagnetic potential �C can be written as

�Q = ωnq[(n − 1)nQ2]q

8π(4q − n − 1)Q
rn−4q+1
+ , (10)

�C = ωn(n − 1)C

4πrn−1+
, (11)

where ωn = 2π(n+1)/2

�( n+1
2 )

is the volume of the unit n-sphere. Moreover, the free energy F

of black hole can be written as

F = M − T · S. (12)

From Eqs. (7–9), these thermodynamic quantities obey the first law of black hole
thermodynamics in the extended phase space

d M = T d S + �Q d Q + �C d C + V d P, (13)

where V denotes the thermodynamic volume with V = ( ∂ M
∂ P )S,�Q ,�C . By the scaling

argument, we can obtain the generalized Smarr relation for the EMPYM black hole
in the extended phase space

M = n

n − 1
T S + �C C + 2q − 1

(n − 1)q
�Q Q − 2

n − 1
V P. (14)

By rewriting the Eq. (7), we can get the equation of state of the black hole

P = 3T

2(n + 1)r+
+ 3(n − 1)2C2

4πn(n + 1)r2n+
+ 3(4q − n − 1)Q1

8π(n + 1)r4q
+

− 3(n − 1)

8π(n + 1)r2+
. (15)

To compare with the Van der Waals fluid equation, we can translate the “geometric”
equation of state to physical one by identifying the specific volume v of the fluid with
the horizon radius of the black hole as v = 4r+

n such that we will just use the horizon
radius in the equation of state for the black hole hereafter in this paper.
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The critical point should satisfy the following condition

∂ P

∂r+

∣∣∣
T =Tc,r+=rc

= ∂2 P

∂r2+

∣∣∣
T =Tc,r+=rc

= 0, (16)

which leads to the critical temperature

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tc = n − 1

2πrc
− q(4q − n − 1)Q1

πr4q−1
c

− (n − 1)2C2

πr2n−1
c

, (17a)

Pc = 3(n−1)

8π(n+1)r2
c

− 3(4q−1)(4q−n − 1)Q1

8π(n+1)r4q
c

− 3(2n−1)(n − 1)2C2

4πn(n + 1)r2n
c

, (17b)

and the equation for the critical horizon radius

r4q−2
c − 2(2n − 1)(n − 1)C2r4q−2n

c − 2q(4q − 1)(4q − n − 1)Q1

n − 1
= 0. (18)

The physical solutions of Eq. (18) crucially depend on the dimensions n, parameter
q and charges Q and C of the YM and Maxwell fields. Further, The existence of the
critical behavior is also determined by the positive critical pressure Pc and critical
temperature Tc.

It is worth to note that Eq. (6) becomes the RN-AdS black hole solution when
Q = 0(Q1 = 0). The P–V criticality of RN-AdS black hole has been investigated in
[3,4]. Then we only focus on the cases of Q �= 0 below.

2.1.1 C = 0

In the case of C = 0, Eq. (18) with q = 1
2 or q ≤ 1

4 does not exhibit any real positive
root rc, which implies disappearance of critical behavior of black hole in these cases.
Otherwise Eq. (18) can be solved as

rc =
[

2q(4q − 1)[(n − 1)nQ2]q

n(n − 1)

] 1
4q−2

. (19)

Plugging it into Eq. (17), the critical temperature and pressure are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tc = (2q − 1)(n − 1)

(4q − 1)π

[
2q(4q − 1)[(n − 1)nQ2]q

n(n − 1)

] −1
4q−2

, (20a)

Pc = 3(n − 1)(2q − 1)

16qπ(n + 1)

[
2q(4q − 1)[(n − 1)nQ2]q

n(n − 1)

] −1
2q−1

. (20b)

This also gives the following ratio relation

ρc = Pcvc

Tc
= 3(4q − 1)

4nq(n + 1)
, (21)
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Fig. 1 The P–r+ diagrams of the EMPYM black hole with N = 4, Q = 0.5, C = 0. Here these black,
dashed and dotdashed curves correspond to the isotherm T = 0.8Tc , T = Tc , T = 1.2Tc respectively. a
q = 1, b q = 2

where the ratio ρc is independent with the charge Q of the YM field. If taking q = 1,
the system reduces especially to the EYM black hole, and the critical quantities of
EYM black hole are given by

rc = √
6Q, Tc = n − 1

3
√

6π Q
, Pc = n − 1

32π(n + 1)Q2 . (22)

The ratio here becomes ρc = Pcvc
Tc

= 9
4n(n+1)

.
The “P–r+ diagrams” of black hole in four dimensions for q = 1 and q �= 1

are respectively depicted in Fig. 1. These diagrams are exactly the same as the P–V
diagram of the Van der Waals liquid-gas system [3]. For a fixed temperature lower than
the critical one Tc, we have two branches whose pressure decreases as the increase of
horizon radius, one is in the small radius region (corresponding to fluid phase) and
the other is in the large radius region (corresponding to the gas phase). However, the
black holes are always in the gas phase and no phase transition happens above the
critical temperature Tc. In addition, the pictures for free energy shown in Eq. (12) as a
function of temperature with different pressure are plotted in Fig. 2. One can see that
these figure develops a “swallow tail” for P < Pc, which denotes a first order phase
transition and this “swallow tail” vanishes at P > Pc and P = Pc (critical point).
Moreover, the corresponding “P–r+” and “F–T ” diagrams of black hole in higher
dimensions are also qualitatively similar.

2.1.2 C �= 0

Generally, it is hard to exactly solve the Eq. (18) for C �= 0. However, what we are
interested in is whether the phase transition happens or not, which is equivalent to
study the existence of positive solution rc of Eq. (18). We introduce a function

H(rc) = r4q−2
c − Ar4q−2n

c − B

= r4q−2
c

(
1 − A

r2n−2
c

)
− B (23)
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Fig. 2 The F–T diagrams of the EMPYM black hole with N = 4, Q = 0.5, C = 0. Here these black,
dashed and dotdashed curves correspond to the isopiestic P = 0.5Pc , P = Pc , P = 1.5Pc respectively. a
q = 1, b q = 2

with A = 2(2n − 1)(n − 1)C2 and B = 2q(4q−1)[(n−1)nQ2]q
n(n−1)

. Obviously the critical

radius is determined by H(rc) = 0. It is clear that rc = A1/(2n−2) is a solution if
B = 0 (q = 1/4). For generic q, the derivative of H(rc)

H ′(rc) = (4q − 2) − A (4q − 2n) r2−2n
c (24)

vanishes at rc ≡ rg =
[

2(2n−1)(n−1)C2(2q−n)
2q−1

] 1
2n−2

when q > n
2 or q < 1

2 , while

always maintains positive in the region of 1
2 < q ≤ n

2 and negative for q = 1
2 .

Now, we return to analyse the existence of the critical behaviours based on the
values of q.

1. q < 1
4 , the function H(rc) tends to −∞ as rc → 0 and H(rc) → (−B) > 0

when rc → +∞, and Eq. (24) has one solution rg . This implies that just one
positive critical radius rc makes H(rc) = 0. Meanwhile, the positive condition of
Tc, Pc > 0 gives a constrain on the Maxwell field charge C

n

2n − 1
· (1 − 2q)

2(n − 2q)(n − 1)
r2n−2

c < C2 <
(1 − 2q)

2(n − 2q)(n − 1)
r2n−2

c . (25)

2. 1
4 < q < 1

2 , the function H(rc) reaches a negative number (−B) as rc → +∞,
and approaches −∞ if rc → 0, and Eq. (24) has one solution rg . Hence H(rc) = 0
admits one or two critical radius solutions rc which are determined by the cases
of H(rg) = 0 and H(rg) > 0. As to the asymptotic behavior of the critical
temperature Tc [Eq. (16a)] and the critical pressure Pc [Eq. (16b)], we find the
temperature function Tc(rc) tends to +∞ as rc → +∞, Tc(rc) → 0 from the
negative direction when rc → 0 and vanishes at

rc ≡ rt =
[

2(n − 1) (n − 2q) C2

1 − 2q

] 1
2n−2

; (26)
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the pressure function Pc(rc) has the same asymptotic behavior with the temperature
function and vanished at

rc ≡ rp =
[

2(n − 1)(2n − 1) (n − 2q) C2

n(1 − 2q)

] 1
2n−2

, (27)

which also gives the inequality rt
rg

<
rp
rg

< 1.
When H(rg) = 0, the critical temperature Tc(rg) is always negative, there is no
phase transition. If H(rg) > 0, the equation H(rc) = 0 has two positive solutions
r1 < r2 satisfying r1 < rg < r2. Taking account of the signs of Tc and Pc at r1
and r2, one can find that the phase transition happens at r1 under condition

C2 <
[ n(n − 1)2

2q(n − 2q)[(n − 1)nQ2]q

] n−1
1−2q · 1 − 2q

2(n − 2q)(n − 1)
. (28)

3. 1
2 < q < n

2 , the function H(rc) reaches positive infinity as rc → +∞ and
approaches −∞ when rc → 0. Since H ′(rc) is a monotonic increasing func-
tion, Eq. (23) only admits just one positive critical radius solution rc. Meanwhile,
the critical temperature Tc and the critical pressure Pc are always positive in this
case.

4. q > n
2 , the function H(rc) approaches +∞ as rc → +∞ and tends to a negative

number (−B) as rc → 0. Hence, H(rc) = 0 always admits just one positive root,
and then the charge C satisfies Eq. (25) on account of Tc, Pc > 0.

5. q = 1
4 , critical radius rc equals to

[
2(2n − 1)(n − 1)C2

] 1
2n−2 , and the critical

temperature and pressure read

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tc = (n − 1)2

π(2n − 1)
[
2(2n − 1)(n − 1)C2

] 1
2n−2

− [(n − 1)nQ2]1/4

4πn
, (29a)

Pc = 3(n − 1)2

8πn(n + 1)
[
2(2n − 1)(n − 1)C2

] 1
n−1

, (29b)

which leads to C2 < 22n−3 (n−1)
7n−9

2 n
3(n−1)

2

(2n−1)2n−1 Qn−1 based on Tc > 0 and Pc > 0.

6. q = 1
2 , the solution of Eq. (18) is

rc =
[

2(2n − 1)(n − 1)C2

1 − Q1

] 1
2n−2

. (30)

However, the critical pressure Pc always disappears, there is no phase transition.
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Fig. 3 The P–r+ diagrams of the EMPYM black hole with N = 4, Q = 1, C = 0.1. Here these black,
dashed and dotdashed curves correspond to the isotherm T = 0.8Tc , T = Tc , T = 1.2Tc respectively. a
q = 1/8, b q = 1/3
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Fig. 4 The F − T diagrams of the EMPYM black hole with N = 4, Q = 1, C = 0.1. Here these black,
dashed and dotdashed curves correspond to the isopiestic P = 0.5Pc , P = Pc , P = 1.5Pc respectively. a
q = 1/8. b q = 1/3

7. q = n
2 , the critical quantities can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Tc = (n − 1)2

π(2n − 1)rc
, (31)

Pc = 3(n − 1)2

8πn(n + 1)r2
c
, (32)

rc = [
2(2n − 1)(n − 1)C2 + (2n − 1)[(n − 1)nQ2]n/2

n − 1

] 1
2n−2 . (33)

Therefore, excepting q = 1/2, there exists a Van der Waals phase transition under
proper conditions, the “P–r+” and “F–T ” diagrams of black holes are similar, which
are depicted in Figs. 3 and 4. with N = 4. Moreover, the behaviour of black holes in
higher dimensions are also qualitatively similar.

2.2 N (= n + 2) ≥ 4, q = (n + 1)/4

In this case, the solution of N -dimensional EMPYM black hole is given by
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f (r) = 1 − 2m

rn−1 − �

3
r2 + 2(n − 1)C2

nr2n−2 − Q2 ln r

rn−1 ,

Q2 = 1

n

[
(n − 1)nQ2] n+1

4 . (34)

When the power exponent q takes 1, Eq. (34) will reduce to the EMYM black hole
where the dimension n = 5 [30].

The temperature T , mass and entropy of this EMPYM black hole in the extended
phase space can be derived as

T = n − 1

4πr+
+ 2(n + 1)Pr+

3
− Q2

4πrn+
− (n − 1)2C2

2πnr2n−1+
, (35)

M = nωn

8π

(
rn−1+

2
− �rn+1+

6
− Q2 ln r+

2
+ (n − 1)C2

nrn−1+

)
, (36)

S = ωnrn+
4

. (37)

with the pressure P = − �
8π

. This gives the equation of state

P = 3T

2(n + 1)r+
+ 3Q2

8π(n + 1)rn+1+
+ 3(n − 1)2C2

4πn(n + 1)r2n+
− 3(n − 1)

8π(n + 1)r2+
. (38)

By adopting the Eq. (16), we can obtain the critical temperature

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tc = (n − 1)2

2πnrc
+ (n − 1)3C2

πnr2n−1
c

, (39a)

Pc = 3(n − 1)2

8π(n + 1)2r2
c

+ 3(n − 1)3(2n − 1)C2

4πn(n + 1)2r2n
c

(39b)

and the equation for the critical horizon radius

r2n−2
c − n(n + 1)Q2

2(n − 1)
rn−1

c − 2(2n − 1)(n − 1)C2 = 0, (40)

which leads to

rc =
⎡
⎣n(n + 1)Q2

4(n − 1)
+

√
n2(n + 1)2 Q2

2

16(n − 1)2 + 2(2n − 1)(n − 1)C2

⎤
⎦

1
n−1

. (41)

Obviously the critical temperature and pressure are always positive, and then the
critical behaviour also exist in this case. The system reduces to the EMYM black hole
with q = 1 in five dimensions. Following the same procedure above, we can also
discuss the free energy F of black hole and the first order phase transition and this
“swallow tail” will also appear in the F–T diagrams.
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3 Critical exponents near critical point

Now we turn to compute the critical exponents α, β, γ , δ for the black hole system,
which characterize the behaviors of physical quantities in the vicinity of the critical
point (r+ = rc, v = vc, T = Tc, P = Pc) for the black hole. Firstly, we define

p = P

Pc
; ν = v

vc
; τ = T

Tc
. (42)

Near the critical point, critical exponents are defined as follows [3]

Cv = T
∂S

∂T

∣∣∣
v

∝
(

−T − Tc

Tc

)−α

,

η = vs − vl

vc
∝

(
−T − Tc

Tc

)β

,

κT = −1

v

∂v

∂ P

∣∣∣
T

∝
(

−T − Tc

Tc

)−γ

,

P − Pc ∝ (v − vc)
δ, (43)

where “c′′ denotes the quantity at the critical point of the system.
In order to compute the critical exponent α, we rewrite the entropy of black hole as

S = (n+1)π
n+1

2 rn+
4�( n+3

2 )
. Obviously this entropy S is independent of T for the constant value

of specific volume v, so we conclude that the critical exponent α = 0. To obtain the
other exponents, we introduce the expansion parameters

τ = t + 1, ν = ω + 1, (44)

and expand this equation of state near the critical point we can get

p = 1 + a10t + a11tω + a03ω
3 + O(tε2, ε4). (45)

During the phase transition, the pressure remains constant

p = 1 + a10t + a11tωs + a03ω
3
s = 1 + a10t + a11tωl + a03ω

3
l ,

⇒ a11t (ωs − ωl) + a03

(
ω3

s − ω3
l

)
= 0, (46)

where ωs and ωl denote the ‘volume’ of small and large black holes.
Using Maxwell’s area law, we obtain

∫ ωs

ωl

ω
dp

dω
dω = 0 ⇒ a11t

(
ω2

s − ω2
l

)
+ 3

2
a03

(
ω4

s − ω4
l

)
= 0. (47)
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Table 1 Coefficient

Label a10 a11 a03

Q = 0.5; C = 0; n = 3; q = 2 2.29 −2.29 −2.67

Q = 0.5; C = 0.5; n = 3; q = 1/4 1.99 −1.99 −2.0

Q = 0.5; C = 0.5; n = 3; q = n/2 2.4 −2.4 −2.0

Q = 0.2; C = 0.4; n = 3; q = (n + 1)/4 2.43 −2.43 −1.94

Q = 0.2; C = 0.4; n = 5; q = (n + 1)/4 2.24 −2.24 −3.17

With Eqs. (46, 47), the nontrivial solutions appear only when a11a03t < 0. Then we
can get

ωs =
√−a11a03t

3|a03| , ωl = −
√−a11a03t

3|a03| . (48)

Table.1 is the different values of a10, a11, a03 in Eq. (46) corresponding to the different
situations.

Therefore, we have

η = ωs − ωl = 2ωs ∝ √−t ⇒ β = 1/2. (49)

The isothermal compressibility can be computed as

κT = −1

v

∂v

∂ P

∣∣∣
vc

∝ − 1
∂p
∂ω

∣∣∣
ω=0

= − 1

a11t
, (50)

which indicates that the critical exponent γ = 1. Moreover, the shape of the critical
isotherm t = 0 is given by

p − 1 = −ω3 ⇒ δ = 3. (51)

Evidently these critical exponents of the black holes coincide with those of the Van
der Waals liquid-gas system [3].

4 Phase transition at the critical point and Ehrenfest’s equations

For Van der Waals liquid-gas system, the liquid-gas structure does not change suddenly
but undergoes the second order phase transition at the critical point (V = Vc, T =
Tc, P = Pc). This is described by the Ehrenfest’s description [34,35]. In conventional
thermodynamics, Ehrenfest’s description consists of the first and second Ehrenfest’s
equations [36,37]

∂ P

∂T

∣∣∣
S

= CP2 − CP1

T V (ζ2 − ζ1)
= �CP

T V �ζ
, (52)
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∂ P

∂T

∣∣∣
V

= ζ2 − ζ1

κT 2 − κT 1
= �ζ

�κT
. (53)

For a genuine second order phase transition, both of these equations have to be sat-
isfied simultaneously. Here ζ and κT denote the volume expansion and isothermal
compressibility coefficients of the system respectively

ζ = 1

V

∂V

∂T

∣∣∣
P
, κT = − 1

V

∂V

∂ P

∣∣∣
T
. (54)

Let us concentrate on the N -dimensional EMPYM black hole. From Eq. (54), we
can obtain

V ζ = ∂V

∂T

∣∣∣
P

= ∂V

∂S

∣∣∣
P

× ∂S

∂T

∣∣∣
P

= ∂V

∂S

∣∣∣
P

× CP

T
. (55)

The right hand side of Eq. (52) can be expressed into

�CP

T V �ζ
=

[
∂S

∂V

∣∣∣
P

]
r+=rc

= 3

2(n + 1)rc
, (56)

where the thermodynamic volume V is described above and the subscript denotes the
physical quantities at the critical point. From Eqs. (15) and (38), the left hand side of
Eq. (52) at the critical point can be got as

[
∂ P

∂T

∣∣∣
S

]
r+=rc

= 3

2(n + 1)rc
. (57)

Therefore, the first of Ehrenfest’s equations can be satisfied at the critical point.
Now let’s examine the second of Ehrenfest’s equations. In order to compute κT , we

make use of the thermodynamic identify

∂V

∂ P

∣∣∣
T

× ∂ P

∂T

∣∣∣
V

× ∂T

∂V

∣∣∣
P

= −1. (58)

Considering Eq. (54), we can have

κT V = −∂V

∂ P

∣∣∣
T

= ∂T

∂ P

∣∣∣
V

× ∂V

∂T

∣∣∣
P

= ∂T

∂ P

∣∣∣
V

V ζ. (59)

which reveals the validity of the second Ehrenfest equations at the critical point.
Moreover, the right hand side of Eq. (53) is given by

�ζ

�κT
=

[
∂ P

∂T

∣∣∣
V

]
r+=rc

= 3

2(n + 1)rc
. (60)
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Using Eqs. (56) and (60), the Prigogine-Defay (PD) ratio (�) [38] is

� = �CP�κT

T v(�ζ)2 = 1. (61)

Hence, this phase transition at the critical point in the N -dimensional EMPYM black
hole is of the second order in both cases of q = (n + 1)/4 and q �= (n + 1)/4.
These results are also consistent with the nature of the liquid-gas phase transition at
the critical point.

5 closing remarks

In this paper we have studied the phase transition and critical behavior of N -
dimensional AdS black holes in the Einstein–Maxwell–power-Yang–Mills gravity,
where the cosmological constant appears as a dynamical pressure of the system and
its conjugate quantity is the thermodynamic volume of the black hole. It shows that
for the case of q �= (n + 1)/4, excepting q = 1/2, there exists a Van der Waals
phase transition under proper constraint conditions of the charges C ,Q of Maxwell
and Yang–Mills fields and the dimension n. For the case of q = (n+1)/4, the P-V crit-
icality and the small/large black hole phase transition always exist with no constraint
condition.

In the case of q �= (n+1)/4, the power Yang–Mills term contributes a positive term
or a negative term to the metric function Eq. (6), which depends on the range of the
power exponent q. However, the contribution of the YM term in the equation of state
Eq. (15) is always positive. Comparing Eq. (15) with the equation of state in Ref.[3,4],
we can find that the first and last terms in Eq. (15) are standard and the middle terms
are both positive monotonically decreasing functions of radius r , which means the
equation of state can at most produce a single minimum and a single maximum. This
discussion is consistent with the results we calculated, which shows that there is at
most one critical point in the system. This is why no re-entrant behaviour is observed
and only the Van der Waals behaviour may exist. For the same reason, we can only
observed the Van der Waals behaviour in the case of q = (n + 1)/4.

We have also calculated the critical exponents at the critical point and found in all
cases the critical exponents coincide with those of the Van der Waals fluid. Finally,
both of the Ehrenfest’s equations have been verified to hold at the critical point, which
shows that in resemblance with the liquid-gas phase transition, the phase transition of
the EMPYM black hole at the critical point is of the second order.
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