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Abstract We consider metrics related to each other by functionals of a scalar fieldϕ(x)

and it’s gradient ∇ϕ(x), and give transformations of some key geometric quantities
associated with such metrics. Our analysis provides useful and elegant geometric
insights into the roles of conformal and non-conformal metric deformations in terms
of intrinsic and extrinsic geometry of ϕ-foliations. As a special case, we compare
conformal and disformal transforms to highlight some non-trivial scaling differences.
We also study the geometry of equi-geodesic surfaces formed by points p at constant
geodesic distance σ(p, P) from a fixed point P , and apply our results to a specific
disformal geometry based on σ(p, P) which was recently shown to arise in the context
of spacetime with a minimal length.

Keywords Conformal and disformal metrics · Extrinsic curvature · Gauss–Codazzi
equations · Synge world function

1 Introduction

Consider a spacetime described by a metric g, and let ϕ(x) be a given scalar field.
From these variables, one can construct another metric on the same manifold defined
by

�
gab = �2gab − εBtatb (1)

where � = �[ϕ] and B[ϕ] are arbitrary functions of the scalar field ϕ, and
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1836 Page 2 of 14 D. Kothawala

ta = ∂aϕ√
εgi j∇iϕ∇ jϕ

; gabtatb = ε = ±1 (2)

Our aim in this paper would be study the relationship between geometric quantities

associated with
�
g and g.

However, before doing that, let us first give a brief motivation for considering such
geometries. Under what circumstances can such geometries arise, and what might
be their use in physical theories? Over the past several decades, it has been realized
(although not widely appreciated) that the geometry relevant for describing matter
in presence of gravitational field could be related to the spacetime geometry in a
non-trivial manner, going beyond the well known relation based on conformal trans-
formations which have otherwise been ubiquitous in such contexts. A very transparent
presentation of this argument can be found, for example, in Bekenstein’s paper [1].
He argued that if one takes Finsler, rather than Riemannian, geometry as more funda-
mental, and imposes some physically motivated constraints, a Finsler geometry can be
re-cast in terms of a Riemannian geometry with a metric that is related to the spacetime
metric by transformations which are non-conformal. Since the transformation in (1)
is qualitatively of such form (although differs in detail from the ones in [1]), we refer
to such geometries as “Finsler esque”, and shall be working throughout this paper in
this restricted context. A more recent reason for considering such geometries comes
from semi-classical and quantum gravity. In particular, it was recently shown [2] that
space(time)s with a minimal length scale might be described by an effective “metric”
of the form (1), with the non-local Synge world-function bi-scalar replacing the field
ϕ(x). We discuss this geometry in detail in Sect. 3.1.4 below.

Summary I outline a method which gives, in a convenient form, the expressions for

Ricci scalar associated with the metric
�
gab in terms of geometric quantities associated

with the level surfaces � of ϕ(x). In Sect. 2, I focus on the geometry of � and find
several relationships between intrinsic and extrinsic geometric quantities associated

with � as embedded in
�
gab and gab. In Sect. 3, I use these relations in the Gauss–

Codazzi equation to re-construct the Ricci scalar of
�
g [see Eqs. (20, 21)], and give

several specific applications, including a recent result in which a non-local disformal
coupling based on Synge world function arises naturally in spacetimes with a minimal
length. In Sect. 4, I recast the derived expression for the Ricci scalar in a manner
which elegantly highlights the (well-known) contribution of the conformal part, and
the additional contribution due to the non-conformal part expressed in a transparent,
geometric way. Finally, I end with brief concluding remarks in Sect. 5.

Notation The signature is (−,+,+, . . .) for Lorentzian spaces. I will also use the
convenient notation Dk = D − k which is handy when working in D dimensions.

2 Intrinsic and extrinsic geometry

Given the metric
�
gab, the inverse metric is easily found to be
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�
gab = 1

�2 gab + ε

(
�−2B
�2 − B

)
qaqb (3)

where qa = gabtb and
�
gai �

gib = δa
b. To begin with, introduce the vectors

Ta =
√

�2 − Bta

T a = �
gabTb

= 1√
�2 − B qa (4)

which are normalized with respect to
�
gab. Of course, any characterization of � in

�
gab

must be based on these vectors. The metric determinants are related by

√
−�

g =
{
�(D−2)

√
�2 − B
�−2

}√−g (5)

which follows from the matrix determinant lemma:

det
(

M + uvT
)

= (det M) ×
(

1 + vTM−1u
)

(6)

where M is an invertible square matrix, and u, v are column vectors (of same dimension
as M).

2.1 The first fundamental form

Using the above relations, one can immediately deduce the following relation between

the induced metrics, or the first fundamental forms, of � in
�
g and g.

�

hab = �
gab − εTaTb

=
(
�2gab − εBtatb

)
− ε

(
�2 − B

)
tatb

= �2 hab (7)

That is, the induced geometries on � in any two space(time)s related by Eq. (1) are
related by a conformal transformation.

This observation will enormously simplify the evaluation of Ricci scalar of
�
gab in

terms of quantities associated with gab.

2.2 The intrinsic Ricci scalar

The above result implies that intrinsic geometries of � are conformal to each other,
and since the conformal factor is �2[ϕ] which is constant on �, one immediately
obtains
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�

R� = �−2 R� (8)

which is a simple rescaling, and, most importantly, independent of B.

2.3 The second fundamental form

Our next aim would be relate the extrinsic geometries, or the second fundamental
forms, of � in the two metrics. These are defined by

Ki j = ∇i t j − εa j ti
�

K i j = �∇ i Tj − ε
�
a j Ti (9)

where a j and
�
a j are the acceleration vectors associated with vectors qi and T i respec-

tively.

a j = qk∇k t j

�
a j = T k

�∇k Tj (10)

Since
�∇bTc = ∂bTc − �


a
bcTk , we need the relation between Christoffel connections

of the two metrics. This is given by

�


a
bc = 
a

bc + 1

2
�
gam

(
−∇m

�
gbc + 2∇(b

�
gc)m

)
(11)

We only need
�


k
i j Tk , which is relatively straightforward to obtain using the identities

proved in “Appendix 1”, from which we obtain

�∇bTc =
√

�2 − B
(

∇btc + ∇q�2

2
(
�2 − B)hbc + B

�2 − B K(bc)

)

It immediately follows that

�
ac = T b

�∇bTc

= 1√
�2 − Bqb

�∇bTc

= ac (12)

Putting everything together, and noticing that hypersurface orthogonality implies
K(bc) = Kbc, we finally obtain
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�

K ab = �∇aTb − ε
�
abTa

= 1√
�2 − B

[
�2 Kab + 1

2

(
∇q�2

)
hab

]
(13)

and

�

K = �
gab

�

K ab

= �−2

√
�2 − B

[
�2 K + D1

2
∇q�2

]
(14)

2.4 Summary

To summarize, we have derived the following relations between first and second fun-
damental forms of ϕ(x) =constant

�

hab = �2hab
�

R� = �−2 R�

�

K ab = �2

√
�2 − B

[
Kab + (∇q ln �

)
hab

]

�

K = 1√
�2 − B

[
K + D1∇q ln �

]
(15)

Of special interest are two cases which are displayed in Table 1, corresponding to
conformal and disformal transformations.

3 Re-constructing the Ricci scalar from geometry of �

Having the relationship between intrinsic and extrinsic geometrical properties of �,

we can now re-construct the point wise Ricci scalar of
�
gab by using the Gauss–Codazzi

relation:

Table 1 Comparison of
conformal and disformal
transforms of first and second
fundamental forms

Conformal transformations Disformal transformations
B = 0; α = �−2 B = �2 − �−2; α = �2

�
gab = �2gab

�
gab = �2gab − ε

(
�2 − �−2

)
ta tb

�
hab = �2hab

�
hab = �2hab

�
K ab = �Kab + (∇q�

)
hab

�
K ab = �3 Kab +

(
�2∇q�

)
hab

�
K = �−1 K + D1�−2∇q�

�
K = �K + D1∇q�
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�

R = �

R� − ε

(
�

K 2 + �

K 2
ab

)
− 2ε

�∇T
�

K + 2ε
�∇ i

�
a

i
(16)

where
�∇T ≡ T i

�∇ i and
�

K 2
ab ≡ �

gia �
g jb

�

K ab
�

K i j .
Our aim is to express all the quantities on the RHS of the above equation in terms

of quantities associated with gab, thereby obtaining the transformation of
�

R. This
is easily done by using the results of the previous sections, which give the required
relationships for quantities appearing in RHS above.

At this stage, it is useful to trade off the function B in terms of a new function α,
defined by

�2 − B = α−1 (17)

The significance of introducing α will become clear as we go along. In particular,
the set of metric transformations of the form (1) turn to have an extremely simple
composition law in terms of the functions

(
�2, α

)
; see “Appendix 2”.

Using expressions from previous section, one can derive the following relations
after few (long) algebraic steps:

�

K 2
ab = α

[
K 2

ab + K∇q ln �2 + D2
1

(∇q ln �
)2

]

�

K 2 = α
[

K 2 + D1 K∇q ln �2 + D2
1

(∇q ln �
)2

]

�∇T
�

K = α∇q K + 1

2

(
K + D1∇q ln �

)∇qα + D1α∇q∇q ln �

�∇ i
�
a

i = �−2∇i a
i (18)

where ∇q ≡ qi∇i as above.
We now have everything needed to evaluate the RHS of Eq. (16). Putting everything

together, and using the (easily proved) identity

∇q K = qi∇i∇ j q
j

= −K 2
ab − Rabqaqb + ∇i a

i (19)

we get
�

R = �−2 R + ε
(
α − �−2

)
Jd − εα Jc (20)

where

Jc = ε
[
2D1�

−1�� + D1 D4�
−2(∇�)2

]
+ (

K + D1∇q ln �
) × ∇q ln α�2

Jd = 2Rabqaqb + K 2
ab − K 2 − 2∇i a

i

= ε
(

R − R� − 2∇i a
i
)

(21)

which is the required expression.
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The crucial role played by the non-conformal term in the metric Eq. (1), character-
ized by B �= 0, is immediately obvious from the above relation. In particular, Jd in the
above expression is multiplied by α −�−2 = α�−2B (see Eq. (17)). For conformally
related metrics, B = 0, and therefore this term does not play any role in conformal
transformations. This observation is crucial, since it couples the non-conformal part

of the metric
�
gab to the object Jd which has a very special structure!

3.1 Applications and analyses

3.1.1 Raychaudhuri equation

The first application we give is based on the third relation in Eq. (18).
Consider the congruence of integral curves of qi , which need not necessarily be

geodesics. Then, the expansion associated with these congruences is θ = K , and it’s
rate of change along the curves given by θ̇ = ∇q K . The corresponding quantities in

metric
�
gab are given by

�

θ = �

K and
�

θ̇ = �∇T
�

K , and their relationship, translated to
variables more familiar from the Raychaudhuri equation, is given by

�(
dθ

dλ

)
= α

dθ

dλ
+ 1

2

(
θ + D1

d ln �

dλ

)
dα

dλ
+ D1α

d2 ln �

dλ2 (22)

where we have replaced ∇q on the RHS with d/dλ—the derivative along the curve.
(The special case of conformal transformation corresponds to α = 1/�2).

The above relation gives the modification to the Raychaudhuri equation, and hence
should be useful in studying the focussing and de-focussing behavior of geodesics
in Finsler–Riemann spaces. If the origin of the scalar field ϕ(x) is due to some fun-
damental physics associated with quantum gravitational effects, such a modification
would be key to understand the effect of quantum gravity on spacetime singularities.

In this context, it is also worth pointing out the relation between the symmetric,
traceless part of Kab, or the so-called shear-tensor, which happens to be much simpler
that the relation between Kab themselves. Using again Eq. (18), we get

�
σ ab = �

K ab − (1/D1)
�

K
�

hab

= √
α �2σab (23)

and hence

�
σ 2

ab = α σ 2
ab (24)

It is particularly obvious from the above that the conformal (α = 1/�2) and disfor-
mal (α = �2) cases correspond to completely different scaling of the shear tensor
associated with ϕ(x) foliations.

A more general discussion on the propagation of expansion, shear and vorticity in
the context of Finsler–Riemann geometries can be found, for example, in [3,4].
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3.1.2 Conformal transformation

As mentioned at the end of previous section, for conformal transformations, α = 1/�2,
and the expression for Ricci scalar reduces to

�

R = �−2 R − ε�−2 [Jc]α�2=1

= �−2
[

R − 2D1�
−1�� − D1 D4�

−2(∇�)2
]

(25)

since ln α�2 = 0 in this case, and hence the second term in Jc in Eq. (21) vanishes.
We have therefore re-derived the well known expression for conformal transforma-

tion of the Ricci scalar, in a manner which gives a geometric origin for the � dependent
terms.

3.1.3 Disformal transformation

For the special case of disformal transformations,1 α = �2, and we obtain

�

R = �−2 R + ε
(
�2 − �−2

)
Jd − ε�2 [Jc]α=�2 (26)

Since disformal modifications of spacetime geometry play an important role in several
studies such as modified gravity, the above expression can provide considerable insight
into construction of sensible action for such models.

3.1.4 Small scale structure of spacetime: Disformal coupling through Synge world
function bi-scalar

In a recent work [2], it was argued that a spacetime with a minimal length is endowed,
under certain conditions, with precisely a disformal structure based on the bi-scalar
of geodesic distance, σ(p, P), between spacetime events p and P , with

�2 = 1 + L2
0

σ(p, P)2 (27)

It is a straight forward exercise to plug in the above form for � in Eq. (26) and obtain
Eq. (14) of [5].

3.1.5 Equi-geodesic surfaces

The key role here is played by the congruence of geodesics emanating from a fixed
spacetime event P , and the surface comprised of events p lying at constant geodesic
interval from P , which we call as the equi-geodesic surface. We give below several

1 We should clarify that we are using the term disformal here to refer to a special subclass of metrics (1),
while sometimes all such metrics are called disformal. This is just a matter of terminology.
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Fig. 1 Set of events p at constant geodesic distance from a given space(time) event P . The shaded region
represents the normal convex neighborhood N (P) of P , and p ∈ N (P). a The geometry of equi-geodesic
“foliation” b Equi-geodesic surface � in Minkowski spacetime. H is the null cone at P

properties of the foliation based on such surfaces, and also sketch the derivation of
Eq. (14) in [5] which was based on the analysis presented here. Let us start with the key
geometric quantities associated with σ 2 = constant surfaces with one of the events,
say P , is fixed; see Fig. 1.

Since the affinely parametrized tangent vector to the geodesic connecting P to p is
the normal to the �, and given by Poisson et al. [6]

ta = ∇aσ 2

2
√

εσ 2
(28)

the extrinsic curvature tensor of σ 2 =constant surface, �, is given by

Kab = ∇atb = ∇a∇b
(
σ 2/2

) − εtatb√
εσ 2

(29)

This particular foliation, formed out of points which are at a fixed geodesic interval
from a given point, has many interesting characteristics, all deriving from the fact
that the bi-tensor ∇a∇b

(
σ 2/2

)
has a well know covariant Taylor series expansion at

p near P [7,8]:

∇a∇b

(
1

2
σ 2

)
= gab − λ2

3
Eab + λ3

12
∇qEab

−λ4

60

(
∇2

qEab + 4

3
EiaE i

b

)
+ O(λ5) (30)

where ∇q ≡ qi∇i , Eab = Rambnqmqn , and λ = √
εσ 2 is the numerical value of the

geodesic distance between P and p.
Therefore, we see that the extrinsic geometry of such a equi-geodesic “foliation” is

very special, and completely characterized by the tidal tensor Eab = Rambnqmqn . In
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fact, the intrinsic and extrinsic curvatures can be characterized by a systematic Taylor
expansion around P , given by

Kab = 1

λ
hab − 1

3
λEab + 1

12
λ2∇qEab − 1

60
λ3 Fab + O(λ4)

K = D1

λ
− 1

3
λE + 1

12
λ2∇qE − 1

60
λ3 F + O(λ4)

R� = εD1 D2

λ2 + R − 2ε(D + 1)

3
E + O(λ) (31)

where E = gabEab = Rabqaqb, Fab = ∇2
qEab + (4/3)EakEk

b, and F = Fabgab.
The exact form of the Ricci scalar (in which the above Taylor expansions can be

plugged if needed) turns out to be

�

R P (p) = �2 R(p) −
(
�2 − �−2

)
×

(
R� − Rflat

�

)

+ 2ε(�2 − 1) (D−1/D1) K flat ×
(

K − K flat
)

(32)

where Rflat
� = D1 D2/σ

2 and K flat = D1/
√

εσ 2 are the induced and extrinsic cur-
vatures of σ 2 =const. surfaces in flat spacetime. Note that, in flat space(time), these
surfaces are simply hyperboloids, and hence maximally symmetric (D − 1) spaces
with positive or negative curvature; see Fig. 1b.

Let us point out some special features of the above expression, which are absent
for a generic ϕ(x), being a consequence of (i) disformal nature of the coupling, (ii)
the very specific form of �2 = 1 + L2

0/σ
2 which implies that � corresponds to

σ 2 = constant surfaces.

1. The first two terms on RHS mimic the relationship between gab and
�
gab.

2. The form of the RHS clearly indicates an interplay between �2 = 1 and
g ≡ Riemann flat: the disformal character of the modification �2 �= 1 only
couples to the curvature of the background spacetime, that is: flat space(time) is
immune to the disformal modification of the above form!

3. The geometrical structure of the above expression might hold the key to a generic
study of behavior a disformal spacetime near curvature singularities of g in terms
of focusing and de-focussing of geodesics.

4 Conformal and non-conformal parts of the Ricci scalar

Let Ric
[
g
]

denote the Ricci scalar associated with metric g, and define � = α�2 −1
which measures deviation from the conformal case, for which α = �−2 and hence
� = 0. Then, recalling that

R�,g = Ric
[
g
] + ε

(
K 2

ab + K 2
)

+ 2ε∇q K − 2ε∇ · a
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is the intrinsic Ricci scalar of the � foliation embedded in g, Eq. (20) can be cast in
the following elegant form:

Ric
[
�2 g − εα−1� t ⊗ t

] = (1 + �) Ric
[
�2 g

]
︸ ︷︷ ︸

the conformal part

−�−2

⎡
⎢⎣�

purely intrinsic︷ ︸︸ ︷(
R�,g + 2ε∇ · a

) − ε�̇

purely extrinsic︷ ︸︸ ︷(
K + D1∇q ln �

)
⎤
⎥⎦

︸ ︷︷ ︸
contribution of the t⊗t term

= (1 + �) Ric
[
�2 g

] − � (R� + 2ε∇ · a)�2h

+ ε�̇ �−1 K�,�2h (33)

where �̇ = ∇q�.
We believe that the above expression holds the key to the importance of the non-

conformal term in Finsler like spaces. It brings in some important geometric quantities
associated with the ϕ foliation, and drastically alters the behavior of the Ricci scalar
in a manner which pure conformal transformations can not.

The above fact was drastically brought to focus recently in the context of small scale
structure of spacetime in presence of a minimal length [5], where the non-conformal
part leads to some remarkable cancellations which drastically alters the low energy
manifestation of minimal length effects, leaving a finite, O(1), relic. This suggests that
the non-conformal transformations, if they arise due to quantum gravitational effects,
might have non-trivial effect on physics at all scales.

Besides the above, the geometric approach advocated here should also find imme-
diate application in several other physical contexts; we here mention a few, and also
point out related generalizations.

Relativistic MOND: The class of metrics we have considered here have been most
prominent in the context of Modified Newtonian Dynamics (MOND), where disfor-
mal transformations have played an important role. The relativistic generalization of
MOND, proposed by Bekenstein [9], involves a metric g̃ab constructed from the back-
ground metric gab, a normalised timelike vector field Ua , and a scalar field ϕ. The
structure of this modification has been extensively studied, specifically in the context
of cosmology. The geometric formalism presented here should be useful to investigate
the characteristics of g̃ab, in particular, for better understanding of the contribution
of non-conformal part of the deformation as well structure of modified action for the
theory. This is already suggested by the discussion in Sect. 4 above. Doing so would
require a generalization of the present analysis to the case when the vector field in
question Ua �= ∇aϕ. Such a generalization should be straightforward, and we hope
to address it in future work. We here simply illustrate the power of our method in a
simplified context in cosmology.

Consider the simplest (yet most studied) case of flat, D = 4, FLRW metric gab in
standard co-moving coordinates (t, x, y, z) with scale factor a(t). To study deforma-
tions which respect the background symmetry, we assume that � and B are functions
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of t only. Further, since conformal deformations are already well understood, we set
� = 1. In such a case, α = (1 − B)−1, and the relevant foliation is the one provided
by t =constant surfaces. For such a foliation, K = 3 (ȧ/a) and Kab = (1/3)K hab.
Referring to Eq. (33), and noting that R� = 0 = a, we immediately get the modified
Ricci scalar to be

Ric
[
gab + B δ0

aδ0
b

]
= Ric [gab]

1 − B − 3H(t)Ḃ
(1 − B)2 (34)

where H(t) = ȧ/a is the Hubble parameter. The non-flat case, k = ±1, is also
easy to obtain, since the metric hab being maximally symmetric immediately yields
R�, h = 6k/a2.

Lanczos–Lovelock (LL) lagrangians These class of lagrangians have played an impor-
tant role in generalizing and understanding various classical and semi-classical aspects
of gravity over the past decade [10]. Therefore, generalizing the calculation for Ricci
scalar R presented here to generic LL lagrangians would provide another most nat-
ural extension of the analysis presented here. Not only would this extend the study
of disformal modifications of gravity to Lanczos–Lovelock models of gravity, but it
would open up a completely new avenue of research into semi-classical aspects of
conformal and non-conformal deformations of LL lagrangians. Let us briefly elabo-
rate on this point. The LL lagrangians of order m are built from m copies of curvature
tensor Rabcd, and the surface term which makes the variational problem well defined
is built from sum of products of (D−1) Rabcd and Kab. Therefore, although finding the
bulk term requires the knowledge of full modified Riemann tensor (which remains a
formidable task), the surface term, since it involves only induced geometry, can be
easily evaluated from the expressions given here. We hope to take up this calculation
in future work.

5 Concluding remarks

The mathematical expressions derived here, and their geometric properties, should be

useful in several contexts in which an object like
�
gab arises, either as a ‘physical metric’

to which matter fields couple [1], or through some effective quantum gravitational
model [2,5]. We hope that these expressions and the method of derivation would be
applicable to a wider class of problems in which the relevant scalar (or bi-scalar) degree
of freedom arises through some physical consideration, and couples non-conformally
to the spacetime geometry. Moreover, since the Ricci scalar forms the basis for setting

up the standard gravitational action, the expression for
�

R in the form given in Eq. (33)
might provide insight into construction of the action involving gab and ϕ(x).

Acknowledgments The author thanks IUCAA, Pune, where part of this work was done, for kind
hospitality.
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Appendix 1: Derivation of Christoffel connection component

We start with the following relations which are straightforward to establish:

qm∇m
�
gbc =

(
∇q�2

)
gbc − εB (tbac + tcab) − ε

(∇qB)
tbtc

qm∇b
�
gmc = −B∇btc + ε

[
∇q

(
�2 − B

)]
tbtc (35)

where ∇q ≡ qm∇m . Using Eq. (35) in Eq. (11), a few steps of algebra give

�


a
bcTa =

√
�2 − B 
a

bcta + 1

2
√

�2 − B �bc (36)

where

�bc = −
(
∇q�2

)
hbc + ε

[
∇q

(
�2 − B

)]
tbtc − 2BK(bc)

Appendix 2: Composition law of transformations

As an interesting aside, we note the following composition law for the transformations
we are considering in this paper. Using the variables

(
A = �2, α

)
, let us consider the

following class of metrics, all defined on the same manifold.

g(1)
ab = A10g(0)

ab − ε
(

A10 − α−1
10

)
t (0)
a t (0)

b

g(2)
ab = A21g(1)

ab − ε
(

A21 − α−1
21

)
t (1)
a t (1)

b (37)

Then, noting that t (1)
a = t (0)

a /
√

α10, it is easy to show that

g(2)
ab = (A21 A10) g(0)

ab − ε
[

A21 A10 − (α21α10)
−1

]
t (0)
a t (0)

b (38)

which immediately yields the following simple composition law

A20 = A21 A10

α20 = α21α10 (39)

or symbolically

g(0)
ab

A10,α10−−−−−→ g(1)
ab

A21,α21−−−−−→ g(2)
ab

g(0)
ab

A20 = A21 A10−−−−−−−−−−−−−−−−−→
α20 = α21α10

g(2)
ab (40)

123
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