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Abstract In this work we study how a non-minimal coupling between matter and
gravity can modify the structure of a homogeneous spherical body. The physical rele-
vance of the adopted Lagrangian density is ascertained, with results obtained for two
different choices of the latter.
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1 Introduction

Despite its great experimental success (see e.g. Refs. [1,2]), general relativity (GR)
is not the most encompassing way to couple matter with curvature. Indeed, matter
and curvature can be coupled, for instance, in a non-minimal way [3], extending
the well-known class of f (R) theories [4–6]. This nonminimal coupling can have
a bearing on the dark matter [3,7,8] and dark energy [9–12] problems, impact the
well-known energy conditions [13], affect the Yukawa potential addition prompted
by f (R) theories in Solar System tests of gravity [14,15], modify the Layzer-Irvine
equation of virial equilibrium [16] and can give rise to wormhole and time machines
[17]. In Ref. [18], several phenomenological aspects of the dynamics of perfect fluids
non-minimally coupled to curvature were addressed — in particular, the scenario of
an axisymmetric dust distribution with constant density.
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Another interesting issue that arises in the context of gravity theories with a non-
minimal coupling between curvature and matter is the fact that the Lagrangian degen-
eracy in the description of a perfect fluid, encountered in GR [19–21] is lifted [22]:
indeed, since this quantity explicitly appears in the modified equations of motion,
two Lagrangian densities leading to the same energy-momentum tensor have different
dynamical implications, whereas in GR they are physically indistinguishable.

In minimally coupled f (R) theories, static spherical symmetry was studied in Refs.
[23–26], with gravitational collapse explored in Refs. [27–29].

In what follows we shall examine the role that two possible descriptions of a perfect
fluid (i.e. two different choices of the Lagrangian density) have on the structure of a
spherically symmetric gravitational body. Previous works on spherical solutions with
a nonminimal coupled scenario include a polytropic equation of state [30], constant
curvature solutions [10], the embedding of a spherical body on the background cosmo-
logical fluid [11], the collapse of a homogeneous body [31] and black hole solutions
[32]. This does not contradict the previous work where it is argued that a more suitable
choice for the Lagrangian density of a perfect fluid is L = −ρ [22] — but aims to
show that, under adequate circumstances, the adopted Lagrangian density is not all
that crucial in determining the observable implications of the non-minimal coupling
between matter and curvature.

2 The model

One considers a model that exhibits a non-minimal coupling (NMC) between geometry
and matter, as expressed in the action functional [3],

S =
∫

[κ f1(R) + f2(R)L ]
√−gd4x . (1)

where fi ((R) (i = 1, 2) are arbitrary functions of the scalar curvature, R, g is the
determinant of the metric and κ = c4/16πG.

Variation with respect to the metric yields the modified field equations,

(κ F1+F2L ) Gμν = 1

2
f2Tμν+Δμν (κ F1+F2L )+ 1

2
gμν [κ( f1 − F1 R) − F2 RL ] ,

(2)
with Fi ≡ d fi/d R and Δμν = ∇μ∇ν − gμν�. As expected, GR is recovered by
setting f1(R) = R and f2(R) = 1.

The trace of Eq. (2) reads

(κ F1 + F2L ) R = 1

2
f2T − 3� (κ F1 + F2L ) + 2κ f1. (3)

2.1 Perfect fluid description

In this work, matter will be assumed to behave as a perfect fluid, i.e. a fluid with no
viscosity, vorticity or heat conductivity, and described by its four-velocity uα and a
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set of thermodynamical variables: the particle number density n, energy density ρ,
pressure p, temperature T and entropy density s. These are related by the usual laws
of thermodynamics, and constrained by the physical requirements of particle number
conservation (nuμ);μ = 0, no exchange of entropy with neighbouring flow lines,
(nsuμ);μ = 0 and fixed fluid flow lines at the boundaries of spacetime; furthermore,
the four velocity is normalized through uμuν = −1 and obeys uμ∇νuμ = 0.

When looking for a solution for the field equations, the well-known energy-
momentum tensor of a perfect fluid is thoroughly used,

Tμν = (ρ + p)uμuν + pgμν, (4)

and no particular attention is paid to the underlying Lagrangian density of a perfect
fluid. However, it is clear that the above form for the energy-momentum tensor should
arise from the variation of the action,

Tμν = − 2√−g

δ
(√−gL

)
δgμν

. (5)

While a clear knowledge of L is not relevant for most applications found in GR, it is
paramount in the present case, where the NMC between matter and curvature leads to
an explicit dependence of the field Eq. (2), as mentioned before.

The identification L = p was first advanced in Ref. [19], followed by a relativistic
generalization [20]. Much later, Ref. [21] showed that this choice is equivalent to L =
−ρ, complemented by a suitable set of thermodynamical potentials and Lagrange
multipliers that enforce the aforementioned constraints (nuμ);μ =0 and (nsuμ);μ =0.

These different forms for the Lagrangian densities are found to be equivalent on-
shell, i.e. by substituting the field equations derived from the matter action back into
the action functional and reading the resulting Lagrangian density. As such, one finds
that the Lagrangian densities L1 = p and L2 = na (with a(n, T ) = ρ(n)/n −sT the
free energy) are the “on-shell” equivalent to the “bare”, original functional L = −ρ.

Similarly, formally distinct expressions for the energy-momentum tensor can be
derived, and shown to be dynamically equivalent: indeed, the Lagrange multiplier
method of Ref. [21] yields

Tμν = ρuμuν +
(

n
∂ρ

∂n
− ρ

)
(gμν + uμuν), (6)

which yields Eq. (4) if one defines the pressure as

p ≡ n
∂ρ

∂n
− ρ, (7)

and requires an equation of state (EOS) ρ = ρ(n). For non-relativistic motion, ρ ∼ n
and one thus finds the usual description of dust matter, i.e. p = 0 and Tμν = ρuμuν .
An alternative form for the energy-momentum tensor reads [33]
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Tμν = pgμν + nμuμuν, (8)

where one uses the chemical potential μ = dρ/dn; this form is motivated by the
Hamiltonian formulation of a perfect fluid, as the momentum μuμ is canonically
conjugate to the particle number density current nuμ. Again, the definition Eq. (7)
establishes the equivalence between this form and the commonly used Eq. (4).

When generalizing to a NMC scenario, Ref. [22] found that the above discussion still
holds, as the effect of the NMC is shifted to the relation between the thermodynamical
variables and Lagrange multipliers. Although in that study it is argued that L = −ρ is
the appropriate form to insert into the modified field Eqs. (2), it is relevant to ascertain
to what extent do different choices of L have an impact in particular scenarios —
such as the structure of a static, spherically symmetric body.

2.2 Non-conservation of the energy-momentum tensor

Before proceeding with the discussion of a static, spherically symmetric spacetime,
one first discusses the possibility of breaking the covariant conservation of the energy-
momentum tensor and, due to it, the Weak Equivalence Principle (WEP).

Resorting to the Bianchi identities, one concludes that the energy-momentum tensor
of matter may not be (covariantly) conserved, since

∇μT μν = F2

f2

(
gμνL − T μν

)∇μ R, (9)

can be non-vanishing.
Using the projection operator

Pμν = uμuν + gμν → Pμνuμ = 0, (10)

Eq. (9) yields

(ρ + p)aμ = −Pβ
μ p,β + F2

f2

(
uμuα + δα

μ

)
(L − p)R,α. (11)

If F2(L − p) �= 0, then the energy-momentum tensor is not covariantly conserved.
As will be shown in subsequent sections, this possibility will play a crucial role in the
dynamical behaviour of the pressure inside a homogeneous spherical body. Notwith-
standing, below a general discussion of the implications of this non-conservation is
presented.

The non-conservation expressed in Eq. (9) implies that test particles may deviate
from geodesic motion: furthermore, since the r.h.s. of the above can depend on the
constitution and structure of test bodies, free-fall may no longer be universal (see Refs.
[34–36] for a general discussion)—i.e. the WEP no longer holds (see Ref. [2] for an
extensive discussion on this foundational principle of GR and its current experimental
tests).
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Indeed, Eq. (9) can be used to compute the force exerted upon a test particle,

duα

ds
+ Γ α

μνuμuν = 1

ρ + p

[
F2

f2
(L + p)R,β + p,β

]
Pαβ ≡ f α, (12)

clearly showing that, aside from the classical force due to the pressure of the fluid, an
additional contribution due to the NMC arises.

In vacuum or a laboratory setting, if one simply assumes that the scalar curvature
is negligibly small and sufficiently smooth, R ∼ R,μ ∼ 0, then the latter vanishes
trivially and the WEP is recovered. However, one may resort to a more evolved scenario
where the curvature is so low that the NMC is perturbative, f2(R) ∼ 1, and may be
linearized as

f2(R) ≈ 1 + β2
R

κ
, (13)

with the curvature approximately given by its unperturbed expression R ≈ ρ/2κ (as
further corrections would lead only to higher order terms).

In order to highlight the effect of the NMC contribution to the force Eq. (12),
one studies a dust matter distribution with negligible pressure (so that the former
dominates); one also considers a Lagrangian density L = −ρ [22] (as the alternate
choice, valid for scalar fields, is vanishingly small, L = p ∼ 0).

For simplicity, one-dimensional motion in the x direction with non-relativistic speed
v 	 1 is finally assumed, so that the corresponding force is

f x ≈ − β2

2κ2 (ρ′ + ρ̇v), (14)

where ρ′ = dρ/dx (or the analog expression with x ↔ r for spherical symmetry).
In Ref. [37], it was found that a linear coupling between curvature and matter

of the form of Eq. (13) is compatible with Starobinsky inflation and able to drive
post-inflationary preheating if 1010 < β2 < 1014. Considering a lower bound
f x > 10−13 m/s2 (one order of magnitude below the precision of state of the art
accelerometers), one obtains

(
ρ′ + ρ̇

v

c

)
� κ2

β2

10−12 m/s2

c
∼ 1089

β2
kg.m−3.s−1 > 1079 kg.m−3.s−1. (15)

One thus concludes that an observation of the breaking of the WEP due to the NMC
requires an extremely high and unattainable density gradient ρ′, or an even more
refined capability to manipulate ρ̇.

Other tests of the effect of a NMC encompass searches for a putative “fifth force”
perturbatively affecting orbital motion or Eötvös-like experiments; indeed, assuming
also that

f1(R) ≈ R + β1
R2

κ
, (16)

one finds that a Yukawa contribution arises,

UY ∼ αe−r/λ, (17)
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with characteristic range λ = √
κ/β1 and strength α = (1 − β2/β1) /3 [15]; notice

that a quadratic term for f1(R) is required to provide the range of the Yukawa inter-
action, as β1 = 0 implies λ → ∞ and UY is then absorbed into the definition of the
gravitational constant, G = G N (1 + α).

From the above, Ref. [15] concludes that an NMC is compatible with current
observational bounds on the strength and range of such Yukawa addition, provided
that β1 ∼ β2, as this yields α � 1, well within the current experimental constraints,
for instance, of sub-millimeter laboratory fifth force searches.

3 Stationary case

Imposing spherical symmetry and stationarity, one adopts the line element

ds2 = −e2φ(r)dt2 + e2λ(r)dr2 + r2dΩ2, (18)

so that Eq. (11) becomes

(ρ + p)φ′(r) = −p′ + F2

f2
(L − p)R′(r). (19)

Introducing the mass function m(r) through

e−2λ = 1 − m(r)

8πκr
, (20)

the 0 − 0 component of Eq. (2) becomes

m′
(

2

r
+ d

dr

)
(κ F1 + F2L ) = 8πκr [κ(F1 R − f1) + f2ρ + F2 RL ]

+
[

2 (8πκr − m)
d2

dr2 +
(

32πκ − 3m

r

)
d

dr

]
(κ F1 + F2L ) , (21)

while the r − r component reads

φ′
[
κ F1 + F2L + r

2

d

dr
(κ F1 + F2L )

]

=
[

m

2r(8πκr − m)
− d

dr

]
(κ F1 + F2L )

+ 2πκr2

8πκr − m
[κ( f1 − F1 R) + f2 p − F2 RL ] . (22)
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The trace of the equations of motion, Eq. (3), becomes

3
(

1 − m

8κr

) [
d2

dr2 +
(

φ′ + 3

2r
+ 1

2

8πκ − m′

8πκr − m

)
d

dr

]
(κ F1 + F2L )

= 1

2
f2(3p − ρ) + 2κ f1 − (κ F1 + F2L ) R. (23)

One thus obtains three differential equations for four unknowns, m(r), φ(r), ρ(r)

and p(r). Solving these requires an additional equation, namely an EOS relating the
pressure with the energy density, p = p(ρ). In the following sections one assumes
instead a homogeneous density, which allows for a considerable simplification of the
dynamical behaviour of the aforementioned system—thus highlighting the impact of
a NMC between matter and curvature and the choice of the Lagrangian density for
matter.

Notice that in the context of models with a NMC between curvature and matter,
black hole solutions can be obtained in the de Sitter background and it is found that
the NMC “dresses” the cosmological term [32]; the same can be stated about charged
black holes, where charges have to be suitably masked.

3.1 Homogeneous sphere

In order to isolate the effect of the NMC, one considers the linear form for the curvature
term f1(R) = R. One studies the impact of the former on a homogeneous sphere,
ρ = ρ0: although this is not a realistic density profile, it yields a more tractable
problem which allows one to determine how the pressure inside the body varies in
order to counteract the gravitational pull of matter, and how a NMC affects the usual
description of GR—namely what is the relation between size and mass of a star above
which gravitational collapse occurs.

Considering the issue of how to properly choose the Lagrangian density of a perfect
fluid, one writes L = −αρ = −αβ0κ

2, with α = 1 or α = −ω(r) and β0 ≡ ρ/κ2—
where ω(r) = p(r)/ρ is the EOS parameter. With the above, Eq. (19) becomes

(1 + ω)ρ0φ
′ = −ω′ρ0 − F2

f2
(α + ω)ρ0 R′ →

− ω′

1 + ω
= φ′ + F2

f2

α + ω

1 + ω
R′. (24)

Noticing that the combination

γ ≡ α + ω

1 + ω
=

{
0, L = p → α = −ω

1, L = −ρ → α = 1
, (25)

acts as a “binary” variable, the above equation can be integrated,

− ω′

1 + ω
= φ′ + γ

F2

f2
R′ → ω = A

e−φ

f γ
2

− 1. (26)
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If one considers a non-relativistic dust distribution with vanishing pressure, ω = 0,
and assumes that L = −ρ → γ = 1, the above can be recast as

f γ
2 ∝ 1√−g00

, (27)

a relation previously found in Ref. [18]. One aims here to further explore the insight
gained from that study, allowing for a non-vanishing pressure and the two possible
choices of Lagrangian density already discussed.

Together with Eqs. (21–23) and the definition of the scalar curvature R, one has a
closed set of equations for ω, φ and m,

m′
(

2

r
+ d

dr

) (
F2α − 1

β0κ

)

= 8πκr (F2 Rα − f2) +
[

2 (8πκr − m)
d2

dr2 +
(

32πκ − 3m

r

)
d

dr

]
(F2α) ,

(
1

β0κ
+ F2α

)
R

= 1

2
f2(1−3ω)−3

(
1− m

8πκr

) [
d2

dr2 +
(

φ′ + 3

2r
+ 1

2

8πκ−m′

8πκr −m

)
d

dr

]
(F2α) ,

ω = A
e−φ

f γ
2

− 1, (28)

with the scalar curvature given by

R =
√

1 − m

8πrκ

[
2

r2 +
(

1

2r

m − m′r
8πrκ − m

+ φ′
) (

2

r
+ 1

2
φ′

)
+ φ′′

]
− 2

r2 . (29)

4 Linear coupling

As before, one considers a linear coupling between curvature and matter

f2(R) = 1 + β2
R

κ
, (30)

as, following the discussion of Sect. 2.2, this may be considered as a suitable approx-
imation in the low curvature regime, and yields a more tractable problem that allows
for the direct extraction of relevant consequences of the NMC; one also defines the
dimensionless parameter ε ≡ β0β2. As expected, one finds that GR is recovered if
either the coupling between matter and curvature vanishes, β2 = 0, or if there is no
matter, ρ ∼ β0 = 0.

Considering that the density of the spherical body should not exceed the typical
estimated value at the core neutron star, ρ < ρN = 1018 kg/m3, and recalling the
constraint 1010 < β2 < 1014 introduced after Eq. (14), one gets

123



Homogeneous spherically symmetric bodies with a non-minimal coupling Page 9 of 17 1835

ε ≡ β0β2 = β2ρ

κ2 <
β2ρN

κ2 ∼ 10−62, (31)

indicating that the NMC is highly perturbative.
The dimensionless functions are introduced below,

ρ ≡ R

8πκβ0
, μ ≡

√
β0

8πκ
m, (32)

written in terms of the dimensionless variable x ≡ √
8πκβ0r , so that Eq. (28) becomes

μ′
(

2

x
+ d

dx

)(
α − 1

ε

)

= −x

(
ρ(1 − α) + 1

8πε

)
+

[
2 (x − μ)

d2

dx2 +
(

4 − 3μ

x

)
d

dx

]
α,

(
1

ε
+ α + 3ω − 1

2

)
ρ

= 1 − 3ω

16πε
− 3

(
1 − μ

x

) [
d2

dx2 +
(

φ′ + 4x − 3μ − μ′x
2x(x − μ)

)
d

dx

]
α,

φ′ =
εα′ + 1

x−μ

[
x2

4

[
ω

8π
+ (α + ω)ερ

] + μ
2x (1 − αε)

]

1 − ε
(
α + 1

2α′x
) ,

ω = A
e−φ

(1 + 8περ)γ
− 1, (33)

with the prime now denoting a derivative with respect to x .

5 L = −ρ case

If one considers that L = −ρ is the Lagrangian density of a perfect fluid, then the
scenario of a homogeneous sphere naturally yields a very simplified set of equations:
since both F2 and L are constants, the additional terms found in Eq. (33) involving
spatial derivatives of the latter vanish.

Substituting α = 1 into Eq. (33), one gets

μ′ = x2

16π (1 − ε)
→ μ = x3

48π (1 − ε)
,

(
1

ε
+ 1 + 3ω

2

)
ρ = 1 − 3ω

16πε
,

φ′ =
x2

4

[
ω

8π
+ (1 + ω)ερ

] + μ
2x (1 − ε)

(x − μ)(1 − ε)
,

ω = A
e−φ

1 + 8περ
− 1. (34)
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The second equation above may be used to write

[2 + ε(1 + 3ω)] ρ′ = −3ω′
(

1

8π
+ ερ

)
. (35)

Using Eq. (19), one obtains

φ′ = − ω′

1 + ω
− 8πε

1 + 8περ

α + ω

1 + ω
ρ′

→ x

48π(1 − ε) − x2 = −2
1 − ε

(1 + ω)(1 + 3ω + 2ε)
ω′

→
√

48π(1 − ε) − x2 = A
1 + 3ω + 2ε

1 + ω
. (36)

The integration constant A may be determined from the boundary condition ω(x1) =
0, where x1 signals the boundary of the spherical object, x1 ≡ √

8πκβ0r1, with r1 the
physical radius of the latter. One thus obtains

A =
√

48π(1 − ε) − x2
1

1 + 2ε
. (37)

Defining

y ≡
√

1 − x2

48π(1 − ε)
, y1 ≡ y(x1), (38)

one then has

ω = (y1 − y)(1 + 2ε)

(1 + 2ε)y − 3y1
. (39)

The central pressure is given by

ωc ≡ ω(x = 0) = [y1 − 1](1 + 2ε)

(1 + 2ε) − 3y1
, (40)

and collapse is inevitable if it diverges, ωc → ∞, leading to

y1 = 1 + 2ε

3
→ r2

1 = 8

3

(1 − ε)2(2 + ε)

κβ0
. (41)

As expected, the standard result of GR,

r2
1 = 16

3κβ0
= 16κ

3ρ
→ G M

r1c2 = 4

9
, (42)

is obtained by setting ε = 0.
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From Eq. (34), one gets

ρ = 2(1 + 2ε)y − 3y1(1 + ε)

8π(1 − ε) [(1 + 2ε)y − 3(1 + ε)y1]
, (43)

and

g00 = −e2φ = −A [(1 + 8περ)(1 + ω)]−2 = − B

4

(
3 − 1 + 2ε

1 + ε

y

y1

)2

. (44)

Continuity with the Schwarzschild exterior metric

ds2+ = −
(

1 − M

8πκr

)
dt2 + 1

1 − M
8πκr

dr2 + r2(dθ2 + sin2 θdφ2), (45)

at y = y1 implies that m(r1) = M and

B = 4y2
1

(
1 + ε

2 + ε

)2

, (46)

so that

g00 = −
[

3(1 + ε)y1 − (1 + 2ε)y

2 + ε

]2

. (47)

Notice that this matching procedure is only valid if the Birkhoff theorem holds, as
otherwise one should consider an exterior solution different from the Schwarzschild
one: in the context of this work, the latter is indeed obeyed because one is considering
a trivial f1(R) = R function [38–41], so that the coordinate-dependent approach fol-
lowed here is sufficient. A more general approach with an arbitrary f1(R) should rely
on the covariant formulation of the junction conditions, which yield any discontinuity
in the extrinsic curvature K when crossing over the boundary of the spherical object
[42,43] (see also Ref. [31] and references therein for a thorough discussion of this
procedure in the context of gravitational collapse, and Ref. [32] for a study of the
ensuing black hole).

From the above set of results, one finds that the strength of the NMC must obey
ε < 1, so that all quantities are well defined (in particular, so that the dimensionless
coordinate y is real and the sign of the 00 component of the metric is correct). Given
the stringent bound, Eq. (31), this requirement is automatically fulfilled.

If one relaxes the compatibility with the preheating scenario discussed in Ref. [37],
then a dominant, negative NMC, ε → −∞ is not precluded: from Eqs. (34, 39, 43
and 47), one sees that taking this limiting case yields

μ ≈ − x3

48πε
∼ 0, (48)

ω ≈ x2
1 − x2

96πε
∼ 0, (49)
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ρ ≈ 1

8πε
∼ 0, (50)

g00 ≈ −1 + 3x2
1 − 2x2

48πε
∼ −1. (51)

Thus, one finds that a dominant negative NMC effectively masks the presence of a
spherical body; in order to prevent this unphysical result, the former must be pertur-
bative, ε 	 1.

6 L = p case

If one instead considers that L = p is the suitable Lagrangian density to describe a
perfect fluid, then a more involved set of equations is expected, since in this scenario
the spatial derivative terms found in Eq. (33) do not vanish.

Substituting α(r) = −ω(r) into Eq. (33), one gets

x

[
ρ(1 + ω) + 1

8πε

]

= 2 (μ − x) ω′′ +
(

3μ

x
+ μ′ − 4

)
ω′ + 2

x

(
1

ε
+ ω

)
μ′, (52)

(
1

ε
+ ω − 1

2

)
ρ

= 1 − 3ω

16πε
+ 3

(
1 − μ

x

) [
ω′′ +

(
φ′ + 4x − 3μ − μ′x

2x(x − μ)

)
ω′

]
, (53)

φ′ =
−εω′ + 1

x−μ

[
x2ω
32π

+ μ
2x (1 + εω)

]

1 + ε
(
ω + 1

2ω′x
) , (54)

ω = Ae−φ − 1. (55)

Using the definition of the scalar curvature and the last of the above equations, one
can write

ρ = 4x − 3μ

x2

ω′

1 + ω
+ μ′

x

(
2

x
− ω′

1 + ω

)
+ 2

x
(μ − x)

2(ω′)2 − ω′′(1 + ω)

(1 + ω)2 , (56)

so that Eqs. (52–55) can be reduced to

x

16π
+ μ′

x
(ε − 1) = 2 (μ − x) εω′′ +

(
3μ

x
+ μ′ − 4

)
εω′ + 2

x − μ

1 + ω
ε(ω′)2, (57)

and

2(1 − ε)ω′ + εx(ω′)2 = 1 + ω

μ − x

[
x2ω

16π
+ μ

x
(1 + εω)

]
. (58)
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Solving for μ, one finally gets

μ = x2

16π

(1 + ω)xω + 32π(1 − ε)ω′ + 16πεx(ω′)2

2(1 − ε)xω′ + εx2(ω′)2 − (1 + ω) (1 + εω)
. (59)

Considering that the boundary of the spherical body is signaled by a vanishing
pressure, ω(x1) = 0, one has

μ(x1) = x2
1

16π

32π(1 − ε)ω′ + 16πεx1(ω
′)2

2(1 − ε)x1ω′ + εx2
1 (ω′)2 − 1

. (60)

6.1 Constant solution

One notes that a constant pressure solution is available: indeed, setting ω = const.,
Eqs. (52–55) yields

ω = 1

2ε − 3
,

μ = x3

48π (1 − ε)
,

ρ = 1

8π(1 − ε)
,

φ = 1

2
log

(
1 − x2

1

48π (1 − ε)

)
, (61)

where φ has been normalized following the previous procedure to match the metric at
the boundary of the spherical body.

Notice that this solution cannot simultaneously yield a positive mass μ > 0 (ε < 1)
and pressure ω � 0 (if ε > 3/2). Furthermore, if the effect of the NMC is perturbative,
ε ∼ 0, a spherical body with positive mass and curvature is obtained, but with negative
pressure, ω ≈ −1/3.

Conversely, a dominant NMC |ε| � 1 leads to a Minkowski space with ω ∼ μ ∼
ρ ∼ 0 and gμν ∼ ημν , as found in the previous section if L = −ρ. Again, this is
unreasonable, and thus implies that the effect of the NMC should be perturbative, as
supported by Ref. [37].

6.2 Numerical solution

One may substitute Eq. (59) into Eq. (57) and solve the ensuing second-order differ-
ential equation for ω. To do so, one ascertains the typical order of magnitude of x1,
assuming a perturbative NMC,
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Fig. 1 Relative deviation of the dimensionless mass function μ for a spherical body with radius x1 = 10,
for ε = −10−3 (dashed), −10−2 (dotted), 10−3 (dot-dashed) and 10−2 (full)

x1 = √
8πκβ0r1 =

√
8πρ

κ
r1 ∼

√
96πG M

r1
, (62)

which, considering that the classical upper bound G M/r1c2 � 4/9 remains approxi-
mately valid if the NMC is perturbative, that is

x1 � 8

√
2π

3
∼ 10. (63)

Figures 1 and 2 show the numerical solution of Eqs. (57) and (59) for different
values of the coupling strength ε; boundary conditions ω(x1) = 0 and ω′(0) = 0
are assumed, for x1 = 10, the upper bound obtained above. The relative deviations
δμ/μ ≡ 1 − μ/μGR and δω/ω ≡ 1 − ω/ωGR with respect to their GR counterparts
μGR and ωGR are shown, with latter being defined as

μGR ≡ x3

48π
, ωGR ≡

√
1 − x2

1
48π

−
√

1 − x2

48π√
1 − x2

48π
− 3

√
1 − x2

1
48π

. (64)

Since the bound Eq. (31) for the latter indicates that it is almost vanishing, much
higher values for ε are shown, in order to better illustrate the effect of the NMC.

A numerical analysis does not yield an expression for the deviation of the Schwarz-
schild mass M due to the effect of the NMC; since the latter is perturbative, one expects
that the latter yields a linear correction to the GR value MGR = (4π/3)r3

1 ρ; this is
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Fig. 2 Relative deviation of the EOS parameter ω for a spherical body with radius x1 = 10, for ε = −10−3

(dashed), −10−2 (dotted), 10−3 (dot-dashed) and 10−2 (full)
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Fig. 3 Values of 1 − μ(x1)/μGR(x1) as a function of ε, with linear fit superimposed

confirmed in Fig. (3), where the relative deviation is plotted together with a linear fit
that allows one to estimate that

1 − μ(x1)

μGR(x1)
∼ δM

MGR
∼ 0.723ξ. (65)
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7 Discussion and outlook

In this work, we have computed the effect of a linear coupling between matter and
curvature on a spherical body with homogeneous density, for the choices of Lagrangian
density L = −ρ and L = p. In doing so, it complements two previous studies: one
on the analogous effect on the Sun, modelled as a polytrope with polytropic index
n ∼ 3 [30], and on the modification of the collapse of a homogeneous spherical body
due to a linear NMC between curvature and matter [31].

Although the ensuing dynamical equations ruling the inner structure of such body
are widely different, our results show that both formulations imply that the NMC
should be perturbative, f2(R) ∼ 1 (consistent with previous studies): the converse
would imply that the mass M of the spherical body (as inferred from the Schwarzschild
metric probed by an external observer) would be negative or, in the extreme case of a
very large, negative NMC, vanish altogether—and thus lead to an external Minkoswki
spacetime, allowing for the masking of very large central masses.

Furthermore, since the widely different dynamical behaviour found in Eqs. (34)
and (57–59) is naturally suppressed by a perturbative NMC, our study shows that the
effect of the latter on the mass M is rather similar for both choices of Lagrangian
densities,

M = 4π

3

ρr3
1

1 − ε
∼ 4π

3
ρr3

1 (1 + ε), L = −ρ,

M ∼ 4π

3
ρr3

1 (1 + 0.723ε), L = p.

One highlights that the difference between the numerical factors is not only relatively
small, but can be absorbed by the parameter ε = β0β2, if one does not have a pri-
ori knowledge of the NMC strength β2; it could in principle be determined from the
plethora of phenomena affected by a NMC (cited throughout this work). Alternatively,
measuring the pressure profile inside the spherical body and comparing with the dis-
tinct expressions derived from L = −ρ or L = p would both allow the identification
of the appropriate Lagrangian density and the determination of ε.

Returning to the main motivation of this work, that is on the choice of the Lagrangian
density in a non-minimally coupled model, one sees that it does not have a strong
impact on the relevant observables: the results here presented indicate that in a sta-
tionary and perturbative regime, the selected form for L does not affect greatly the
impact on the structure of a spherical body. This is contrasting with respect with what
occurs in a more dynamical context such as a gravitational collapse—which, although
beginning in a perturbative regime, inevitably evolves towards more extreme scenarios,
with widely different consequences depending on the choices of L [31].

This criterion allows us to reduce the degeneracy between different choices of NMC
and Lagrangian densities: future studies aiming at testing the NMC should focus on
perturbative, stationary scenarios. Conversely, we argue that if a NMC is assumed, the
best environment to test what is the form of the Lagrangian density is found in time-
evolving phenomena, where its effect eventually surfaces from an initial perturbative
nature.
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