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Abstract By adopting a metric based approach and making use of f(R)-gravity
extended tetrad equations, we have considered three spatially homogeneous metrics
in order to investigate the existence of simultaneously rotating and expanding solutions
of the f(R)-gravity field equations with shear-free perfect fluids as sources. We have
shown that the Godel type expanding universe, as well as a rotating Bianchi-type II
spacetime allow no such solutions of the field equations of this modified gravity. On the
other hand, we have found that there exist two types of f (R) models in which a shear-
free Bianchi-type IX universe can expand and rotate at the same time. The matter
content of this universe is described by a perfect fluid having positive or negative
pressure, depending on the type of f(R) model and on the cosmological constant;
in the particular case of a vanishing cosmological constant we have found that the
universe is filled with a pure radiation. Whatsoever the cases, the universe exhibits
always coasting anisotropic expansions along three spatial directions evolving like a
flat Milne universe, and has a vorticity inversely proportional to cosmic time. A further
result is that, due to the nonvanishing of the gravito-magnetic part of the Weyl tensor,
this model allows for gravitational waves. Our solution constitutes one more example
giving support to that in f (R)-gravity there is no counterpart of the general relativistic
shear-free conjecture.
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1 Introduction

The well-known shear-free perfect fluid conjecture originated from the famous Ellis
result in 1967 [1] for pressure free matter and subsequently generalized to include the
pressure, states that, in General Relativity (GR), it is impossible to have simultaneous
rotation and expansion for a shear-free perfect fluid, satisfying u + p # 0, where u is
the energy density and p is the pressure [2]. The first indications supporting the validity
of this conjecture in the case of dust go to a statement of Godel in 1950 [3], presented
without proof, and to the work of Schiicking in 1957 [4]; in fact, Godel claimed that a
shear-free dust filled homogeneous Bianchi-type IX cosmology could either expand or
rotate, but not both, and Schiicking generalized this result to general spatially homo-
geneous dust [4]. The aforementioned work of Ellis [1] showed that the restriction to
spatial homogeneity was unnecessary. This intriguing conjecture has attracted consid-
erable attention during the last fourty years. A number of works [5-20], using either
special coordinate systems or particular tetrads or a fully covariant approach together
with special assumptions on the equations of state as well as on some kinematic and
dynamic quantities, have given strong support to it. Nevertheless, except for these very
special cases, the truth or falsity of the conjecture in the general case has still not been
established, and at present we know of no counter examples at all. In this connection,
we draw the attention of the reader to a recent paper of Ellis [21] in which the deeper
understanding of the physical aspects of the shear-free solutions has been explored.
Within the context of general relativistic cosmology, one way to obtain shear-free
solutions with simultaneous rotation and expansion is to relax the restriction of a per-
fect fluid source and introduce a heat flux and/or anisotropic pressure into the energy
momentum tensor of the matter content; in other words, the energy momentum tensor
must be that of an imperfect fluid form [22]. Another way is to consider more gen-
eral energy—momentum tensors involving, for example, scalar fields as in inflationary
scenarios [23]. On the other hand, we know that in Newtonian theory of gravitation,
this conjecture has no counterparts, that is, one can have simultaneously rotating and
expanding shear-free perfect fluid solutions in this theory [4, 16,24]. The very existence
of this fact leads to the suggestion that the shear-free conjecture seems inherent to GR,
and consequently one can expect that possible counter examples might exist within
the context of alternative theories to GR to describe gravitational phenomena. In fact,
as supporting this expectation, an attempt along this line has recently been made by
Abebe et al. [25] within the framework of the so-called f(R)-gravity [26-32] which
has received much attention during the last fifteen years for solving some cosmological
issues related to the late-time cosmic acceleration and also to the early-time inflation;
in this theory the standard Einstein—Hilbert (EH) action is modified by replacing the
curvature scalar R with an arbitrary function f(R), leading then, in general, to fourth
order partial differential equations in the metric tensor. The authors of [25], using the
143 covariant formalism, have shown that for a stiff fluid in R3-gravity there exists a
flat Milne-universe solution which can rotate and expand simultaneously at the level
of linearized perturbation about a Friedmann-Lemaitre-Robertson—Walker (FLRW)
background. As far as we know, this solution constitutes the first counter example to the
shear-free conjecture apart the Newtonian ones. However, this kind of solution exhibits
linearization instability; the result may not be the limit of an exact solution in the full
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non-linear theory, due to the fact that second order terms are discarded during lineariza-
tion (see, for instance, [33,34]). As a consequence of this fact, one cannot rule out that
there is no counterpart of the general relativistic shear-free conjecture in f (R)-gravity.

In this paper, we aim to seek whether or not there is a counterpart in f (R)-gravity
of the general relativistic shear-free conjecture by adopting a metric based approach
and making use of the total set of exact non-linear tetrad equations. This approach
will lead us to a set of differential equations which will be discussed from the point of
compatibility with the parameters of the metric as well as with the crucial assumption
w + p # 0. This will provide us with the means to search for the simultaneously
rotating and expanding solutions. To achieve this goal, we do not intend to undertake
a general attempt by considering general metrics; instead, as a tentative first step
in the hope of obtaining easily tractable equations that would lead us to possible
analytical solutions, we prefer to start from some relatively simple metric ansatzes.
Hence, we will restrict ourselves to particular forms of the shear-free class of spatially
homogeneous space-times among which the first will be the Godel type expanding
model [35], and other two will be a specialized form of the rotating Bianchi-type II and
IX models. In all of these models the overall expansion will be described by a single
time dependent scale factor. We note that a similar approach was already undertaken
by Grgn and Soleng in the case of an expanding version of the stationary Godel metric
within the context of GR [22]. The main differences between our approach and the
one in [22] are that we consider here, a further generalized form of the Godel metric,
and tetrad equations instead of components of EFE; the advantage of using all of the
f(R)-gravity extended tetrad equations is that the integrability conditions, i.e., the
Bianchi identities, are automatically incorporated within them.

This paper is organized as follows: In Sect. 2, we give the basic equations of
f (R)-gravity, and the main ingredients of the 1+ 3 covariant approach and the tetrad
formalism in f(R)-gravity in order to set up the notation, definitions and relevant
formulas that will be used in the sequel. In Sect. 3, three examples of metrics will
be applied to f(R)-gravity extended tetrad equations, and a compatibility analysis
will be undertaken for the so obtained sets of equations. Finally, Sect. 4 contains a
summary of the results and conclusions.

We use units in which ¢ = 1 = 87 G; the symbol 9 is used for partial differentiation
with respect to coordinates, and primes denote derivatives with respect to R. Latin
indices range from 0 to 3, and Greek indices, from 1 to 3.

2 Prerequisites
2.1 Field equations of f(R)-gravity

f (R)-gravity is defined by the following modified Einstein—Hilbert action with matter,
in which the Ricci scalar R is replaced by an arbitrary function f(R)

1

5= / S F(R) + S, (1)
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where S, is the standard action for matter. Variation with respect to the metric g,
leads to the following modified EFE

'R : VaVip f' VeV f =T 2
ah_Egabf_ VoS + 8ab S = ab’ 2)

where Ry, is the Ricci curvature tensor and 77 is the energy momentum tensor of
the standard matter. Due to the last two terms in the left hand side, these equations
are, in general, fourth-order partial differential equations in the metric tensor. When
f(R) = R—2A, A being the cosmological constant, Eq. (2) reduces to standard EFE.
To make the Einstein tensor G, explicit, one can rewrite Eq. (2) equivalently in the
form of

1 A 1]1 .
Gap = Rap — EgabR = fL/b + ? [Egab(f — R+ ViV f' = gabvévcf/i|

3

provided that f/ # 0. Then, adopting the effective energy—momentum tensor approach
used in [36-38], one may define the following energy—momentum tensors

~ T
ar';) = fi/b’ (43)
R 1 1 / / c /
T = 5 | 380(f = R+ VaVo ! = ganVVef'|. (4b)
Top = Toh + T “

such that the modified EFE (3) take the standard Einstein form G5 = Ta’ »- Hence, in
this approach, one has two effective fluids associated with fa”}; and TaIZ which may be
called as “effective matter fluid” and “effective curvature fluid”, respectively. These
various energy—momentum tensors obey the following conservation equations:

vbrm =, (52)
VTR — f—//T’"VbR 5b

ab — f/2 ab ’ ( )
vir! =0, (5¢)

where Eq. (5¢) results from the contracted second Bianchi Identities VG ap = 0, and
means that the effective total energy—momentum tensor is conserved; Eq. (5b) can be
obtained from (3) and (4b), while the Eq. (5a) arises from (4c), as a consequence of
(4a), (5b) and (5¢). Equation (5a) shows that the usual conservation of the standard
matter still holds in this theory.

2.2 1+ 3 Covariant approach in f(R)-gravity

Given a preferred vector field u which, for definiteness, will be taken as the 4-velocity
(uqu® = —1) of an observer comoving with the fluid flow, one can define a projection
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tensor hup = gup + ugup Which, together with u“, can be used to decompose any
spacetime quantity into parts orthogonal and parallel to u. In particular, the covariant
derivative of the 4-velocity u, and a general energy—momentum tensor 7,, may be
split into their basic parts as

. . 1 ,
Vaup = —ugitp + Daup,  With Daup = oap + gehab + Eape” (6)
and

Tup = pugup + phap + 26](aub) + Tap, @)

respectively [39—41]. Here, the overdot denotes covariant time derivative (u“V,), and
D, is the projected covariant 3-dimensional derivative onto the instantaneous rest
space of the observer; g4pc is the spatial permutation tensor. Equation (6) defines
the kinematic quantities it,, 0, o4p, 0, @, w associated with the fluid flow; these are:
acceleration, expansion scalar, shear tensor, shear scalar, vorticity vector and vorticity
scalar, respectively. Equation (7) defines fluid dynamic quantities as measured by an
observer flowing with u. These are: the matter—energy density u, isotropic pressure
p, energy flux g, and the anisotropic stress tensor 7,5, defined as

1 . .
n = MaubTabv p = ghabTabv da = _hzuc Tpe, Tap = h?a h(i) Teq. (3)

Inthe 1 + 3 covariant approach to GR, the above fluid kinematic and dynamic quantities
together with the electric part E,;, and the magnetic part H,, of the Weyl curvature
tensor satisfy a set of evolution equations involving time derivatives, and a set of
constraint equations involving only D, derivatives. In the case of f(R)-gravity the
corresponding covariant equations may be derived directly from the standard GR
versions in [41] by simply replacing the energy—momentum tensor terms [, p, ¢a, Tab
by u', p', g, 7!, which, according to Egs. (4a) and (4c), are given by

1 1 1 1
Mtz?um—i_MRa pf=7pm+MR’ qltl:?q;n—l—q‘f’ ﬂ;b:7n’gz+ﬂa}2’
)

where each quantity is defined by using the corresponding Ta’ p» Ty and Talz in place of
T,p in Egs. (7) and (8). The total set of 1+ 3 covariant equations of the f(R) theory of
gravity can be found in slightly various forms in [26,37]. The expressions of dynamic
quantities u®, pR, g® and 7R of the effective curvature fluid calculated from (4b)
and (8) using the 143 projection techniques are given in [37]. In the following, we
will convert them into the tetrad form.

2.3 Tetrad equations in f (R)-gravity
The GR tetrad equations may be translated into the f(R) theory of gravity in the same

manner as in the case of 1 +3 covariant equations; we simply have to substitute into the
tetrad equations given in [41], the effective total dynamic quantities u’, p’, g, and 7}, 8
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in place of 1, p, g4 and myg Wherever they appear. The equations retain their forms,
however, there is a notable difference with regard to GR case; the set of equations
must be supplemented by two additional evolution equations for u™ and ¢} arising
from the conservation equation (5a) of the standard matter—energy tensor. These two
equations have the same form as the corresponding equations for ' and ¢/, derived
from the conservation equation (5¢) of the effective total energy—momentum tensor
[notice that Eq. (5b) is not independent, since it can be obtained from Egs. (5¢) and
(5a), using (4a) and (4c)]. In this work we use the evolution and constraint equations
givenin [41], adapting them to the f (R)-gravity case. We note that a part of the overall
tetrad equations, might be obtained from the 1+ 3 covariant evolution and constraint
equations of the f(R)-gravity given in [37], by converting them into tetrad forms
using suitable transformation formulas described in [42]. We use these formulas here,
to establish in particular the following substitutions

asb»c"'_)asﬁvy"'s 8abc_>80tﬁyv R_>60R7
R — eoeoR, DyR — eyR, DO,R — eqeoR,
1
DyDyR — Dy DgR = eqegR — (a)”(saﬁ — ag(sg + Egotﬂynky + Eg/a)\nlg)y) eR.
(10)

These lead us then to express in tetrad forms the dynamic quantities of the effective
curvature fluid as follows:

uk = —zif/(f —Rf) + ];—/:(—QeoR + 8% eyegR —2a%eyR) + fT////(S“ﬂeaReﬂR,
(11)
"
pR = %f/(f—Rf/)—i-% (%960R— 1%eq R+ egeg R — %8“ﬁeaeﬁR + ga"‘eaR)
" 2
+7 [(eoR)2 - gé‘xﬁeaReﬁR} , (12)
R f// IB 1 n
qy = 7 [—eaeoR + (aa + 5985 + ggya)y) eﬁR] — 7€0R€aRa (13)
R f// \ 2 v f///
g = 7 [_Uaﬁ€OR+e<a egy R+ (ay 3/3> +8y<a”ﬁ))eAR:|+Te<“ RegyR. (14)

3 Metric examples
3.1 Specialization of the metric

In this paper, we will consider three examples of spacetimes belonging to the wide
class of rotating spatially homogeneous models which, in a 1-forms basis {w“}, read

ds? = —(0° — vy () W*)? + Top () 0* P, (15)
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where v (7) and I'yg () are functions of the cosmic time ¢ alone. These functions,
however, are too general for our purposes, since it is unlikely to obtain tractable
equations; so, following [23,35,43], we restrict their functional forms to

V(1) = a(t)vy, Tap(t) = a*(1)ka8ap (no sum on a), (16)

where a(?) is a time dependent cosmic scale factor, k, and v, are constant parameters;
such that k, > 0 and at least one parameter v, is nonzero. Note that expression (15)
is a very particular form of the general threading form of the spacetime metric [44]

ds® = —M?(t, x)(dt — My (t, x)dx")* + h,,, (1, x)dx"dx", (17)

expressed in local coordinates {xi} with basis (dx’, 8;). The metric (15) is obtained by
adopting the gauge M (¢, x) = 1 and assuming thatboth M,, (¢, x) and &, (¢, x) are sep-
arable functions of the timelike and spacelike coordinates as M, (¢, x) = v (1)@ (x)
and hy, (¢, x) = Tep (t)a)fj (x)a)g (x). This allows then to define four time indepen-
dent basis 1-forms 0 = (x)dx', together with the corresponding dual basis vectors
E, = 0} (x)9; (0"(Ep) = 8}) as

0¥ = o2 (0)dx” T Ey = o} (x)d, (with W0l = 3;;) ,
such that, in this comoving (0®, E,)-frame, (17) takes the form (15). Since it is much
easier to work in an orthonormal basis, we pass now from the (w?, E,)-frame to an
orthonormal (0¢, e,)-frame such that the space-time line element has the Lorentzian
form ds? = napo®o? where na, = diag(—1, 1, 1, 1). From Egs. (15) and (16), this
can be accomplished by the following obvious choices
0% =w’ — a(t)vgw® eo) = Ky
o o -1 -1 -1 ( 1 9)
% = a(t)kqw eq = Voky 'Eo+a (t)k, Eq
(there is no summation over the repeated index « in the above equations). Note that
this orthonormal tetrad frame is comoving, too, since eg = Eo = 9; = u. For such a
frame, commutators of the basis vectors ¢, are given by Ellis and van Elst in [41].
Having done this preparatory work, we can now present the steps of our calculations.
We first calculate kinematics: 6, oug, ity - - - using the commutators of basis vectors.
These are then substituted into the set of all constraint equations given in [41] and into
Egs. (11)—(14), to get the effective total fluid dynamics u', p', g, and n(iﬁ, and the

effective curvature fluid dynamics uR, p®, gR and 71(53, respectively. To relate these
quantities with each other we make use of the following key equations,

1

p' = 7“m + uk, (20a)
1

p' = 717'“ + p&, (20b)
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9o = o > (20c)
Thg =T, (20d)

obtained from (9) by assuming a perfect fluid i.e., for g;' = 0 = 7). We then obtain
a set of simultaneous equations in the unknowns a(¢), u™, p™ and f(R). It remains to
analyze the compatibility of these equations with each other and with the parameters
of the metric, as well as the crucial requirement 1 + p* # 0. In case of compatibility,
one is led to reconstruct f (R)-gravity model.

3.2 Examples
3.2.1 Godel type expanding cosmological model

As a first example to shear-free, rotating and expanding space-times, we consider the
following Gédel-like metric, which reads in local coordinates {x'} = {z, x, y, z}

ds> = —di* + 2/ Sa(t)e" dtdy + a*(t)(dx> + Ke®™dy* +dz%)  (21)

where a(t) is a time dependent scale factor and m, S, K are constant parameters that
satisfym > 0, S > 0, K # 0and S+ K > 0[35]. The rotating and stationary original
Godel model proposed in 1949 [45] corresponds to a(f) = ap = constant, K =
—1/2,8 = 1 and m = +/2wpan with g being the constant vorticity parameter. The
line element (21) constitutes its natural generalization to the non-stationary case simply
by letting a be a function of time. The parameters S and K have been introduced in
the coming years as a further generalization in order to discuss some unusual features
of the model [35]. In what follows, we will seek whether f(R) gravity field equations
allow this kind of spacetime as a solution. In the basis (v, E,) defined by

o' = (dt,dx,e™dy,dz) & Ei= (90, ""0,,0d,), (22)
the line element (21) brings to the form (15), from which, on using (16), read v| =

vz = 0,0y = /S and ki = k3 = 1,kp = +/K + S. Hence, according to (19), the
basis (0%, e,) will be given explicitly as

o0 =dt — /Sa(t)e™dy, €= 8”1

Ul = a(t)d.x’ er=a_ (t)ax, (23)
2 _ < _ [ Ll

03 =K+ Sa(t)e™dy, e = ma, + Ve (t)e "* 0y,

o” = a(t)dz, e3 =a " '(1)d,.

Then, using the commutation relations, we get the following kinematics:

a S a
Uaﬁ :0, 0:3;, Uy = O, K—H;,O .
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1 S S 4
oe=[0,0-/-—"""T)V= . a=(-2-/-—2_%20),
2VK+Sa 2a K+Sa

Mg = — 5283 (24)
o = T, %08

Here the dot denotes the derivative with respect to ¢ (since e¢g = 9;). We note that
in this spacetime, the fluid with nonvanishing vorticity has shear-free expansion and
nonvanishing acceleration when a 7# 0. We first substitute kinematic quantities given
in Eq. (24) into the constraint equations of Ref. [41], making use of ¢, in (23) for the
frame derivatives. As expected, the constraint equations (C») and (Cy), are trivially
satisfied. From (C1), we get

S ma [_2/ S (i a® (_o 25)
K+sa2 L Nxkys\a 2) =%

while (C3)qp leads to Hyg = 0. On the other hand, due to the vanishing of the shear, the
shear evolution equation (eq. (98) in [41]) is converted into a new constraint equation.
Using this, together with (Cg)qpg provide the following Eyg and JT(; 4 components

=,
|

Eil = Ep = — L Ey = K m By = Ey—0 (26)
11 = L£22 = ) 33 = 6(K+S) 612’ 12 = £23 = L3] = U,

28 i a? 2K + S m?

. ay_ A2 m 27

& 3(K+S) (a a2) 6(K +5) a2 (272)
‘ 17 2K +S m?

- a_ , 27b

22 3(K+S (a 2) 6(K +9S) a2 (270)

i 2K + S

ly = a 2K+S m 27¢)

3(K+S) 2 3kt @

Then, upon substitution of the quantities given by Egs. (23)—(27d) into the constraint
equations (Cs)q and (Cs5), we obtain, after simplifying and rearranging,

S 28 4 af d 2BK+28)a* 4K +S m*\| .,
eapt! =/ —— | ———=—+-(6-- + — )18
K+S| K+Sa al\ a a? 2(K +S) a? @

(28)

and

Wt p = - (29)

2(3K+4S)(21' a2) 4K — S m?
e A
a

3(K +9) a2) 6K +S) a2’
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respectively. Finally, from the last constraint equation (C¢) it follows that

, 2§ G 3K+2Sa> 4K +S m?
ph=— -+ — = —5 (30)
K+ Sa K+S a2 4K +S) a2

for which, Eq. (29) yields

, 2BK+98)i 3K—25d2+4K+SS m?
3K+ S)a 3(K+Sa? 12K +S)a?’

(3D

These are all that could be obtained from the constraint equations. A straightforward
calculation, using the above quantities and their frame e,-derivatives, shows that,
except for the two conservation equations for standard matter, all the evolution equa-
tions in [41], as well as (28) is fulfilled, so, they do not give any new information. We
have now to consider the conservation equations for the standard matter, which then
may be written as

W= =35 4 ™, (32)
a
and
eip" =0, ep" =-— Lé(u”’ +p™), e3p™ =0, (33)
K+ Sa

respectively. On the other hand, by taking into account Egs. (30), (31) for ! and p?,
and (36), (37) for uR and pR, together with the expression of the Ricci curvature
scalar calculated as

6K (i 4 4K + 38 m?
(a a) + m (34)

R 1) = r_ 3 ! = — | — —_ _—

O=w=r=5\itad) ks @

the key equations (20) imply that ©" and p" are both functions of the time ¢ only.

Consequently, due to (23), the first and third equations in (33) are trivially satisfied,
while the second equation leads to an evolution equation for the pressure as

P = —Z(u’" +p™). (35)

We note that such an evolution equation for the isotropic pressure is not present in the
general set of evolution equations in [41]. It arises here from (33) which is termed as
a constraint equation due to the fact that it contains only spatial derivative. However,
this is only in appearance, indeed, e> involves also partial temporal derivative, so it
cannot be considered as a purely constraint equation. The same remark is also valid
for Eq. (28). At this point, we draw the attention of the reader to the comment made
by the authors of [44] concerning the trouble in the nomenclature in question.

Let us now return to Egs. (11)—(14). Using (23) and (24), we obtain the following
effective dynamic quantities of the curvature fluid:
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ko1 SIS 5 3K+Sag\ [ "
= 2f’(f f)+f(K+SR K+SaR)+f’K+SR’ (36)
x - I 3K+S 6K—Sc_'z.) S 3K+S
P _2f’(f f)+f’(3(K—|—S) T3k +Sa F3K+S)
37
gR_LIT S mR o ] /" i e R
N=2F Kk+sa 77 K+S[f/( R)+f’ ] % =0,
(38)

R_ L p_ p_ 1 S [f s ap [
T =TT = = 3K+S|:f/( R)+f/R] (39a)

1" [ S mR

Before making use of the key equations (20), for clearness and also to save some
space, let us introduce two auxiliary functions which incorporate the effect of the
f(R) function via its derivatives:

. 1 f" R . -2 " "
XEi—i-—f——andYE E—a— —|—f R——R f Z_R>. (40)
2 a I’ f
Then, in terms of these, on using Egs. (25), (27), (38)-(39b), Egs. (20) read

q{:qu: _KL—kSmX 0, (41a)

gh=q5: 0=-Y, (41b)
2

mh =gy _62(11§:§)%=3(1<215)Y’ (42b)

. k. 2K+sm* S v “20)

TR T K+S) a2 3(K+S)

[ S

On the other hand, instead of writing Egs. (20a and b) separately, let us consider their
following combination

u+p—7(u +p™) + uf + pX, (43)
which, on using (30), (31), (36) and (37), can be written as
14K —Sm? 1 13K +4S
= (W P Y (44)
6(K+S)a> f 3(K+59)
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At this stage we also remark that Egs. (32) and (35) may be combined to give

a
W™+ p") = 4= (" + p"), (45)
which, in turn, assuming a # 0 and u™ + p™ # 0, integrates to
C
Wt = (46)
a

where C is a constant of integration.

We now possess a set of equations (32), (34), (35), (40), (41a)—(42d), (44) and
(46) for the unknowns a(r), " (t), p™(t), and f(R), which is closed but clearly
overdetermined. To ensure compatibility of the equation (41b) with (42a,b,c), it is
immediately seen that, the parameters K and S must obey the condition 2K 4+ S =0
which, taking into account the requirement K + S > 0, leads to the condition that
K < 0. We have now, in the above system of Egs. (41a)—(42d), only two independent
equations which are X = 0 and ¥ = 0. To investigate their consistency with a time
dependent scale factor a(t), let us take the time derivative of X. Using the definition
(40), we get after a straightforward calculation

.11 a2 a2
ozxza EY_3a_2 =_3a—3, 47)

which in turn leads to ¢ = 0 implying that @ = constant = a¢. Hence, we arrive
at the conclusion that a time-dependent scale factor a(t) is not allowed as a solution
of f(R) field equations. Before closing this subsection, it would be interesting to
look for the existence of the stationary Godel solution in f(R)-gravity. Then setting
a(t) = constant = ao, it follows that above equations greatly simplify; we have

from Eq. (34), R = —%% and from (24), w3 = wy = /35 On the

other hand, from (32) and (35), we get © = 0 = p™, both of which integrate to
u™ = constantand p™ = constant. Then using the constancy of R we immediately see
that Egs. (41a) and (41b) are trivially satisfied, while Egs. (42) lead to the compatibility
condition 2K + § = 0 as before, for which R and wo simplify to R = —m? /a(z) and
wo = m/(~/2ap), respectively. Then, putting all these into Egs. (20a and b) and in
their combination (44), we get

Im*> 1 1

—— = —u" — —(f —Rf 48
2 = " a5~ RE. (48)
lm_z_i m+L(f_Rf’) (49)
22 P Ty ’

’"_Z_L(nur my (50)
a(z)—f,ﬂ P,

respectively. The last equation immediately integrates to f(R) = ciR + ca, where
c1 = (UW" + pm)a(z) /m? and ¢, is a constant of integration, which can be obtained
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from Eqgs. (48) and (49) as c; = u™ — p™. In the GR limit, we have f(R) = R —2A,
soc; = 1 and ¢ = —2A, leading then respectively to the relationships u” + p™ =
m? / a% = Za)% and u™ — p™ = —2A, which have already been found by Ellis [1]; this
is the Godel’s universe, generalized to include pressure. We thus conclude that even the
stationary Godel universe is not allowed as solution of the f (R)-gravity field equations,
provide that f(R) # R + constant. We note that, the values of the parameters K and
S do not affect our conclusions provided that they satisfy 2K + S =0 and K < 0.

3.2.2 Rotating Bianchi-type Il model

The second space-time we consider is the rotating Bianchi type-II model, which is
given in the basis (0%; E,) defined by the following coordinate realizations [46]

o’ = (dt,dx — zdy,dy,dz) & E, = (3, 0y, 20y + dy, d7). (1))
Thus, according to expressions (19) the orthonormal (6¢; e,)-frame reads explicitly

o0 =dt —via(t)dx + (viz — v2)a(t)dy

( )d ey = al5
—v3a(t)az, el — U_]a + 1 9
1= 77 Ox»
ol = kia(t)dx — kia(t)zdy, & 55 at k'(é(t) ax 14 (52)
o2 = kaa(n)dy. 2= 5% T B O ¥ B
03 = kza(t)dz, e3 =5+ a0
Then, the kinematics obtained from the commutators are as follows:
a . v vy 1
:O’ 9:3—’ = ——, = ,0,0, —_Q,
Oap 2 2T e (2k2k3 p ) «
Vo a . k1 1
y = ———, Ngg =diag|{ ———-—,0,0]). 53
T Thea & ( koks a ) (>3)

Following the similar procedure as in the previous subsection, we calculate effective
total dynamic quantities from the constraint equations, and effective dynamic quanti-
ties of the effective curvature fluid from Eqgs. (11)—(14). Then, on inserting for these
expressions into the key equations (20), we get the following set of equations in terms
of Xand Y:

1
u’+p’=7(um+p’")+uR+pR:

k% — SU% 1 | S 1 v v ol
—L = w3+ S+ 2+ 2 )y 54
o2 2 ”2 e tete G
C_gk. M1 vy (55a)
ql)l - q(x . kl 2k%k§ az — kl )
v3U] v
@X = (55b)
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v1v2X_

T x=7 1
k2k3 k3
2 2 2
n’ﬁ— Rﬂ. 2ky _vliz(zﬂ
o af 212 2 2
k2k? a k?
2 2 2
Bl R (2_
2 kK3 a? k3
2 2 2
Bl (2_
21,2 P 2
2 kyks a k3
ki vs v,
koks k3= kiko
VU3
0= -2y,
koks
ki v _n3
koks ko ksky

(55¢)

2 2
-2 By, (562)

ky k3

2 2

vz Uy
——= — =Y, 56b
Q2 k%) (56b)

2 2

v Y
- — — ==Y, 56¢
kf k%) (56¢)
(56d)
(56¢)
(56f)

To seek compatibility of these equations with each other, we consider three cases:

1. v; # 0, v2 # 0, v3 # 0 : Equation (56e) implies Y = 0 which, inserted for Y into
(55a) leads to k3 /(2k3k3a%) = 0, whence ki = 0, which contradicts k1 # 0.

2. v1 # 0,v3 # 0,v3 = 0 : In this case, Egs. (55a) reduces to k%/(Zk%k%az) =Y
and (55b), to Y = 0. Then, we have again a contradiction since k1 # 0.

3. v1 #0,v2 =0, v3 =0 :In this case, Eq. (55a) reduces to

ko1
2k3k3 a®

’

(57)

and Eqgs. (56a), (56b) and (56¢) reduce to a single one

2kf —vi 1 207
- 2
kl

2,2 2
kyky a

(58)

’

while the remaining equations are identically fulfilled. Inserting for Y from
Eq. (55a) into (56a) we get v% = k% as a compatibility condition. Now, it remains
only to consider Eq. (54). Under the condition vl2 = klz, it becomes

£ TR W (59)
3]{%](% Cl2 - f/ /‘1’ P 3 s
which, on using Eq. (55a) for Y, simplifies to
1 m m
— W +p") =0, (60)

f/

then contradicting the assumption (1 + p™) # 0.
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3.2.3 Rotating Bianchi-type IX model
This model is defined in the basis (E,, ®*) by [46]

= (dt, cos y cos zdx — sin zdy, cos y sin zdx + cos zdy, — sin ydx + dz),
cos Z . sin z .
E, = (Bt, —— 0y, —sin zdy + tan y cos z0;, —— 3, + €08 23y + tan y sin zd,, 31) ,
cosy cosy
(61)

from which, according to Eq. (19), one can construct an orthonormal basis (o, ¢,).
Then, following the same procedure as for the previous models, we find:

] Vg a vp 1 vy 1 w3 1
Gﬂﬂ:07 0:337 ’/‘ta:_a_a a)a:( ! > 2 -, 3 —):—Qa’

ky a 2koks a 2ksky a 2kiky a
Vg a . ki 1 ky 1 ky 1
=——-, =diag|———, ———, ———— ). 62
= "ea " ’“g( kksa'  kskia ik a) 62)
v2 v2 v3 i a®
R=6[1-(1+2+2)[(- St
k7 k2 k3 a
T k3—v§ 11 1)1
—= + + 2 =s+5+35 )= 63
2 [ k3k3 kK3 k1k3 k? kg k2 )| a? (©9)
' R. V2 1 1 ) kivy V]
499=49: — |\ 73— 3 ) X+:73735=-Y (64a)
R (kg k3 2k§k ki
V3 1 1 kovy 1 V2
—\ -5 )X+—555=—V. (64b)
ka (kg f) 2623 ko
AR %) 1 1 k3v3 U3
———\Ix = , 64
(k% %) kzk2 a2 k3 (640)
R
af — naﬁ
2kF —vi 2k5—v; 2k3-vi 2 11 1 20 v 3 v
k3k3 2k3k? 25 kI k5 k3 ) a? kKook k)

23 v} 2} -0} 2303 2 1 1)1

263 —v3  2k3 —v3 2k]2—v12+2 11y 1
K2k} 2k3k3 23k k3 k2 k3 )a®

ki3 2k3k3 2k3kF k3 ki k3 ) a
(65¢)
1
K _) U3X v1v2 _2 — MY, (65(1)
k2k3 kiky1 ) k3 2k1k2k3 kiko
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k k 1
( 2 3 ) ﬂX _ VU3 = VU3 Y. (65¢)
k3ky k1k2 k1 2kokski a koks
k k 1
(s~ ) X~ oz = (656)
kiky  kaks kz 2k3kiks a kaky
w+p' = 7(# +p") 4+ uf + pf
1|k} —5vF k3 —5v3 k3—503 11 1)1
ol e TTee TTee AN\etetelle
243 3K k2 1 2 i/1é
N )+1 34 )y (66)
B AR ¢

One must also have in mind that Egs. (32), (35) and (46) are valid for this model, too.
Now, we undertake the compatibility analysis by considering again three cases:

1. vi # 0,v2 # 0,03 ;é 0 : We first note that if k, = k3, then Eqgs. (64a) and
(65e) lead to ¥ = 2:21(2 - >0and Y = —#—2 < 0, respectively, whence a
contradiction since Y cannot be vanishing When k1 # 0. Similarly, one cannot
have k3 = ki, otherwise one would have from (64b) and (65f) Y > Oand ¥ < 0O
simultaneously. On the other hand, if X = 0, then using again (64a) and (65¢) we
get the similar contradiction. Consequently, as compatibility conditions, one must
have k1 # ko # k3 and X # 0. We seek now whether or not there is any condition
on vy ’s. Subtracting Egs. (65¢) and (65f) from (65d) and dividing side by side we
get after rearranging

2 2 2
(B-8) vi+ (B -k) w3+ (k- #3) v =0. (67)

This equation is satisfied if and only if for vi = vy = v3 = 0, contradicting our
starting assumption that v; # 0, v # 0, v3 # 0.

2. v1 # 0, v2 # 0, v3 = 0 : In this case the first three equations of the set (64a)—(64c)
reduce to

KoL _, L_y wwfl 1Y 68)
23k a? T 2uUEa® T ks \KP K2 )T

They are compatible with each other if and only if k; = k» and Y > 0. But, for
ki = k, Eq. (65d) becomes —1/(2k3a*) = Y < 0, then contradicting ¥ > 0.

3. v1 #0,v2 =0, v3 =0 :Inthis case Egs. (64b), (64c), (65d) and (65f) are trivially
satisfied, so the surviving equations are (64a), (65a,b,c,e) which simplify to

ko1
2k3k3 a?

i —vi k3 k3 L2 1 1y 207, (708)
— ] U U — — = —1, a
k3k3 Kk? ki3 ki k3 k3

=Y, (69)
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(2k§ B2 =} L2 ) 1 v 700)
2.2 1212 2.2 27 27 2 DT T
B I3k 23K al i

263 2kf—vi k2 1 1)1 v}
= F=—gl (0

2,2 272 1212 2 2 2
kiks 2k5ks ksky k3 ki k3 a? 1
kz k3 V1
— — — ) —X=0. 70d
(kakl klkz) 3 (700

In order that Eqgs. (69) and (70d) be compatible with each other one must have either
a)Y >0andky =kzorb)Y > 0and X = 0.

(a)

(b)

Y > 0 and k» = k3: Egs. (70a)—(70c) reduce then, to the following single equa-
tion:

1
(2k‘1‘ — 242432 — k%v%) - =i, (71)

which, on substituting for ¥ from Eq. (69), leads to another compatibility condi-
tion

v% = k% — k%, (72)

which in turn implies that k| > ky = k3. Bearing in mind that we are left with only
one nontrivial equation (69), let us now consider the remaining key equation (66)
which then, on using (72) for v%, reduces to

14k —k3 1 1, 14k3 — k3
—— s = — +p" 4+ - ———=7Y. 73
6@ f,(u P 3T (73)

This equation in turn leads, on using Eq. (69) for Y, to

1
— ("4 p™) =0, 74
f,(u ™ (74)

contradicting then the assumption u” + p™ # 0.
Y > 0 and X = 0O: In this subcase, the surviving equations are (69), (70a), (70b)
and (70c). Subtracting Eq. (70c) from (70b) we get

3 (kg - k%) (k% - k%) ~0, (75)

which implies kp = k3 or k]2 = k% + kg',. The case ky = k3 together with ¥ > 0
was studied previously. So we have only to consider the latter case: k12 = k% + k%
together with kp # k3. Then, Eq. (70a), on substituting for ¥ from (69), leads
that

2 _ 25k

V] = . 76
TR+ 7o
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Consequently, the required conditions for the compatibility of the above set of
nine equations (64a)—(65f) can be summarized as follows: ¥ =Y (t) > 0, X =

212
0,k # k3, k2 = k2 + k2 and v? = 23

= gl By making use of these conditions in
2 3
Eq. (66), it follows that

1 1 k32 —k>»? 1
L+ pmy=—1 K0 an

—— 5 <
I 2 k3k3 (k3 + k3) a*
On the other hand, from Eq. (46), we know that u” + p™ = a% when a # 0.
Then, using this in the above equation, we find
2Ck3k3 (k3 +k3) 1

@ @ (78)

f=

Thus, we are led now to determine the functional form of f(R), i.e., to reconstruct
an f(R)-gravity. Under the above conditions the expression (63) reduces to

k¥ + k¥ o (a a? 301
R=6-5—55 <g+a_2)+ﬁ_z' (79
(ky +k)* \a  a ky + ks a
On the other hand, consider the time derivative of the equation X = 0, which was
already given by Eq. (47) as

o—x="(ly 3‘.’2 (80)
T a2 a’)’
from which we get
d2
Y =6—. 81
a

Comparing this to Eq. (69), it is seen that

2 2
L, 1 KB+R

T nTRe

= constant, (82)

which integrates to

RV SR

a(t) = Ar,with A = Aka, k3) = —— >~~~
23 kaks

(83)

where we have set the constant of integration to zero. This in turn implies that
d = 0; then, taking into account also Eq. (82), Eq. (79) simplifies to
_1KS + k4 6k3k3 1

= : 84
2 (k3 +kDk3ks a? (84

@ Springer



Investigations of f(R)-gravity counterparts Page 19 of 25 1831

Using this, Eq. (78) becomes

4CK3KS (k5 + k3)?

f(R)=-—
(k3 — k3)2(k3 + k3§ + 6k3k3)

R, (85)

which then integrates to give

2h3K5 (3 + K3)2
(k3 — k)2 (k5 + k§ + 6k3k3)’

f(R)=—CY?R?> —2A, with Y% = (86)

where the integration constant is taken as —2A. Thus, it appears that we have
succeeded to find a time dependent scale factor and to reconstruct f(R)-gravity
model. To know details of © and p™, we notice first that Eq. (32) and (35)
integrate to give, on using (46), that u” = 3C/(4a*) — constant and p” =
c/ (4a*) + constant. To get the value of the constant, let us make use of the
key equations (20a and b) which can be written as u” = f’(u' — u®) and
p" = f'(p' — p®). Then after some straightforward calculations, using the
dynamic quantities u!, R, p’ and p® and the aforementioned requirements
together with (83) and (86) it follows that

3C
() = — A, p"(t)=——+A, 87
RO = s PO = as (87)
from which we get a barotropic equation of state (EoS) p”* = p™(u'), as
1
prt) — A= §(Mm(l)+/\)- (88)

As a final remark, we note that in this case the gravito-electric and gravito- mag-
netic fields have the following values:

1 KBk 1
232 koks (k3 + k3) a* (1)

Ew =0, Hpy = (89)

At this stage let us come back to GR case. Taking then f(R) as f(R) = R—2A, we
have f' = land f” = " = 0,s0 X and Y reduce to X = a“—z andY =2 (é — 2’—2),

a
where we continue to suppose a = a(t). At this stage, we must point out that we
only have to consider here the case 3, since in cases 1 and 2, the incompatibility of
equations have been arisen regardless of the specific forms of the auxiliary functions
X and Y. Consequently, the corresponding analysis applies equally well to the case of
GR. Thus, we start from the case 3. First, we observe that the defining relations X = 0
and Y > 0 of the subcase 3.(b) are not compatible with the above expressions of the X
and Y, since the former gives a = constant for which ¥ becomes zero contradicting
Y > 0. Therefore, in this subcase, even a stationary model is not permitted. Consider
now the subcase 3.(a), for which the defining requirements are: ¥ > 0 and kp = k3;
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and where, in addition, one has v% = k% — k%. Then, combining the expression of Y
with Eq. (69) we obtain the following second order differential equation

o ) 2
a a ki 1
2(=-= )= L =, 90
(a az) 2k‘2‘ a? ©0)
which can be straightforwardly solved to give

a(t) = le cosh(ciz + ), 1)
2k;5cy
where c1 and ¢, are two constants of integration. Hence, it seems that we have arrived to
find a time dependent scale factor a(¢), meaning that we have an expanding, shear-free
and rotating model in GR. But, unfortunately, this is not the case, since the perfect fluid
is still subject to Eq. (74), thereby violating the crucial condition that ™ + p™ # 0, as
can be verified directly using u”* = 3k§ / k% — A and p™ = —3k§ / k% + A, calculated
following similar way as in obtaining Eq. (87). This special form of the Bianchi-type
IX model constitutes another concrete example supporting the validity of the shear-free
conjecture in GR.

Before passing to the discussion of our results, in order to relate our work to the
linear analysis presented in Ref. [25], let us investigate also what one would obtain if
one has used instead of the full non-linear tetrad equations, the linearized ones about
a FLRW background. Omitting the details, it results that the terms v% are discarded
from the equations, and we have that k; = ko = k3 = k as compatibility conditions
of the set of Egs. (69)—(70d) with Y = 1/(2k*a?). Consequently, for a barotropic EoS
p™ = wu™, we have from Eq. (66)

1 1 m
_3R=ﬂ+y’ (92)

3 S/

where u" = poa 31+ and 3R = 3/(2k%a?), 3R being the 3-curvature. It follows
that, Eq. (92) reduce to (1 + w)u™/f" = 0, leading to u™ + p™ = 0, provided that
w" # 0.

We notice that the linearized equation (92) is, in fact, just the tetrad version of
the Eq. (55) or (67) of Ref. [25]. This can be seen as follows. Using the following
linearized identity for shear-free congruences

1
curlcurlw, = §3Rwa — Dzwa, (93)

and suitable constraint equations, one can express Dw, as

1 4.
D*w, = §3Ra)a - géwa + 02 Dpq!. (94)

Then, converting the last term into tetrad form as

no Dygl — b7 (ep — ap)q, —nlq), 95)
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we get

2 1, 1 . 14 ) _ 15
D?w; = ER_W w] = §R— Y a)1——§ Ry, (96)

which, on substituting into Eq. (55) or (67) of Ref. [25], gives the desired result.

The above considerations show that in the context of f(R)-gravity, Eq. (55) or (67)
of Ref. [25] do not admit a solution which does not violate the Ellis condition 6w = 0,
provided that " + p™ # 0 and " # 0. The above result gives a concrete illustration
of the fact that the non-existence of a linearized solution does not necessarily imply the
non-existence of an exact solution of the full non-linear field equations. Conversely,
one cannot infer from the existence of a linearized solution the existence of an exact
solution; since, as stated in the Introduction, it may happen that this linearized solution
may not be a particular solution or a limit of the exact solution (on the doubts about the
linearization procedure see [33,34] and especially, Sec. 4.5 of Ref. [21]). However,
despite these perils one cannot say that the linearization procedure is useless. For
instance, it can serve to guess the existence of a solution which, of course, has to
be checked by using the full non-linear field equations [47]. In this sense, for more
general spacetimes, making use of a metric approach together with tetrad equations
can accomplish this goal.

4 Conclusions

In this paper, adopting a metric based approach we have sought whether or not the
general relativistic shear-free conjecture has a counterpart within the f(R)-gravity
framework. We had tentatively chosen as illustrative examples, three shearless, rotat-
ing and expanding spatially homogeneous spacetimes and investigated whether these
are allowed as solutions of the f(R)-gravity field equations with a perfect fluid matter
as source. The rotation is introduced in these metrics via the threading shift 1-form
while the overall expansion is expressed in terms of a single time dependent scale
factor. In order to calculate the field equations for a given metric, a direct and practical
method is to use exterior differential calculus. However, we have followed a somewhat
different but an equivalent method by making use of the already established general
relativistic orthonormal tetrad evolution and constraint equations given in [41], but
extending them to the f(R)-gravity case. Through the adoption of the effective fluid
approach developed in [36-38], we have been able to directly translate the general
relativistic tetrad equations into the f(R)-gravity case, thereby, have avoided to deal
with fourth order equations. A further advantage of making use of the total set of
f(R)-gravity extended tetrad equations is that the integrability conditions are auto-
matically incorporated into the set. As a result, we have obtained a closed although
overdetermined set of equations in the unknowns a(t), u”, p™ and f(R). Under the
requirement that u + p™ # 0, the analysis of the compatibility of this set of the
equations with respect to parameters k, and vy, as well as to the assumption of a time
dependent scale factor provided us the following results.
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It has been shown by the authors of [22] that an expanding type Godel universe is
not allowed in GR. Here we have shown that a further generalized version of the Godel
universe, by introducing parameters K and S, is also not allowed as solution in f(R)-
gravity. Moreover, as a byproduct, we have found that even a stationary rotating Godel
universe does not exist in this modified theory whatsoever the functional form of the
f(R) provided that f(R) # R — 2A. Rotating Bianchi-type II model is not allowed
in f(R)-gravity, either. This is due to the fact that, in cases v # 0, v3 # 0,v3 # 0
and v; # 0, v # 0, v3 = 0, the set of equations leads to a contradiction by virtue of
the requirement k; % 0, while in the case v; # 0, v = 0, v3 = 0, the compatibility
with u™ 4+ p™ = 0 is not ensured.

As a last example we have considered rotating type Bianchi-IX model. For this
model, we have found that the overall compatibilities of equations are ensured only in
the case of v1 # 0, v» = 0, v3 = 0, under the requirements kp # k3, k12 = k% ~|—k§ and
v% = 2k§k§ / (k% + k%). Then, we have been able to obtain solutions for a(t), u™ and
p™ as given in Eqs. (83) and (87), respectively, and to reconstruct the f(R)-gravity as
shown in (86). In what follows, we discuss these solutions without entering into the
discussions either on energy conditions in f (R)-gravity [48,49] or on viability of an
f(R) model.

Firstly, we note that, in Eq. (46) C may take on negative values since it simply
represents an arbitrary integration constant. Then, depending on the values of u and
p™ in the combination u™ 4 p™, C may be either positive or negative. By adopting
the natural assumption that ©™ > 0 and by considering Eq. (87) together with (83),
we see that, according to the signs of C and A, four cases occur; then, denoting a
critical time by #, = (1/A) |C/ (4A)|'/* obtained by making use of the assumption
u™ > 0 and Egs. (83) and (87), it is straightforward to see that:

I.C > 0, A > 0: in this case, we have u (t < f/gt*) > 0and p"(t < (4/§t*) > 0,
namely, a positive pressure,

2.C > 0, A < 0: the condition u"(¢) > 0 is ensured for all + and we have either
pt(t < t) > 0or p"(t > t,) < 0, thus we have a positive or
negative pressure depending on f,

3.C <0, A > 0: this case is unphysical, since ©” (t) < 0 for all 7,

4.C <0, A < 0: in this case, we have u” (t > +/3t,) > 0 and p"(t > ¥/3t,) < 0,
that is a negative pressure.

A negative pressure refers, in general, to an unrealistic form of matter, such as
scalarons, strings or Chaplygin gas, giving rise to the violation of various energy
conditions. However, they are in current usage for modeling the matter content of
the universe. Here, a negative pressure arises in both cases 2 and 4, while a positive
pressure arises in both cases 1 and 2. It is also possible to discuss the sign of the pressure
with respect to A, using the EoS given by Eq. (88); however, we only indicate here that
in the particular case of a vanishing A, the EoS reduces to p™ = (1/3)u showing
that the universe is filled with pure radiation. On the other hand, we see that, in all the
above cases, irrespectively of the sign of the pressure, the scale factor a(z) exhibits an
expansion behavior linear in ¢, like that of a flat Milne model in GR. Thus, we have a
coasting universe model, expanding anisotropically in three directions with different
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scale factors k1 At, ko At and k3 At and rotating about the e axis with a time dependent
vorticity of magnitude w; (1) = 6krk3 / (k% + k%)t‘l.

Let us now return to the f(R)-model given in Eq. (86). We see that the sign of the
R?-term depends on the sign of the constant C; it is negative when C > 0, leading to an
“f(—R?)-gravity”, and positive when C < 0, leading then to an “f (+R?)-gravity”.
In the latter case, we have a negative pressure (case 4), while in the former case, we
have a positive pressure (cases 1 and 2), however, a negative pressure is possible, either
(case 2). Thus, a physically realistic ordinary matter having a positive pressure holds
only in the f (—Rz) model. All that can be said, about the unfamiliar minus sign, is
that, at theoretical level, there are no a priori reasons to reject this model.

Another interesting situation to point out is that, according to Eq. (89), this shear-
free rotating and expanding Bianchi-type IX model is purely gravito-magnetic solution
[50], that is, Eqg = 0 # Hyg giving rise to gravitational waves.

We conclude that in f(R)-gravity theory there are situations where a shear-free
perfect fluid could have simultaneous rotation and expansion, thereby showing that
there is no counterpart of the general relativistic shear-free conjecture in this modified
theory of gravity. In this context, it would be of interest to find further examples other
than our Bianchi-type IX model and the one found in [25].
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