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Abstract By adopting a metric based approach and making use of f (R)-gravity
extended tetrad equations, we have considered three spatially homogeneous metrics
in order to investigate the existence of simultaneously rotating and expanding solutions
of the f (R)-gravity field equations with shear-free perfect fluids as sources. We have
shown that the Gödel type expanding universe, as well as a rotating Bianchi-type II
spacetime allow no such solutions of the field equations of this modified gravity. On the
other hand, we have found that there exist two types of f (R) models in which a shear-
free Bianchi-type IX universe can expand and rotate at the same time. The matter
content of this universe is described by a perfect fluid having positive or negative
pressure, depending on the type of f (R) model and on the cosmological constant;
in the particular case of a vanishing cosmological constant we have found that the
universe is filled with a pure radiation. Whatsoever the cases, the universe exhibits
always coasting anisotropic expansions along three spatial directions evolving like a
flat Milne universe, and has a vorticity inversely proportional to cosmic time. A further
result is that, due to the nonvanishing of the gravito-magnetic part of the Weyl tensor,
this model allows for gravitational waves. Our solution constitutes one more example
giving support to that in f (R)-gravity there is no counterpart of the general relativistic
shear-free conjecture.
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1 Introduction

The well-known shear-free perfect fluid conjecture originated from the famous Ellis
result in 1967 [1] for pressure free matter and subsequently generalized to include the
pressure, states that, in General Relativity (GR), it is impossible to have simultaneous
rotation and expansion for a shear-free perfect fluid, satisfying μ+ p �= 0, where μ is
the energy density and p is the pressure [2]. The first indications supporting the validity
of this conjecture in the case of dust go to a statement of Gödel in 1950 [3], presented
without proof, and to the work of Schücking in 1957 [4]; in fact, Gödel claimed that a
shear-free dust filled homogeneous Bianchi-type IX cosmology could either expand or
rotate, but not both, and Schücking generalized this result to general spatially homo-
geneous dust [4]. The aforementioned work of Ellis [1] showed that the restriction to
spatial homogeneity was unnecessary. This intriguing conjecture has attracted consid-
erable attention during the last fourty years. A number of works [5–20], using either
special coordinate systems or particular tetrads or a fully covariant approach together
with special assumptions on the equations of state as well as on some kinematic and
dynamic quantities, have given strong support to it. Nevertheless, except for these very
special cases, the truth or falsity of the conjecture in the general case has still not been
established, and at present we know of no counter examples at all. In this connection,
we draw the attention of the reader to a recent paper of Ellis [21] in which the deeper
understanding of the physical aspects of the shear-free solutions has been explored.

Within the context of general relativistic cosmology, one way to obtain shear-free
solutions with simultaneous rotation and expansion is to relax the restriction of a per-
fect fluid source and introduce a heat flux and/or anisotropic pressure into the energy
momentum tensor of the matter content; in other words, the energy momentum tensor
must be that of an imperfect fluid form [22]. Another way is to consider more gen-
eral energy–momentum tensors involving, for example, scalar fields as in inflationary
scenarios [23]. On the other hand, we know that in Newtonian theory of gravitation,
this conjecture has no counterparts, that is, one can have simultaneously rotating and
expanding shear-free perfect fluid solutions in this theory [4,16,24]. The very existence
of this fact leads to the suggestion that the shear-free conjecture seems inherent to GR,
and consequently one can expect that possible counter examples might exist within
the context of alternative theories to GR to describe gravitational phenomena. In fact,
as supporting this expectation, an attempt along this line has recently been made by
Abebe et al. [25] within the framework of the so-called f (R)-gravity [26–32] which
has received much attention during the last fifteen years for solving some cosmological
issues related to the late-time cosmic acceleration and also to the early-time inflation;
in this theory the standard Einstein–Hilbert (EH) action is modified by replacing the
curvature scalar R with an arbitrary function f (R), leading then, in general, to fourth
order partial differential equations in the metric tensor. The authors of [25], using the
1+3 covariant formalism, have shown that for a stiff fluid in R3-gravity there exists a
flat Milne-universe solution which can rotate and expand simultaneously at the level
of linearized perturbation about a Friedmann–Lemaître–Robertson–Walker (FLRW)
background. As far as we know, this solution constitutes the first counter example to the
shear-free conjecture apart the Newtonian ones. However, this kind of solution exhibits
linearization instability; the result may not be the limit of an exact solution in the full
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non-linear theory, due to the fact that second order terms are discarded during lineariza-
tion (see, for instance, [33,34]). As a consequence of this fact, one cannot rule out that
there is no counterpart of the general relativistic shear-free conjecture in f (R)-gravity.

In this paper, we aim to seek whether or not there is a counterpart in f (R)-gravity
of the general relativistic shear-free conjecture by adopting a metric based approach
and making use of the total set of exact non-linear tetrad equations. This approach
will lead us to a set of differential equations which will be discussed from the point of
compatibility with the parameters of the metric as well as with the crucial assumption
μ + p �= 0. This will provide us with the means to search for the simultaneously
rotating and expanding solutions. To achieve this goal, we do not intend to undertake
a general attempt by considering general metrics; instead, as a tentative first step
in the hope of obtaining easily tractable equations that would lead us to possible
analytical solutions, we prefer to start from some relatively simple metric ansatzes.
Hence, we will restrict ourselves to particular forms of the shear-free class of spatially
homogeneous space-times among which the first will be the Gödel type expanding
model [35], and other two will be a specialized form of the rotating Bianchi-type II and
IX models. In all of these models the overall expansion will be described by a single
time dependent scale factor. We note that a similar approach was already undertaken
by Grøn and Soleng in the case of an expanding version of the stationary Gödel metric
within the context of GR [22]. The main differences between our approach and the
one in [22] are that we consider here, a further generalized form of the Gödel metric,
and tetrad equations instead of components of EFE; the advantage of using all of the
f (R)-gravity extended tetrad equations is that the integrability conditions, i.e., the
Bianchi identities, are automatically incorporated within them.

This paper is organized as follows: In Sect. 2, we give the basic equations of
f (R)-gravity, and the main ingredients of the 1 + 3 covariant approach and the tetrad
formalism in f (R)-gravity in order to set up the notation, definitions and relevant
formulas that will be used in the sequel. In Sect. 3, three examples of metrics will
be applied to f (R)-gravity extended tetrad equations, and a compatibility analysis
will be undertaken for the so obtained sets of equations. Finally, Sect. 4 contains a
summary of the results and conclusions.

We use units in which c = 1 = 8πG; the symbol ∂ is used for partial differentiation
with respect to coordinates, and primes denote derivatives with respect to R. Latin
indices range from 0 to 3, and Greek indices, from 1 to 3.

2 Prerequisites

2.1 Field equations of f (R)-gravity

f (R)-gravity is defined by the following modified Einstein–Hilbert action with matter,
in which the Ricci scalar R is replaced by an arbitrary function f (R)

S = 1

2

∫
d4x

√−g f (R) + Sm, (1)

123



1831 Page 4 of 25 D. Sofuoğlu, H. Mutuş

where Sm is the standard action for matter. Variation with respect to the metric gab

leads to the following modified EFE

f ′ Rab − 1

2
gab f − ∇a∇b f ′ + gab∇c∇c f ′ = T m

ab, (2)

where Rab is the Ricci curvature tensor and T m
ab is the energy momentum tensor of

the standard matter. Due to the last two terms in the left hand side, these equations
are, in general, fourth-order partial differential equations in the metric tensor. When
f (R) = R −2�,� being the cosmological constant, Eq. (2) reduces to standard EFE.
To make the Einstein tensor Gab explicit, one can rewrite Eq. (2) equivalently in the
form of

Gab ≡ Rab − 1

2
gab R = T m

ab

f ′ + 1

f ′

[
1

2
gab( f − R f ′) + ∇a∇b f ′ − gab∇c∇c f ′

]

(3)

provided that f ′ �= 0. Then, adopting the effective energy–momentum tensor approach
used in [36–38], one may define the following energy–momentum tensors

T̃ m
ab = T m

ab

f ′ , (4a)

T R
ab = 1

f ′

[
1

2
gab( f − R f ′) + ∇a∇b f ′ − gab∇c∇c f ′

]
, (4b)

T t
ab = T̃ m

ab + T R
ab, (4c)

such that the modified EFE (3) take the standard Einstein form Gab = T t
ab. Hence, in

this approach, one has two effective fluids associated with T̃ m
ab and T R

ab which may be
called as “effective matter fluid” and “effective curvature fluid”, respectively. These
various energy–momentum tensors obey the following conservation equations:

∇bT m
ab = 0, (5a)

∇bT R
ab = f ′′

f ′2 T m
ab∇b R, (5b)

∇bT t
ab = 0, (5c)

where Eq. (5c) results from the contracted second Bianchi Identities ∇bGab = 0, and
means that the effective total energy–momentum tensor is conserved; Eq. (5b) can be
obtained from (3) and (4b), while the Eq. (5a) arises from (4c), as a consequence of
(4a), (5b) and (5c). Equation (5a) shows that the usual conservation of the standard
matter still holds in this theory.

2.2 1 + 3 Covariant approach in f (R)-gravity

Given a preferred vector field u which, for definiteness, will be taken as the 4-velocity
(uaua = −1) of an observer comoving with the fluid flow, one can define a projection
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tensor hab = gab + uaub which, together with ua , can be used to decompose any
spacetime quantity into parts orthogonal and parallel to u. In particular, the covariant
derivative of the 4-velocity u, and a general energy–momentum tensor Tab may be
split into their basic parts as

∇aub = −uau̇b + Daub, with Daub = σab + 1

3
θhab + εabcω

c (6)

and

Tab = μuaub + phab + 2q(aub) + πab, (7)

respectively [39–41]. Here, the overdot denotes covariant time derivative (ua∇a), and
Da is the projected covariant 3-dimensional derivative onto the instantaneous rest
space of the observer; εabc is the spatial permutation tensor. Equation (6) defines
the kinematic quantities u̇a, θ, σab, σ, ωa, ω associated with the fluid flow; these are:
acceleration, expansion scalar, shear tensor, shear scalar, vorticity vector and vorticity
scalar, respectively. Equation (7) defines fluid dynamic quantities as measured by an
observer flowing with u. These are: the matter–energy density μ, isotropic pressure
p, energy flux qa and the anisotropic stress tensor πab, defined as

μ = uaubTab, p = 1

3
habTab, qa = −hb

aucTbc, πab = hc〈a hd
b〉Tcd . (8)

In the 1 + 3 covariant approach to GR, the above fluid kinematic and dynamic quantities
together with the electric part Eab and the magnetic part Hab of the Weyl curvature
tensor satisfy a set of evolution equations involving time derivatives, and a set of
constraint equations involving only Da derivatives. In the case of f (R)-gravity the
corresponding covariant equations may be derived directly from the standard GR
versions in [41] by simply replacing the energy–momentum tensor terms μ, p, qa, πab

by μt , pt , qt
a, π t

ab which, according to Eqs. (4a) and (4c), are given by

μt = 1

f ′ μ
m +μR, pt = 1

f ′ pm +μR, qt
a = 1

f ′ q
m
a +q R

a , π t
ab = 1

f ′ π
m
ab + π R

ab,

(9)

where each quantity is defined by using the corresponding T t
ab, T m

ab and T R
ab in place of

Tab in Eqs. (7) and (8). The total set of 1 + 3 covariant equations of the f (R) theory of
gravity can be found in slightly various forms in [26,37]. The expressions of dynamic
quantities μR, pR, q R

a and π R
ab of the effective curvature fluid calculated from (4b)

and (8) using the 1+3 projection techniques are given in [37]. In the following, we
will convert them into the tetrad form.

2.3 Tetrad equations in f (R)-gravity

The GR tetrad equations may be translated into the f (R) theory of gravity in the same
manner as in the case of 1 + 3 covariant equations; we simply have to substitute into the
tetrad equations given in [41], the effective total dynamic quantities μt , pt , qt

α and π t
αβ
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in place of μ, p, qα and παβ wherever they appear. The equations retain their forms,
however, there is a notable difference with regard to GR case; the set of equations
must be supplemented by two additional evolution equations for μm and qm

α arising
from the conservation equation (5a) of the standard matter–energy tensor. These two
equations have the same form as the corresponding equations for μt and qt

α derived
from the conservation equation (5c) of the effective total energy–momentum tensor
[notice that Eq. (5b) is not independent, since it can be obtained from Eqs. (5c) and
(5a), using (4a) and (4c)]. In this work we use the evolution and constraint equations
given in [41], adapting them to the f (R)-gravity case. We note that a part of the overall
tetrad equations, might be obtained from the 1 + 3 covariant evolution and constraint
equations of the f (R)-gravity given in [37], by converting them into tetrad forms
using suitable transformation formulas described in [42]. We use these formulas here,
to establish in particular the following substitutions

a, b, c · · · → α, β, γ . . . , εabc → εαβγ , Ṙ → e0 R,

R̈ → e0e0 R, Dα R → eα R, Dα Ṙ → eαe0 R,

Da Db R → Dα Dβ R = eαeβ R −
(

aλδαβ − aβδλ
α + 1

2
εαβγ nλγ + ε

γλ

(α nβ)γ

)
eλ R.

(10)

These lead us then to express in tetrad forms the dynamic quantities of the effective
curvature fluid as follows:

μR = − 1

2 f ′ ( f − R f ′) + f ′′

f ′ (−θe0 R + δαβeαeβ R − 2aαeα R) + f ′′′

f ′ δαβeα Reβ R,

(11)

pR = 1

2 f ′ ( f −R f ′)+ f ′′

f ′

(
2

3
θe0 R− u̇αeα R+ e0e0 R− 2

3
δαβeαeβ R + 4

3
aαeα R

)

+ f ′′′

f ′

[
(e0 R)2 − 2

3
δαβeα Reβ R

]
, (12)

q R
α = f ′′

f ′

[
−eαe0 R +

(
σβ

α + 1

3
θδβ

α + εβγ
α ωγ

)
eβ R

]
− f ′′′

f ′ e0 Reα R, (13)

π R
αβ = f ′′

f ′
[
−σαβe0 R+e〈α eβ〉 R+ (a〈α δλ

β〉+ελ
γ 〈α nγ

β〉)eλ R
]
+ f ′′′

f ′ e〈α Reβ〉 R. (14)

3 Metric examples

3.1 Specialization of the metric

In this paper, we will consider three examples of spacetimes belonging to the wide
class of rotating spatially homogeneous models which, in a 1-forms basis {ωa}, read

ds2 = −(ω0 − υα(t)ωα)2 + �αβ(t)ωαωβ, (15)
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where υα(t) and �αβ(t) are functions of the cosmic time t alone. These functions,
however, are too general for our purposes, since it is unlikely to obtain tractable
equations; so, following [23,35,43], we restrict their functional forms to

υα(t) = a(t)vα, �αβ(t) = a2(t)k2
αδαβ (no sum on α), (16)

where a(t) is a time dependent cosmic scale factor, kα and vα are constant parameters;
such that kα > 0 and at least one parameter vα is nonzero. Note that expression (15)
is a very particular form of the general threading form of the spacetime metric [44]

ds2 = −M2(t, x)(dt − Mν(t, x)dxν)2 + hμν(t, x)dxμdxν, (17)

expressed in local coordinates
{

xi
}

with basis (dxi , ∂i ). The metric (15) is obtained by
adopting the gauge M(t, x) ≡ 1 and assuming that both Mν(t, x) and hμν(t, x) are sep-
arable functions of the timelike and spacelike coordinates as Mν(t, x) = υα(t)ωα

ν (x)

and hμν(t, x) = �αβ(t)ωα
μ(x)ω

β
ν (x). This allows then to define four time indepen-

dent basis 1-forms ωa = ωa
i (x)dxi , together with the corresponding dual basis vectors

Ea = ωi
a(x)∂i (ωa(Eb) = δa

b ) as

ω0 = dt
ωα = ωα

ν (x)dxν ⇔ E0 = ∂t

Eα = ων
α(x)∂ν

(
with ωα

ν ων
β = δα

β

)
,

(18)

such that, in this comoving (ωa, Ea)-frame, (17) takes the form (15). Since it is much
easier to work in an orthonormal basis, we pass now from the (ωa, Ea)-frame to an
orthonormal (σ a, ea)-frame such that the space-time line element has the Lorentzian
form ds2 = ηabσ

aσ b where ηab = diag(−1, 1, 1, 1). From Eqs. (15) and (16), this
can be accomplished by the following obvious choices

σ 0 = ω0 − a(t)vαωα

σα = a(t)kαωα ⇔ e0 = E0

eα = vαk−1
α E0 + a−1(t)k−1

α Eα
(19)

(there is no summation over the repeated index α in the above equations). Note that
this orthonormal tetrad frame is comoving, too, since e0 = E0 = ∂t = u. For such a
frame, commutators of the basis vectors ea are given by Ellis and van Elst in [41].

Having done this preparatory work, we can now present the steps of our calculations.
We first calculate kinematics: θ, σαβ, u̇α · · · using the commutators of basis vectors.
These are then substituted into the set of all constraint equations given in [41] and into
Eqs. (11)–(14), to get the effective total fluid dynamics μt , pt , qt

α and π t
αβ , and the

effective curvature fluid dynamics μR, pR, q R
α and π R

αβ , respectively. To relate these
quantities with each other we make use of the following key equations,

μt = 1

f ′ μ
m + μR, (20a)

pt = 1

f ′ pm + pR, (20b)
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qt
α = q R

α , (20c)

π t
αβ = π R

αβ. (20d)

obtained from (9) by assuming a perfect fluid i.e., for qm
a = 0 = πm

ab. We then obtain
a set of simultaneous equations in the unknowns a(t), μm, pm and f (R). It remains to
analyze the compatibility of these equations with each other and with the parameters
of the metric, as well as the crucial requirement μm + pm �= 0. In case of compatibility,
one is led to reconstruct f (R)-gravity model.

3.2 Examples

3.2.1 Gödel type expanding cosmological model

As a first example to shear-free, rotating and expanding space-times, we consider the
following Gödel-like metric, which reads in local coordinates

{
xi

} = {t, x, y, z}

ds2 = −dt2 + 2
√

Sa(t)emx dtdy + a2(t)(dx2 + K e2mx dy2 + dz2) (21)

where a(t) is a time dependent scale factor and m, S, K are constant parameters that
satisfy m > 0, S > 0, K �= 0 and S+ K > 0 [35]. The rotating and stationary original
Gödel model proposed in 1949 [45] corresponds to a(t) = a0 = constant, K =
−1/2, S = 1 and m = √

2ω0a0 with ω0 being the constant vorticity parameter. The
line element (21) constitutes its natural generalization to the non-stationary case simply
by letting a be a function of time. The parameters S and K have been introduced in
the coming years as a further generalization in order to discuss some unusual features
of the model [35]. In what follows, we will seek whether f (R) gravity field equations
allow this kind of spacetime as a solution. In the basis (ωa, Ea) defined by

ωa = (dt, dx, emx dy, dz) ⇔ Ea = (∂t , ∂x , e−mx∂y, ∂z), (22)

the line element (21) brings to the form (15), from which, on using (16), read v1 =
v3 = 0, v2 = √

S and k1 = k3 = 1, k2 = √
K + S. Hence, according to (19), the

basis (σ a, ea) will be given explicitly as

σ 0 = dt − √
Sa(t)emx dy,

σ 1 = a(t)dx,

σ 2 = √
K + S a(t)emx dy,

σ 3 = a(t)dz,

⇔
e0 = ∂t ,

e1 = a−1(t)∂x ,

e2 =
√

S
K+S ∂t + 1√

K+S
a−1(t)e−mx∂y,

e3 = a−1(t)∂z .

(23)

Then, using the commutation relations, we get the following kinematics:

σαβ = 0, θ = 3
ȧ

a
, u̇α =

(
0,

√
S

K + S

ȧ

a
, 0

)
,

123



Investigations of f (R)-gravity counterparts Page 9 of 25 1831

ωα =
(

0, 0,
1

2

√
S

K + S

m

a

)
= −�α, aα =

(
− m

2a
,−

√
S

K + S

ȧ

a
, 0

)
,

nαβ = − m

2a
δ2
αδ3

β. (24)

Here the dot denotes the derivative with respect to t (since e0 = ∂t ). We note that
in this spacetime, the fluid with nonvanishing vorticity has shear-free expansion and
nonvanishing acceleration when ȧ �= 0. We first substitute kinematic quantities given
in Eq. (24) into the constraint equations of Ref. [41], making use of eα in (23) for the
frame derivatives. As expected, the constraint equations (C2) and (CJ )α are trivially
satisfied. From (C1)α we get

qt
1 = − S

K + S

mȧ

a2 , qt
2 = 2

√
S

K + S

(
ä

a
− ȧ2

a2

)
, qt

3 = 0, (25)

while (C3)αβ leads to Hαβ = 0. On the other hand, due to the vanishing of the shear, the
shear evolution equation (eq. (98) in [41]) is converted into a new constraint equation.
Using this, together with (CG)αβ provide the following Eαβ and π t

αβ components

E11 = E22 = −1

2
E33 = − K

6(K + S)

m2

a2 , E12 = E23 = E31 = 0, (26)

π t
11 = 2S

3(K + S)

(
ä

a
− ȧ2

a2

)
− 2K + S

6(K + S)

m2

a2 , (27a)

π t
22 = − 4S

3(K + S)

(
ä

a
− ȧ2

a2

)
− 2K + S

6(K + S)

m2

a2 , (27b)

π t
33 = 2S

3(K + S)

(
ä

a
− ȧ2

a2

)
+ 2K + S

3(K + S)

m2

a2 , (27c)

π t
12 = π t

21 =
√

S

K + S

mȧ

a2 , π t
23 = π t

31 = 0. (27d)

Then, upon substitution of the quantities given by Eqs. (23)–(27d) into the constraint
equations (C4)α and (C5)α we obtain, after simplifying and rearranging,

eαμt =
√

S

K + S

[
− 2S

K + S

...
a

a
+ ȧ

a

(
6

ä

a
− 2(3K + 2S)ȧ2

a2 + 4K + S

2(K + S)

m2

a2

)]
δ2
α

(28)

and

μt + pt = −2(3K + 4S)

3(K + S)

(
ä

a
− ȧ2

a2

)
− 4K − S

6(K + S)

m2

a2 , (29)
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respectively. Finally, from the last constraint equation (CG) it follows that

μt = − 2S

K + S

ä

a
+ 3K + 2S

K + S

ȧ2

a2 − 4K + S

4(K + S)

m2

a2 , (30)

for which, Eq. (29) yields

pt = −2(3K + S)

3(K + S)

ä

a
− 3K − 2S

3(K + S)

ȧ2

a2 + 4K + 5S

12(K + S)

m2

a2 . (31)

These are all that could be obtained from the constraint equations. A straightforward
calculation, using the above quantities and their frame ea-derivatives, shows that,
except for the two conservation equations for standard matter, all the evolution equa-
tions in [41], as well as (28) is fulfilled, so, they do not give any new information. We
have now to consider the conservation equations for the standard matter, which then
may be written as

μ̇m = −3
ȧ

a
(μm + pm), (32)

and

e1 pm = 0, e2 pm = −
√

S

K + S

ȧ

a
(μm + pm), e3 pm = 0, (33)

respectively. On the other hand, by taking into account Eqs. (30), (31) for μt and pt ,
and (36), (37) for μR and pR , together with the expression of the Ricci curvature
scalar calculated as

R (t) = μt − 3pt = 6K

K + S

(
ä

a
+ ȧ2

a2

)
− 4K + 3S

2(K + S)

m2

a2 , (34)

the key equations (20) imply that μm and pm are both functions of the time t only.
Consequently, due to (23), the first and third equations in (33) are trivially satisfied,
while the second equation leads to an evolution equation for the pressure as

ṗm = − ȧ

a
(μm + pm). (35)

We note that such an evolution equation for the isotropic pressure is not present in the
general set of evolution equations in [41]. It arises here from (33) which is termed as
a constraint equation due to the fact that it contains only spatial derivative. However,
this is only in appearance, indeed, e2 involves also partial temporal derivative, so it
cannot be considered as a purely constraint equation. The same remark is also valid
for Eq. (28). At this point, we draw the attention of the reader to the comment made
by the authors of [44] concerning the trouble in the nomenclature in question.

Let us now return to Eqs. (11)–(14). Using (23) and (24), we obtain the following
effective dynamic quantities of the curvature fluid:
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μR = − 1

2 f ′ ( f − R f ′) + f ′′

f

(
S

K + S
R̈ − 3K + S

K + S

ȧ

a
Ṙ

)
+ f ′′′

f ′
S

K + S
Ṙ2, (36)

pR = 1

2 f ′ ( f − R f ′) + f ′′

f ′

(
3K + S

3(K + S)
R̈ + 6K − S

3(K + S)

ȧ

a
Ṙ

)
+ f ′′′

f ′
3K + S

3(K + S)
Ṙ2,

(37)

q R
1 = 1

2

f ′′

f ′
S

K + S

m Ṙ

a
, q R

2 = −
√

S

K + S

[
f ′′

f ′ (R̈ − ȧ

a
Ṙ) + f ′′′

f ′ Ṙ2
]

, q R
3 = 0,

(38)

π R
11 = −1

2
π R

22 = π R
33 = −1

3

S

K + S

[
f ′′

f ′ (R̈ − ȧ

a
Ṙ) + f ′′′

f ′ Ṙ2
]

, (39a)

π R
12 = −1

2

f ′′

f ′

√
S

K + S

m Ṙ

a
, π R

23 = π R
31 = 0. (39b)

Before making use of the key equations (20), for clearness and also to save some
space, let us introduce two auxiliary functions which incorporate the effect of the
f (R) function via its derivatives:

X ≡ ȧ

a2 + 1

2

f ′′

f ′
Ṙ

a
and Y ≡ 2

(
ä

a
− ȧ2

a2

)
+ f ′′

f ′

(
R̈ − ȧ

a
Ṙ

)
+ f ′′′

f ′ Ṙ2. (40)

Then, in terms of these, on using Eqs. (25), (27), (38)–(39b), Eqs. (20) read

qt
1 = q R

1 : − S

K + S
m X = 0, (41a)

qt
2 = q R

2 : 0 = −Y, (41b)

π t
11 = π R

11 : − 2K + S

6 (K + S)

m2

a2 = −1

3

S

K + S
Y, (42a)

π t
22 = π R

22 : − 2K + S

6 (K + S)

m2

a2 = 2S

3 (K + S)
Y, (42b)

π t
33 = π R

33 : 2K + S

3 (K + S)

m2

a2 = − S

3 (K + S)
Y, (42c)

π t
12 = π R

12 :
√

S

K + S
m X = 0. (42d)

On the other hand, instead of writing Eqs. (20a and b) separately, let us consider their
following combination

μt + pt = 1

f ′ (μ
m + pm) + μR + pR, (43)

which, on using (30), (31), (36) and (37), can be written as

− 1

6

4K − S

(K + S)

m2

a2 = 1

f ′ (μ
m + pm) + 1

3

3K + 4S

(K + S)
Y. (44)
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At this stage we also remark that Eqs. (32) and (35) may be combined to give

(μm + pm)· = −4
ȧ

a
(μm + pm), (45)

which, in turn, assuming ȧ �= 0 and μm + pm �= 0, integrates to

μm + pm = C

a4 , (46)

where C is a constant of integration.
We now possess a set of equations (32), (34), (35), (40), (41a)–(42d), (44) and

(46) for the unknowns a(t), μm(t), pm(t), and f (R), which is closed but clearly
overdetermined. To ensure compatibility of the equation (41b) with (42a,b,c), it is
immediately seen that, the parameters K and S must obey the condition 2K + S = 0
which, taking into account the requirement K + S > 0, leads to the condition that
K < 0. We have now, in the above system of Eqs. (41a)–(42d), only two independent
equations which are X = 0 and Y = 0. To investigate their consistency with a time
dependent scale factor a(t), let us take the time derivative of X . Using the definition
(40), we get after a straightforward calculation

0 = Ẋ = 1

a

(
1

2
Y − 3

ȧ2

a2

)
= −3

ȧ2

a3 , (47)

which in turn leads to ȧ = 0 implying that a = constant ≡ a0. Hence, we arrive
at the conclusion that a time-dependent scale factor a(t) is not allowed as a solution
of f (R) field equations. Before closing this subsection, it would be interesting to
look for the existence of the stationary Gödel solution in f (R)-gravity. Then setting
a(t) = constant ≡ a0, it follows that above equations greatly simplify; we have

from Eq. (34), R = − 4K+3S
2(K+S)

m2

a2
0

and from (24), ω3 ≡ ω0 = 1
2

√
S

K+S
m
a0

. On the

other hand, from (32) and (35), we get μ̇m = 0 = ṗm , both of which integrate to
μm = constant and pm = constant. Then using the constancy of R we immediately see
that Eqs. (41a) and (41b) are trivially satisfied, while Eqs. (42) lead to the compatibility
condition 2K + S = 0 as before, for which R and ω0 simplify to R = −m2/a2

0 and
ω0 = m/(

√
2a0), respectively. Then, putting all these into Eqs. (20a and b) and in

their combination (44), we get

1

2

m2

a2
0

= 1

f ′ μ
m − 1

2 f ′ ( f − R f ′), (48)

1

2

m2

a2
0

= 1

f ′ pm + 1

2 f ′ ( f − R f ′), (49)

m2

a2
0

= 1

f ′ (μ
m + pm), (50)

respectively. The last equation immediately integrates to f (R) = c1 R + c2, where
c1 = (μm + pm)a2

0/m2 and c2 is a constant of integration, which can be obtained
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from Eqs. (48) and (49) as c2 = μm − pm . In the GR limit, we have f (R) = R − 2�,
so c1 = 1 and c2 = −2�, leading then respectively to the relationships μm + pm =
m2/a2

0 = 2ω2
0 and μm − pm = −2�, which have already been found by Ellis [1]; this

is the Gödel’s universe, generalized to include pressure. We thus conclude that even the
stationary Gödel universe is not allowed as solution of the f (R)-gravity field equations,
provide that f (R) �= R + constant. We note that, the values of the parameters K and
S do not affect our conclusions provided that they satisfy 2K + S = 0 and K < 0.

3.2.2 Rotating Bianchi-type II model

The second space-time we consider is the rotating Bianchi type-II model, which is
given in the basis (ωa; Ea) defined by the following coordinate realizations [46]

ωa = (dt, dx − zdy, dy, dz) ⇔ Ea = (∂t , ∂x , z∂x + ∂y, ∂z). (51)

Thus, according to expressions (19) the orthonormal (σ a; ea)-frame reads explicitly

σ 0 = dt − v1a(t)dx + (v1z − v2)a(t)dy
−v3a(t)dz,

σ 1 = k1a(t)dx − k1a(t)zdy,

σ 2 = k2a(t)dy,

σ 3 = k3a(t)dz,

⇔
e0 = ∂t ,

e1 = v1
k1

∂t + 1
k1a(t) ∂x ,

e2 = v2
k2

∂t + z
k2a(t) ∂x + 1

k2a(t) ∂y,

e3 = v3
k3

∂t + 1
k3a(t) ∂z .

(52)

Then, the kinematics obtained from the commutators are as follows:

σαβ = 0, θ = 3
ȧ

a
, u̇α = vα

kα

ȧ

a
, ωα =

(
v1

2k2k3

1

a
, 0, 0,

)
= −�α,

aα = −vα

kα

ȧ

a
, nαβ = diag

(
− k1

k2k3

1

a
, 0, 0

)
. (53)

Following the similar procedure as in the previous subsection, we calculate effective
total dynamic quantities from the constraint equations, and effective dynamic quanti-
ties of the effective curvature fluid from Eqs. (11)–(14). Then, on inserting for these
expressions into the key equations (20), we get the following set of equations in terms
of X and Y :

μt + pt = 1

f ′ (μ
m + pm) + μR + pR :

−k2
1 − 5v2

1

6k2
2k2

3

1

a2 = 1

f ′ (μ
m + pm) + 1

3

(
3 + v2

1

k2
1

+ v2
2

k2
2

+ v2
3

k2
3

)
Y, (54)

qt
α = q R

α : v1

k1

k2
1

2k2
2k2

3

1

a2 = v1

k1
Y, (55a)

v3v1

k2k2
3

X = v2

k2
Y, (55b)
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v1v2

k2
2k3

X = v3

k3
Y, (55c)

π t
αβ = π R

αβ : 2k2
1 − v2

1

k2
2k2

3

1

a2 =
(

2v2
1

k2
1

− v2
2

k2
2

− v2
3

k2
3

)
Y, (56a)

−1

2

2k2
1 − v2

1

k2
2k2

3

1

a2 =
(

2v2
2

k2
2

− v2
3

k2
3

− v2
1

k2
1

)
Y, (56b)

−1

2

2k2
1 − v2

1

k2
2k2

3

1

a2 =
(

2v2
3

k2
3

− v2
1

k2
1

− v2
2

k2
2

)
Y, (56c)

k1

k2k3

v3

k3
X = v1v2

k1k2
Y, (56d)

0 = v2v3

k2k3
Y, (56e)

k1

k2k3

v2

k2
X = v3v1

k3k1
Y. (56f)

To seek compatibility of these equations with each other, we consider three cases:

1. v1 �= 0, v2 �= 0, v3 �= 0 : Equation (56e) implies Y = 0 which, inserted for Y into
(55a) leads to k2

1/(2k2
2k2

3a2) = 0, whence k1 = 0, which contradicts k1 �= 0.
2. v1 �= 0, v2 �= 0, v3 = 0 : In this case, Eqs. (55a) reduces to k2

1/(2k2
2k2

3a2) = Y
and (55b), to Y = 0. Then, we have again a contradiction since k1 �= 0.

3. v1 �= 0, v2 = 0, v3 = 0 : In this case, Eq. (55a) reduces to

k2
1

2k2
2k2

3

1

a2 = Y, (57)

and Eqs. (56a), (56b) and (56c) reduce to a single one

2k2
1 − v2

1

k2
2k2

3

1

a2 = 2v2
1

k2
1

Y, (58)

while the remaining equations are identically fulfilled. Inserting for Y from
Eq. (55a) into (56a) we get v2

1 = k2
1 as a compatibility condition. Now, it remains

only to consider Eq. (54). Under the condition v2
1 = k2

1, it becomes

2

3

k2
1

k2
2k2

3

1

a2 = 1

f ′ (μ
m + pm) + 4

3
Y, (59)

which, on using Eq. (55a) for Y , simplifies to

1

f ′ (μ
m + pm) = 0, (60)

then contradicting the assumption (μm + pm) �= 0.
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3.2.3 Rotating Bianchi-type IX model

This model is defined in the basis (Ea, ωa) by [46]

ωa = (dt, cos y cos zdx − sin zdy, cos y sin zdx + cos zdy,− sin ydx + dz),

Ea =
(
∂t ,

cos z

cos y
∂x ,− sin z∂y + tan y cos z∂z,

sin z

cos y
∂x + cos z∂y + tan y sin z∂z, ∂z

)
,

(61)

from which, according to Eq. (19), one can construct an orthonormal basis (σ a, ea).
Then, following the same procedure as for the previous models, we find:

σαβ = 0, θ = 3
ȧ

a
, u̇α = vα

kα

ȧ

a
, ωα =

(
v1

2k2k3

1

a
,

v2

2k3k1

1

a
,

v3

2k1k2

1

a

)
= −�α,

aα = −vα

kα

ȧ

a
, nαβ = diag

(
− k1

k2k3

1

a
,− k2

k3k1

1

a
,− k3

k1k2

1

a

)
. (62)

R = 6

[
1 −

(
v2

1

k2
1

+ v2
2

k2
2

+ v2
3

k2
3

)] (
ä

a
+ ȧ2

a2

)

−1

2

[
k2

1 − v2
1

k2
2k2

3

+ k2
2 − v2

2

k2
1k2

3

+ k2
3 − v2

3

k2
1k2

2

− 2

(
1

k2
1

+ 1

k2
2

+ 1

k2
3

)]
1

a2 , (63)

qt
α = q R

α : v2v3

k1

(
1

k2
2

− 1

k2
3

)
X + k1v1

2k2
2k2

3

1

a2 = v1

k1
Y, (64a)

v3v1

k2

(
1

k2
3

− 1

k2
1

)
X + k2v2

2k2
3k2

1

1

a2 = v2

k2
Y, (64b)

v1v2

k3

(
1

k2
1

− 1

k2
2

)
X + k3v3

2k2
1k2

2

1

a2 = v3

k3
Y, (64c)

π t
αβ = π R

αβ :(
2k2

1 −v2
1

k2
2k2

3

− 2k2
2 −v2

2

2k2
3k2

1

− 2k2
3 −v2

3

2k2
1k2

2

+ 2

k2
1

− 1

k2
2

− 1

k2
3

)
1

a2 =
(

2v2
1

k2
1

− v2
2

k2
2

− v2
3

k2
3

)
Y,

(65a)(
2k2

2 −v2
2

k2
3k2

1

− 2k2
3 −v2

3

2k2
1k2

2

− 2k2
1 −v2

1

2k2
2k2

3

+ 2

k2
2

− 1

k2
3

− 1

k2
1

)
1

a2 =
(

2v2
2

k2
2

− v2
3

k2
3

− v2
1

k2
1

)
Y,

(65b)(
2k2

3 −v2
3

k2
1k2

2

− 2k2
1 −v2

1

2k2
2k2

3

− 2k2
2 −v2

2

2k2
3k2

1

+ 2

k2
3

− 1

k2
1

− 1

k2
2

)
1

a2 =
(

2v2
3

k2
3

− v2
1

k2
1

− v2
2

k2
2

)
Y,

(65c)(
k1

k2k3
− k2

k3k1

)
v3

k3
X − v1v2

2k1k2k2
3

1

a2 = v1v2

k1k2
Y, (65d)
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(
k2

k3k1
− k3

k1k2

)
v1

k1
X − v2v3

2k2k3k2
1

1

a2 = v2v3

k2k3
Y, (65e)

(
k3

k1k2
− k1

k2k3

)
v2

k2
X − v3v1

2k3k1k2
2

1

a2 = v3v1

k3k1
Y, (65f)

μt + pt = 1

f ′ (μ
m + pm) + μR + pR :

−1

6

[
k2

1 − 5v2
1

k2
2k2

3

+ k2
2 − 5v2

2

k2
3k2

1

+ k2
3 − 5v2

3

k2
1k2

2

− 2

(
1

k2
1

+ 1

k2
2

+ 1

k2
3

)]
1

a2

= 1

f ′ (μ
m + pm) + 1

3

(
3 + v2

1

k2
1

+ v2
2

k2
2

+ v2
3

k2
3

)
Y (66)

One must also have in mind that Eqs. (32), (35) and (46) are valid for this model, too.
Now, we undertake the compatibility analysis by considering again three cases:

1. v1 �= 0, v2 �= 0, v3 �= 0 : We first note that if k2 = k3, then Eqs. (64a) and

(65e) lead to Y = k2
1

2k2
2k2

3

1
a2 > 0 and Y = − 1

2k2
1

1
a2 < 0, respectively, whence a

contradiction since Y cannot be vanishing when k1 �= 0. Similarly, one cannot
have k3 = k1, otherwise one would have from (64b) and (65f) Y > 0 and Y < 0
simultaneously. On the other hand, if X = 0, then using again (64a) and (65e) we
get the similar contradiction. Consequently, as compatibility conditions, one must
have k1 �= k2 �= k3 and X �= 0. We seek now whether or not there is any condition
on vα’s. Subtracting Eqs. (65e) and (65f) from (65d) and dividing side by side we
get after rearranging

(
k2

2 − k2
3

)2
v2

1 +
(

k2
3 − k2

1

)2
v2

2 +
(

k2
1 − k2

2

)2
v2

3 = 0. (67)

This equation is satisfied if and only if for v1 = v2 = v3 = 0, contradicting our
starting assumption that v1 �= 0, v2 �= 0, v3 �= 0.

2. v1 �= 0, v2 �= 0, v3 = 0 : In this case the first three equations of the set (64a)–(64c)
reduce to

k2
1

2k2
2k2

3

1

a2 = Y,
k2

2

2k2
3k2

1

1

a2 = Y,
v1v2

k3

(
1

k2
1

− 1

k2
2

)
X = 0. (68)

They are compatible with each other if and only if k1 = k2 and Y > 0. But, for
k1 = k2, Eq. (65d) becomes −1/(2k2

3a2) = Y < 0, then contradicting Y > 0.
3. v1 �= 0, v2 = 0, v3 = 0 : In this case Eqs. (64b), (64c), (65d) and (65f) are trivially

satisfied, so the surviving equations are (64a), (65a,b,c,e) which simplify to

k2
1

2k2
2k2

3

1

a2 = Y, (69)
(

2k2
1 − v2

1

k2
2k2

3

− k2
2

k2
3k2

1

− k2
3

k2
1k2

2

+ 2

k2
1

− 1

k2
2

− 1

k2
3

)
1

a2 = 2v2
1

k2
1

Y, (70a)
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(
2k2

2

k2
3k2

1

− k2
3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

+ 2

k2
2

− 1

k2
3

− 1

k2
1

)
1

a2 = −v2
1

k2
1

Y, (70b)

(
2k2

3

k2
1k2

2

− 2k2
1 − v2

1

2k2
2k2

3

− k2
2

k2
3k2

1

+ 2

k2
3

− 1

k2
1

− 1

k2
2

)
1

a2 = −v2
1

k2
1

Y, (70c)

(
k2

k3k1
− k3

k1k2

)
v1

k1
X = 0. (70d)

In order that Eqs. (69) and (70d) be compatible with each other one must have either
a) Y > 0 and k2 = k3 or b) Y > 0 and X = 0.

(a) Y > 0 and k2 = k3: Eqs. (70a)–(70c) reduce then, to the following single equa-
tion:

(
2k4

1 − 2k2
1k2

2 − k2
1v2

1

) 1

a2 = 2v2
1k4

2Y, (71)

which, on substituting for Y from Eq. (69), leads to another compatibility condi-
tion

v2
1 = k2

1 − k2
2, (72)

which in turn implies that k1 > k2 = k3. Bearing in mind that we are left with only
one nontrivial equation (69), let us now consider the remaining key equation (66)
which then, on using (72) for v2

1, reduces to

1

6

4k2
1 − k2

2

k4
2

1

a2 = 1

f ′ (μ
m + pm) + 1

3

4k2
1 − k2

2

k2
1

Y. (73)

This equation in turn leads, on using Eq. (69) for Y , to

1

f ′ (μ
m + pm) = 0, (74)

contradicting then the assumption μm + pm �= 0.
(b) Y > 0 and X = 0: In this subcase, the surviving equations are (69), (70a), (70b)

and (70c). Subtracting Eq. (70c) from (70b) we get

3
(

k2
2 − k2

3

) (
k2

2 + k2
3 − k2

1

)
= 0, (75)

which implies k2 = k3 or k2
1 = k2

2 + k2
3. The case k2 = k3 together with Y > 0

was studied previously. So we have only to consider the latter case: k2
1 = k2

2 + k2
3

together with k2 �= k3. Then, Eq. (70a), on substituting for Y from (69), leads
that

v2
1 = 2k2

2k2
3

k2
2 + k2

3

. (76)
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Consequently, the required conditions for the compatibility of the above set of
nine equations (64a)–(65f) can be summarized as follows: Y = Y (t) > 0, X =
0, k2 �= k3, k2

1 = k2
2 + k2

3 and v2
1 = 2k2

2k2
3

k2
2+k2

3
. By making use of these conditions in

Eq. (66), it follows that

1

f ′ (μ
m + pm) = −1

2

(k2
2 − k2

3)2

k2
2k2

3(k2
2 + k2

3)

1

a2 < 0. (77)

On the other hand, from Eq. (46), we know that μm + pm = C
a4 when ȧ �= 0.

Then, using this in the above equation, we find

f ′ = −2Ck2
2k2

3(k2
2 + k2

3)

(k2
2 − k2

3)2

1

a2 . (78)

Thus, we are led now to determine the functional form of f (R), i.e., to reconstruct
an f (R)-gravity. Under the above conditions the expression (63) reduces to

R = 6
k4

2 + k4
3

(k2
2 + k2

3)2

(
ä

a
+ ȧ2

a2

)
+ 3

k2
2 + k2

3

1

a2 . (79)

On the other hand, consider the time derivative of the equation X = 0, which was
already given by Eq. (47) as

0 = Ẋ = 1

a

(
1

2
Y − 3

ȧ2

a2

)
, (80)

from which we get

Y = 6
ȧ2

a2 . (81)

Comparing this to Eq. (69), it is seen that

ȧ2 = 1

12

k2
2 + k2

3

k2
2k2

3

= constant, (82)

which integrates to

a(t) = At, with A = A(k2, k3) = 1

2
√

3

√
k2

2 + k2
3

k2k3
, (83)

where we have set the constant of integration to zero. This in turn implies that
ä = 0; then, taking into account also Eq. (82), Eq. (79) simplifies to

R = 1

2

k4
2 + k4

3 + 6k2
2k2

3

(k2
2 + k2

3)k2
2k2

3

1

a2 . (84)
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Using this, Eq. (78) becomes

f ′ (R) = − 4Ck4
2k4

3(k2
2 + k2

3)2

(k2
2 − k2

3)2(k4
2 + k4

3 + 6k2
2k2

3)
R, (85)

which then integrates to give

f (R) = −Cϒ2 R2 − 2�, with ϒ2 = 2k4
2k4

3(k2
2 + k2

3)2

(k2
2 − k2

3)2(k4
2 + k4

3 + 6k2
2k2

3)
, (86)

where the integration constant is taken as −2�. Thus, it appears that we have
succeeded to find a time dependent scale factor and to reconstruct f (R)-gravity
model. To know details of μm and pm , we notice first that Eq. (32) and (35)
integrate to give, on using (46), that μm = 3C/(4a4) − constant and pm =
C/(4a4) + constant. To get the value of the constant, let us make use of the
key equations (20a and b) which can be written as μm = f ′(μt − μR) and
pm = f ′(pt − pR). Then after some straightforward calculations, using the
dynamic quantities μt , μR , pt and pR and the aforementioned requirements
together with (83) and (86) it follows that

μm(t) = 3C

4a4(t)
− �, pm(t) = C

4a4(t)
+ �, (87)

from which we get a barotropic equation of state (EoS) pm = pm(μm), as

pm(t) − � = 1

3
(μm(t) + �). (88)

As a final remark, we note that in this case the gravito-electric and gravito- mag-
netic fields have the following values:

Eαβ = 0, H23 = 1

2
√

2

k2
2 − k2

3

k2k3(k2
2 + k2

3)

1

a2(t)
(89)

At this stage let us come back to GR case. Taking then f (R) as f (R) = R−2�, we

have f ′ = 1 and f ′′ = f ′′′ = 0, so X and Y reduce to X = ȧ
a2 and Y = 2

(
ä
a − ȧ2

a2

)
,

where we continue to suppose a = a(t). At this stage, we must point out that we
only have to consider here the case 3, since in cases 1 and 2, the incompatibility of
equations have been arisen regardless of the specific forms of the auxiliary functions
X and Y . Consequently, the corresponding analysis applies equally well to the case of
GR. Thus, we start from the case 3. First, we observe that the defining relations X = 0
and Y > 0 of the subcase 3.(b) are not compatible with the above expressions of the X
and Y , since the former gives a = constant for which Y becomes zero contradicting
Y > 0. Therefore, in this subcase, even a stationary model is not permitted. Consider
now the subcase 3.(a), for which the defining requirements are: Y > 0 and k2 = k3;
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and where, in addition, one has v2
1 = k2

1 − k2
2. Then, combining the expression of Y

with Eq. (69) we obtain the following second order differential equation

2

(
ä

a
− ȧ2

a2

)
= k2

1

2k4
2

1

a2 , (90)

which can be straightforwardly solved to give

a(t) = k1

2k2
2c1

cosh(c1t + c2), (91)

where c1 and c2 are two constants of integration. Hence, it seems that we have arrived to
find a time dependent scale factor a(t), meaning that we have an expanding, shear-free
and rotating model in GR. But, unfortunately, this is not the case, since the perfect fluid
is still subject to Eq. (74), thereby violating the crucial condition that μm + pm �= 0, as
can be verified directly using μm = 3k2

2/k2
1 −� and pm = −3k2

2/k2
1 +�, calculated

following similar way as in obtaining Eq. (87). This special form of the Bianchi-type
IX model constitutes another concrete example supporting the validity of the shear-free
conjecture in GR.

Before passing to the discussion of our results, in order to relate our work to the
linear analysis presented in Ref. [25], let us investigate also what one would obtain if
one has used instead of the full non-linear tetrad equations, the linearized ones about
a FLRW background. Omitting the details, it results that the terms v2

1 are discarded
from the equations, and we have that k1 = k2 = k3 ≡ k as compatibility conditions
of the set of Eqs. (69)–(70d) with Y = 1/(2k2a2). Consequently, for a barotropic EoS
pm = wμm , we have from Eq. (66)

1

3
3 R = (1 + w)μm

f ′ + Y, (92)

where μm = μ0a−3(1+w) and 3 R = 3/(2k2a2), 3 R being the 3-curvature. It follows
that, Eq. (92) reduce to (1 + w)μm/ f ′ = 0, leading to μm + pm = 0, provided that
μm �= 0.

We notice that the linearized equation (92) is, in fact, just the tetrad version of
the Eq. (55) or (67) of Ref. [25]. This can be seen as follows. Using the following
linearized identity for shear-free congruences

curlcurlωa = 1

3
3 Rωa − D2ωa, (93)

and suitable constraint equations, one can express D2ωa as

D2ωa = 1

3
3 Rωa − 4

3
θ̇ωa + ηbc

a Dbqt
c. (94)

Then, converting the last term into tetrad form as

ηbc
a Dbqt

c → εβγ
α (eβ − aβ)qt

γ − nγ
αqt

γ , (95)
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we get

D2ω1 =
(

1

3
3 R − 1

k2a2

)
ω1 =

(
1

3
3 R − 2Y

)
ω1 = −1

3
3 Rω1, (96)

which, on substituting into Eq. (55) or (67) of Ref. [25], gives the desired result.
The above considerations show that in the context of f (R)-gravity, Eq. (55) or (67)

of Ref. [25] do not admit a solution which does not violate the Ellis condition θω = 0,
provided that μm + pm �= 0 and μm �= 0. The above result gives a concrete illustration
of the fact that the non-existence of a linearized solution does not necessarily imply the
non-existence of an exact solution of the full non-linear field equations. Conversely,
one cannot infer from the existence of a linearized solution the existence of an exact
solution; since, as stated in the Introduction, it may happen that this linearized solution
may not be a particular solution or a limit of the exact solution (on the doubts about the
linearization procedure see [33,34] and especially, Sec. 4.5 of Ref. [21]). However,
despite these perils one cannot say that the linearization procedure is useless. For
instance, it can serve to guess the existence of a solution which, of course, has to
be checked by using the full non-linear field equations [47]. In this sense, for more
general spacetimes, making use of a metric approach together with tetrad equations
can accomplish this goal.

4 Conclusions

In this paper, adopting a metric based approach we have sought whether or not the
general relativistic shear-free conjecture has a counterpart within the f (R)-gravity
framework. We had tentatively chosen as illustrative examples, three shearless, rotat-
ing and expanding spatially homogeneous spacetimes and investigated whether these
are allowed as solutions of the f (R)-gravity field equations with a perfect fluid matter
as source. The rotation is introduced in these metrics via the threading shift 1-form
while the overall expansion is expressed in terms of a single time dependent scale
factor. In order to calculate the field equations for a given metric, a direct and practical
method is to use exterior differential calculus. However, we have followed a somewhat
different but an equivalent method by making use of the already established general
relativistic orthonormal tetrad evolution and constraint equations given in [41], but
extending them to the f (R)-gravity case. Through the adoption of the effective fluid
approach developed in [36–38], we have been able to directly translate the general
relativistic tetrad equations into the f (R)-gravity case, thereby, have avoided to deal
with fourth order equations. A further advantage of making use of the total set of
f (R)-gravity extended tetrad equations is that the integrability conditions are auto-
matically incorporated into the set. As a result, we have obtained a closed although
overdetermined set of equations in the unknowns a(t), μm, pm and f (R). Under the
requirement that μm + pm �= 0, the analysis of the compatibility of this set of the
equations with respect to parameters kα and vα , as well as to the assumption of a time
dependent scale factor provided us the following results.
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It has been shown by the authors of [22] that an expanding type Gödel universe is
not allowed in GR. Here we have shown that a further generalized version of the Gödel
universe, by introducing parameters K and S, is also not allowed as solution in f (R)-
gravity. Moreover, as a byproduct, we have found that even a stationary rotating Gödel
universe does not exist in this modified theory whatsoever the functional form of the
f (R) provided that f (R) �= R − 2�. Rotating Bianchi-type II model is not allowed
in f (R)-gravity, either. This is due to the fact that, in cases v1 �= 0, v2 �= 0, v3 �= 0
and v1 �= 0, v2 �= 0, v3 = 0, the set of equations leads to a contradiction by virtue of
the requirement k1 �= 0, while in the case v1 �= 0, v2 = 0, v3 = 0, the compatibility
with μm + pm �= 0 is not ensured.

As a last example we have considered rotating type Bianchi-IX model. For this
model, we have found that the overall compatibilities of equations are ensured only in
the case of v1 �= 0, v2 = 0, v3 = 0, under the requirements k2 �= k3, k2

1 = k2
2 +k2

3 and
v2

1 = 2k2
2k2

3/(k2
2 + k2

3). Then, we have been able to obtain solutions for a(t), μm and
pm as given in Eqs. (83) and (87), respectively, and to reconstruct the f (R)-gravity as
shown in (86). In what follows, we discuss these solutions without entering into the
discussions either on energy conditions in f (R)-gravity [48,49] or on viability of an
f (R) model.

Firstly, we note that, in Eq. (46) C may take on negative values since it simply
represents an arbitrary integration constant. Then, depending on the values of μm and
pm in the combination μm + pm, C may be either positive or negative. By adopting
the natural assumption that μm > 0 and by considering Eq. (87) together with (83),
we see that, according to the signs of C and �, four cases occur; then, denoting a
critical time by t∗ ≡ (1/A) |C/(4�)|1/4 obtained by making use of the assumption
μm > 0 and Eqs. (83) and (87), it is straightforward to see that:

1. C > 0,� > 0: in this case, we have μm(t <
4
√

3t∗) > 0 and pm(t <
4
√

3t∗) > 0,
namely, a positive pressure,

2. C > 0,� < 0: the condition μm(t) > 0 is ensured for all t and we have either
pm(t < t∗) > 0 or pm(t > t∗) < 0, thus we have a positive or
negative pressure depending on t ,

3. C < 0,� > 0: this case is unphysical, since μm(t) < 0 for all t ,
4. C < 0,� < 0: in this case, we have μm(t >

4
√

3t∗) > 0 and pm(t >
4
√

3t∗) < 0,
that is a negative pressure.

A negative pressure refers, in general, to an unrealistic form of matter, such as
scalarons, strings or Chaplygin gas, giving rise to the violation of various energy
conditions. However, they are in current usage for modeling the matter content of
the universe. Here, a negative pressure arises in both cases 2 and 4, while a positive
pressure arises in both cases 1 and 2. It is also possible to discuss the sign of the pressure
with respect to �, using the EoS given by Eq. (88); however, we only indicate here that
in the particular case of a vanishing �, the EoS reduces to pm = (1/3)μm showing
that the universe is filled with pure radiation. On the other hand, we see that, in all the
above cases, irrespectively of the sign of the pressure, the scale factor a(t) exhibits an
expansion behavior linear in t , like that of a flat Milne model in GR. Thus, we have a
coasting universe model, expanding anisotropically in three directions with different
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scale factors k1 At, k2 At and k3 At and rotating about the e1 axis with a time dependent
vorticity of magnitude ω1(t) = √

6k2k3/(k2
2 + k2

3)t−1.
Let us now return to the f (R)-model given in Eq. (86). We see that the sign of the

R2-term depends on the sign of the constant C ; it is negative when C > 0, leading to an
“ f (−R2)-gravity”, and positive when C < 0, leading then to an “ f (+R2)-gravity”.
In the latter case, we have a negative pressure (case 4), while in the former case, we
have a positive pressure (cases 1 and 2), however, a negative pressure is possible, either
(case 2). Thus, a physically realistic ordinary matter having a positive pressure holds
only in the f (−R2) model. All that can be said, about the unfamiliar minus sign, is
that, at theoretical level, there are no a priori reasons to reject this model.

Another interesting situation to point out is that, according to Eq. (89), this shear-
free rotating and expanding Bianchi-type IX model is purely gravito-magnetic solution
[50], that is, Eαβ = 0 �= Hαβ giving rise to gravitational waves.

We conclude that in f (R)-gravity theory there are situations where a shear-free
perfect fluid could have simultaneous rotation and expansion, thereby showing that
there is no counterpart of the general relativistic shear-free conjecture in this modified
theory of gravity. In this context, it would be of interest to find further examples other
than our Bianchi-type IX model and the one found in [25].
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