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Abstract We analyze in detail conformally flat spherically symmetric fluid distrib-
utions, satisfying a polytropic equation of state. Among the two possible families of
relativistic polytropes, only one contains models which satisfy all the required physical
conditions. The ensuing configurations are necessarily anisotropic and show interest-
ing physical properties. Prospective applications of the presented models to the study
of super-Chandrasekhar white dwarfs, are discussed.

Keywords Relativistic polytropes · Anisotropic fluids · Stellar models

1 Introduction

In two recent papers the general formalism to study polytropes for anisotropic matter
has been reported, both in the Newtonian [1] and in the general relativistic regimes
[2]. The motivations to undertake such a task were exposed in detail in [2] accordingly
we shall not repeat them here.
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1827 Page 2 of 16 L. Herrera et al.

The theory of polytropes is based on the polytropic equation of state, which in the
Newtonian case reads

P = Kργ0 = Kρ1+1/n
0 , (1)

where P and ρ0 denote the isotropic pressure and the mass (baryonic) density, respec-
tively. Constants K , γ , and n are usually called the polytropic constant, polytropic
exponent, and polytropic index, respectively.

In the general relativistic anisotropic case, two extensions of the above equation of
state are possible, namely:

1.
Pr = Kργ0 = Kρ1+1/n

0 , (2)

i.e. the original polytropic equation of state (1) is conserved, and from simple
thermodynamic considerations it follows that the total energy density ρ and the
baryonic (mass density) ρ0 are related through the equation (see [2] for details)

ρ = ρ0 + n Pr , (3)

where Pr denotes the radial pressure (see below).
2.

Pr = Kργ = Kρ1+1/n . (4)

In this case the baryonic density ρ0 is replaced by the total energy density ρ in the
polytropic equation of state. Also, it can be shown that the relationship between
the two densities is given by (see [2] for details)

ρ = ρ0(
1 − Kρ1/n

0

)n . (5)

As it should be expected, the assumption of either (2) or (4) is not enough to integrate
completely the field equations, since the appearance of two principal stresses (instead
of one as in the isotropic case) leads to a system of two equations for three unknown
functions.

Thus in order to integrate the obtained system of equations we need to provide
further information about the anisotropy inherent to the problem under consideration.
For doing that, in Ref. [2] the particular ansatz of Ref. [3] has been assumed, which
allows specific modelling. This method links the obtained models continuously with
the isotropic case.

Here we shall proceed differently. In order to integrate our equations we shall
assume the vanishing of the Weyl tensor (conformally flat condition). The motivation
for this assumption is based on the role of the Weyl tensor in the structure and evolution
of self-gravitating systems. Indeed, for spherically symmetric distributions of fluid, the
Weyl tensor may be defined exclusively in terms of the density contrast and the local
anisotropy of the pressure (see Sect. 3), which in turn are known to affect the fate of
gravitational collapse (see Refs. [4–13] and references therein). Thus, the vanishing of
the Weyl tensor establishes a specific relationship between density contrast and local
anisotropy of pressure.
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Furthermore, the conformally flat condition implies energy density homogeneity
for the perfect (isotropic pressure) fluid sphere. This in turn implies that there are not
bounded isotropic (in pressure) conformally flat polytropes. Accordingly, our mod-
els are necessarily anisotropic (in pressure), and are not continuously linked to the
isotropic sphere. The specific anisotropy, resulting from the two basic assumptions
(conformal flatness and polytropic equation of state), is related to the density contrast,
and depends only on the two parameters characterizying each model.

In the next section we shall briefly review the main aspects of the anisotropic
polytropes. Next, in Sect. 3, we incorporate the conformally flat condition into our
formalism. Section 4 is devoted to the analysis of the obtained models. For these models
we shall also calculate the Tolman mass, whose behaviour allows to characterize them
in more detail.

Finally, we shall conclude with a summary, and some possible extensions, of our
results.

2 The general relativistic polytrope for anisotropic fluid

We consider spherically symmetric static distributions of anisotropic fluid (principal
stresses unequal), bounded by a spherical surface�, defined by the equation r = r� =
const.

The line element is given in Schwarzschild-like coordinates by

ds2 = eνdt2 − eλdr2 − r2
(

dθ2 + sin2 θdφ2
)
, (6)

where ν and λ are functions of r . We number the coordinates: x0 = t; x1 = r; x2 =
θ; x3 = φ. We use geometric units and therefore we have c = G = 1.

If we allow the principal stresses to be unequal, then the energy momentum tensor
in the canonical form reads

Tμν = ρuμuν − Phμν +	μν , (7)

where ρ is the energy density, P is the isotropic pressure, and 	μν the anisotropic
pressure tensor, with

hμν = δμν − uμuν, 	μν = 	

(
sμsν + 1

3
hμν

)
, (8)

where
uμ =

(
e−ν/2, 0, 0, 0

)
, (9)

denotes the four velocity of the fluid, and sμ is defined as

sμ = (0, e−λ/2, 0, 0), (10)

satisfying sμuμ = 0, sμsμ = −1.
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For our purposes in this work, it would be more convenient to introduce the follow-
ing two auxiliary variables, Pr and P⊥, hereafter referred to as the radial and tangential
pressures, respectively:

Pr = sαsβTαβ, P⊥ = kαkβTαβ, (11)

where kα is a unit spacelike vector (orthogonal to uα and sα).
In terms of the above variables, we have

	 = Pr − P⊥; P = Pr + 2P⊥
3

, (12)

from where the physical meaning of Pr and P⊥ becomes evident, and the energy
momentum can be written under the form

Tμν = (ρ + P⊥) uμuν − P⊥gμν + (Pr − P⊥) sμsν . (13)

The metric (6) has to satisfy Einstein field equations which in our case read [2]:

ρ = − 1

8π

[
− 1

r2 + e−λ
(

1

r2 − λ′

r

)]
, (14)

Pr = − 1

8π

[
1

r2 − e−λ
(

1

r2 + ν′

r

)]
, (15)

P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)]
, (16)

where prime denotes derivative with respect to r .
At the outside of the fluid distribution, the spacetime is that of Schwarzschild, given

by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2
(

dθ2 + sin2 θdφ2
)
, (17)

In order to match smoothly the two metrics above on the boundary surface r = r� ,
we must require the continuity of the first and the second fundamental forms across
that surface (Darmois conditions). Then it follows

eν� = 1 − 2M

r�
, (18)

e−λ� = 1 − 2M

r�
, (19)

Pr� = 0, (20)

where the subscript � indicates that the quantity is evaluated at the boundary surface
�.

123



Conformally flat polytropes Page 5 of 16 1827

From the previous expressions it is a simple matter to prove that the hydrostatic
equilibrium equation now reads

P ′
r = −ν

′

2
(ρ + Pr )+ 2 (P⊥ − Pr )

r
. (21)

This is the generalized Tolman-Opphenheimer-Volkoff equation for anisotropic matter.
Alternatively, using

ν′

2
= m + 4π Prr3

r (r − 2m)
, (22)

we may write

P ′
r = − (m + 4π Prr3)

r (r − 2m)
(ρ + Pr )+ 2 (P⊥ − Pr )

r
, (23)

where the mass function m(r), as usually, is defined by

e−λ = 1 − 2m/r, m(r) = 4π
∫ r

0
ρr2dr . (24)

We shall consider the two cases defined by Eqs. (2) and (4), to extend the polytropic
equation of state to anisotropic matter. In order to close the system of resulting equa-
tions, we shall further assume the vanishing of the Weyl tensor.

All the models have to satisfy physical requirements such as:

ρ > 0,
Pr

ρ
≤ 1,

P⊥
ρ

≤ 1. (25)

We shall next proceed to describe briefly each case (see Ref. [2]) for details).

2.1 Case I

Assuming Eq. (2), let us introduce the following variables

α = Prc/ρc, r = ξ/A, A2 = 4πρc/α(n + 1), (26)

ψn
0 = ρ0/ρ0c, v(ξ) = m(r)A3/(4πρc), (27)

where subscript c indicates that the quantity is evaluated at the center. At the boundary
surface r = r� (ξ = ξ�) we have ψ0(ξ�) = 0.

Then, the generalized Tolman–Opphenheimer–Volkoff equation becomes

ξ2 dψ0

dξ

[
1 − 2(n + 1)αv/ξ

(1 − nα)+ (n + 1)αψ0

]
+ v + αξ3ψn+1

0

+ 2�ψ−n
0 ξ

Prc(n + 1)

[
1 − 2α(n + 1)v/ξ

(1 − nα)+ (n + 1)αψ0

]
= 0, (28)

where � = −	 = P⊥ − Pr .
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On the other hand we obtain from the mass function definition (24) and Eq. (14),

m′ = 4πr2ρ (29)

or
dv

dξ
= ξ2ψn

0 (1 − nα + nαψ0). (30)

In this case, conditions (25) read

nα < 1,
αψ0

1 − nα + nαψ0
≤ 1,

3v/ξ3 + αψn+1
0

ψn
0 (1 − nα + nαψo)

− 1 ≤ 1. (31)

Combining Eqs. (28) and (30) we are led to the generalized Lane-Emden equation
for this case (see Ref. [2]).

2.2 Case II

In this case the assumed equation of state is (4), then, introducing

ψn = ρ/ρc, (32)

the generalized Tolman–Opphenheimer–Volkoff equation becomes

ξ2 dψ

dξ

[
1 − 2(n + 1)αv/ξ

1 + αψ

]
+ v + αξ3ψn+1

+ 2�ψ−nξ

Prc(n + 1)

[
1 − 2α(n + 1)v/ξ

1 + αψ

]
= 0, (33)

and from Eq. (29)
dv

dξ
= ξ2ψn . (34)

In this case, conditions (25) read:

ρ > 0, αψ ≤ 1,
3v

ξ3ψn
+ αψ − 1 ≤ 1. (35)

Once again, the combination of Eqs. (33) and (34) leads to the generalized Lane-Emden
equation for this case (see Ref. [2] for details).

Equations (28), (30) or (33), (34), form a system of two first order ordinary dif-
ferential equations for the three unknown functions: ψ(ψ0), v,�, depending on a
duplet of parameters n, α. Thus, it is obvious that in order to proceed further with
the modeling of a compact object, we need to provide additional information. Such
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information, of course, depends on the specific physical problem under consideration.
For the reasons exposed in the Introduction, here we shall assume the conformally flat
condition (vanishing of the Weyl tensor).

3 The Weyl tensor and the conformally flat condition

In the spherically symmetric case, it can be shown that all the non-vanishing compo-
nents of the Weyl tensor Cαγβδ can be expressed through the component C3

232 (see
Ref. [14] for details). Thus, the Weyl tensor is described by the single function

W ≡ r

2
C3

232 = r3e−λ

6

(
eλ

r2 + ν′λ′

4
− 1

r2 − ν′2

4
− ν′′

2
− λ′ − ν′

2r

)
. (36)

Then, the following relation may be established (see for example Ref. [14])

W = −4

3
π

∫ r

0
r3ρ′dr + 4

3
πr3 (Pr − P⊥) . (37)

The above equation expresses the Weyl tensor in terms of the energy density contrast
and the local anisotropy of pressure.

It has been shown in Ref. [15] that the conformally flat condition (W = 0) can be
integrated, producing (see Refs. [15] for details)

eν = B̃2r2 cosh2
[∫

eλ/2

r
dr + C̃

]
(38)

where B̃ and C̃ are constants of integration.
Thus the conformally flat condition reduces the number of unknown functions,

which in turn allows us to integrate either Eqs. (28–30) or (33–34).
However, instead of using Eq. (38), we shall proceed differently.
First, we observe that from Eqs. (15), (16) and W = 0, it follows that:

� = r

8π

(
e−λ − 1

r2

)′
, (39)

producing for the case I,

� = ρc

[
3v

ξ3 − ψn
0 (1 − nα + nαψ0)

]
, (40)

where Eqs. (26) and (30) have been used.
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Feeding back this last expression into Eq. (28), we obtain

ξ2 dψ0

dξ

[
1 − 2(n + 1)αv/ξ

(1 − nα)+ (n + 1)αψ0

]
+ v + αξ3ψn+1

0

+ 2ψ−n
0 ξ

α(n + 1)

[
1 − 2α(n + 1)v/ξ

(1 − nα)+ (n + 1)αψ0

] [
3v

ξ3 − ψn
0 (1 − nα + nαψ0)

]
= 0. (41)

Thus for the case I, the two equations describing the conformally flat polytrope are
(30) and (41), which is a system of two equations for two unknown functions, and can
be solved for any set of the parameters n, α.

For the case II we obtain

� = ρc

(
3v

ξ3 − ψn
)
, (42)

producing

ξ2 dψ

dξ

[
1 − 2(n + 1)αv/ξ

1 + αψ

]
+ v + αξ3ψn+1

+ 2ψ−nξ

α(n + 1)

[
1 − 2α(n + 1)v/ξ

1 + αψ

] (
3v

ξ3 − ψn
)

= 0. (43)

Thus in this latter case, the two equations fully describing the polytrope are (34)
and (43).

It will be useful to calculate the Tolman mass, which is a measure of the active
gravitational mass (see Refs. [8,16] and references therein), and which may be written
as

mT = e(ν+λ)/2(m + 4π Prr3). (44)

Alternatively, the following expression can be found for the Tolman mass (see Eq.
(32) in Ref. [14])

mT = M

(
r

r�

)3

+r3
∫ r�

r
e(ν+λ)/2

[
3

r̃4 W − 4π�

r̃

]
dr̃ . (45)

The functions λ, m and Pr in the above expressions, are obtained directly by inte-
gration of Eqs. (41) and (30) for the case I, and Eqs. (34) and (43), for the case II.
Thus we only need an expression for ν which can be obtained directly from Eq. (38).
However it is easier to obtain ν directly from the integration of Eq. (22).

Thus we have,

ν = ν� − 2
∫ r�

r

(
m + 4π Prr3

)

r(r − 2m)
dr. (46)
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In order to see how the Tolman mass distributes through the sphere in the process
of contraction (slow and adiabatic), it would be convenient to introduce the following
dimensionless variables:

x = r

r�
= ξ

Ã
, y = M

r�
, m̃ = m

M
, Ã = r� A. (47)

Then, using Eq. (45) we find for the the cases I and II, respectively:

mT

M
= x3 − α(n + 1)x3 Ã2

y

∫ 1

x

{√
1 − 2y

1 − 2vα(n + 1)/ Ãx
exp

⎧⎨
⎩−α(n + 1)

Ã

∫ 1

x

v + Ã3x3αψn+1
0

x2
[
1 − 2vα(n + 1)/ Ãx

]dx

⎫⎬
⎭
�dx

x

⎫⎬
⎭ , (48)

mT

M
= x3 − α(n + 1)x3 Ã2

y

∫ 1

x

{√
1 − 2y

1 − 2vα(n + 1)/ Ãx
exp

⎧⎨
⎩−α(n + 1)

Ã

∫ 1

x

v + Ã3x3αψn+1

x2
[
1 − 2vα(n + 1)/ Ãx

]dx

⎫⎬
⎭
�dx

x

⎫⎬
⎭ , (49)

where the fact that
y = α(n + 1)

v�

ξ�
, (50)

has been used, and we have introduced the quantity � defined by

� ≡ �

ρc
. (51)

Using Eqs. (40) and (42), we obtain for the cases I and II, respectively:

� =
[

3v

ξ3 − ψn
0 (1 − nα + nαψ0)

]
, (52)

and

� =
(

3v

ξ3 − ψn
)
. (53)

The full set of equations deployed above has been integrated for both cases (I
and II), and a wide range of values of different parameters (n, α). In what follows
we analyze the most relevant results emerging from a selection of the whole set of
obtained models.
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Fig. 1 Case I: Each point represents a duplet [n,α (multiplied by 108)] for which the conditions (31) are
satisfied in the whole distribution

4 Results

Using the boundary conditions
v(0) = 0, (54)

for both cases, and

ψ0(0) = 1, ψ0(ξ�) = 0, ψ(0) = 1, ψ(ξ�) = 0. (55)

depending on the respective case.
We have integrated numerically Eqs. (30), (41) and (34), (43), using the four order

Runge–Kutta method. We stopped the integration once the surface ξ� is reached.
Near ξ = 0 we set the asymptotic approximation dψ0/dξ = 0 and dψ/dξ = 0,
respectively. To calculate integrals in Eqs. (48) and (49) we used a simple second
order midpoint recursive formula.

4.1 Case I

Figure 1 depicts the region of allowed solutions [those satisfying all the requirements
(31)]. We observe that physically admissible solutions exist only for very small val-
ues of α, meaning that the fluid around the centre is far from the relativistic regime.
Notwithstanding, as shown in Fig. 2, for a range of values of n, the resulting con-
figurations may be quite compact, approaching in some cases the value y = 0.41,
close to the upper limit for isotropic spheres (y = 0.44). It is worth recalling that the
local anisotropy of pressure has a direct impact on the maximal value of the surface
potential (see Refs. [17–26] and references therein).

Figures 3 and 4 show the integration of Eqs. (41) and (30), for the indicated values
of the duplet n, α. However the behaviour exhibited in both figures, is qualitatively
representative for any other values of the parameters n, α (among those that produce
physically admissible models).

We observe that while the mass function is a monotonically increasing function of
the radial coordinate (as expected), the spatial derivative of ψ0 changes of sign within
the sphere. This last behaviour, of course, is possible by the anisotropy of the fluid,
and cannot be present in locally isotropic models.
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Fig. 2 Case I: y as a function of n for α: 8 × 10−11 (curve a), 10−10 (curve b), 2 × 10−10 (curve c),
4 × 10−10 (curve d). The inserted graph shows the same function in the interval n ∈ [0.9, 1.1]

Fig. 3 Case I: ψ0 (multiplied by 10−10) as a function of x for n = 1 and α(y): 8 × 10−11(0.3991) (curve
a), 10−10(0.4019) (curve b), 2 × 10−10(0.3998) (curve c), 4 × 10−10(0.3858) (curve d). The inserted
graph shows the first two points of ψ0 (not multiplied by 10−10) as a function of x (multiplied by 105).
Curves from left to right correspond to curves a → d. The parameter choice is qualitatively representative
of all models
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Fig. 4 Case I: v/v� as a function of x for n = 1 and α(y): 8 × 10−11(0.3991) (curve a), 10−10(0.4019)
(curve b), 2 × 10−10(0.3998) (curve c), 4 × 10−10(0.3858) (curve d)

Fig. 5 Case I: mT /M as a function of x for n = 1 and α(y): 8×10−11(0.3991) (curve a), 10−10(0.4019)
(curve b), 2 × 10−10(0.3998) (curve c), 4 × 10−10(0.3858) (curve d)

The behaviour of the Tolman mass is also very peculiar. Indeed, looking at Fig. 2,
we see that for the models depicted in Figure 5, the slow (adiabatic) contraction of the
system is described by the sequence d → a → c → b, corresponding to the evolution

123



Conformally flat polytropes Page 13 of 16 1827

Fig. 6 Case I: � (multiplied by 10−10) as a function of x for n = 1 and α(y): 8 × 10−11(0.3991) (curve
a), 10−10(0.4019) (curve b), 2 × 10−10(0.3998) (curve c), 4 × 10−10(0.3858) (curve d)

from smaller to larger values of y. Obviously, more stable configurations support larger
surface gravitational potentials (larger y). Therefore, this sequence corresponds to the
evolution from the less stable (smaller y), to the more stable (larger y) object. Let us
now try to understand such a behaviour at the light of Fig. 5

First of all, we observe that for the cases d and c, there is a sharper migration of the
Tolman mass towards the boundary surface, than the one exhibited by a and b. Such
an effect might suggest, due to the physical interpretation of the Tolman mass as a
measure of the active gravitational mass, more stability of the former configurations,
than the latter ones. But this is at variance with the previous conclusion indicating
that the less stable model is described by the curve d. On the other hand, however, we
observe from Fig. 5, that the Tolman mass is not a monotonically increasing function of
the radial coordinate, for the cases c and d. The fact that the value of the Tolman mass,
which we recall is a measure of the active gravitational mass, could be in some region,
smaller than the value corresponding to an outer one, could be easily interpreted as a
source of instability. In particular, it suggests the possibility of a cracking (splitting)
under perturbations [27,28].

Thus, the distribution of the Tolman mass within the source, is characterized by
two distinct physical properties, with opposite effects. One is the migration of the
Tolman mass towards the surface: sharper it is, more stable is the model. This is
a stabilization factor. The second, is the change in the sign of its spatial derivative:
larger absolute values of negative derivatives enhance the instability of the object. This
is a destabilizing factor. The superposition of these two factors leads to the specific
degree of (un)stability of each model. It is also worth noticing, as shown in Fig. 6,
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that curves c and d correspond to smaller (absolute) values of the anisotropy (�) in
the outer regions, and larger ones in the inner regions.

4.2 Case II

For the case II we have run the program for an extensive range of values of the duplet
n, α, the final result of all these attempts being that none of the obtained models satisfy
all the physical conditions (35). Since, in general, there exist anisotropic polytropes
belonging to this case (see for example [2]), it is clear that physically meaningful
models of this case, are ruled out by the conformally flat condition. However we do
not know which (if any), is the specific rationale underlying this fact.

5 Conclusions

We have resorted to the general method developed in Ref. [2] for the study of locally
anisotropic polytropes, and we have applied it to the specific case of conformally flat
spheres. Our models are necessarily anisotropic (in pressure) and therefore are not
continuously linked to isotropic polytropes. Another family of anisotropic distribu-
tions, whose space of solutions is not simply connected to the isotropic case, may be
found in Ref. [29].

Our solutions enabled us to construct models of highly compact spheres. The fact
that such compact spheres are in equilibrium even though the fluid in the neighborhood
of the center is far from the relativistic regime (α � 1), is explained by the specific
anisotropy of pressure within the fluid distribution. This also explains the change of
sign in the gradients of ψ0 and the Tolman mass, and its peculiar distribution within
the source. These two last effects, in turn, determine the (un)stability of the models,
and suggest, whenever the destabilizing factor prevails over the stabilization factor, the
possible appearance of cracking in the fluid distribution, produced by perturbations of
the fluid. Our models also seem to indicate that while the parameter α provides a good
description about the regime of the fluid distribution in the isotropic case, it does no
longer do so if pressure anisotropy is present.

Finally, although the specifics are out of the scope of this manuscript, it is worth
mentioning that the models presented here could be useful in the discussion about the
possible existence of super-Chandrasekhar white dwarfs.

Indeed, recent astrophysical evidence reveals the existence of overluminous type I a
supernovae [30–35]. One natural way to explain such observational data is to assume
the existence of white dwarfs with masses above the Chandrasekhar limit, and which
could act as the progenitors of such super luminous type I a supernovae [30–35]. In
order to assure the existence of such super-Chandrasekhar white dwarfs, two different
mechanisms have been invoked so far. On the one hand, it has been shown that the
Chandrasekar limit can be violated in the presence of strong magnetic fields [36–42].
On the other hand, specific charge distributions have been assumed, which also allows
the existence of such super-Chandrasekhar white dwarfs [43].

At this point, four observations are in order:
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• The magnetic field may be treated as an anisotropic fluid. Indeed, it is a well-
established fact that a magnetic field acting on a Fermi gas produces pressure
anisotropy (see Refs. [44–47] and references therein).

• It should be emphasized that even though the spherical symmetry may be broken
by the presence of a strong magnetic field, the assumption of such a symmetry
may be considered as a good approximation under a variety of circumstances (see
[39,48,49]).

• In both cases, the configurations are expected to be quite compact (large values of
y).

• As we have seen, highly compact configurations may be obtained with the specific
distribution of anisotropy created by the conformally flat condition.

From the above comments, an obvious question arises: can we obtain a distribution
of local anisotropy (similar to the one of our models) by means of a physically mean-
ingful, magnetic field and/or charge distribution, of the type one could expect to find
in a white dwarf ? As important as it is, the answer to such a question lies beyond the
scope of this work.

On the basis of all these comments, we envisage two possible directions to extend
the results presented here:

1. Provide a physical picture for a source of the anisotropy, characteristic of the
conformally flat models.

2. Apply the formalism which has been developed to detect the occurence of cracking
[27], to the models considered here.
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