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Abstract We elaborate on a previous proposal by Hartman and Maldacena on a tensor
network which accounts for the scaling of the entanglement entropy in a system at
a finite temperature. In this construction, the ordinary entanglement renormalization
flow given by the class of tensor networks known as the Multi Scale Entanglement
Renormalization Ansatz (MERA), is supplemented by an additional entanglement
structure at the length scale fixed by the temperature. The network comprises two
copies of a MERA circuit with a fixed number of layers and a pure matrix prod-
uct state which joins both copies by entangling the infrared degrees of freedom of
both MERA networks. The entanglement distribution within this bridge state defines
reduced density operators on both sides which cause analogous effects to the presence
of a black hole horizon when computing the entanglement entropy at finite tempera-
ture in the AdS/CFT correspondence. The entanglement and correlations during the
thermalization process of a system after a quantum quench are also analyzed. To this
end, a full tensor network representation of the action of local unitary operations on
the bridge state is proposed. This amounts to a tensor network which grows in size
by adding succesive layers of bridge states. Finally, we discuss on the holographic
interpretation of the tensor network through a notion of distance within the network
which emerges from its entanglement distribution.
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1 Introduction

Since its initial formulation, the AdS/CFT correspondence [1–4] has provided a huge
amount of valuable knowledge related with the study of non-perturbative effects in
quantum field theory, despite a method to explicitly construct a bulk gravity theory
from a boundary field theory without invoking its string theory roots, is still lacking
[5]. Nowadays, it is also widely accepted a renormalization group interpretation of the
correspondence, in which the renormalization scale becomes the extra radial dimension
of the AdS duals while the beta functions of the boundary field theory are the saddle
point equations of motion of the bulk gravity theory [6,7].

Recently, the study of entanglement in strongly correlated quantum many body
systems has provided a set of real space quantum renormalization group methods
such as the density matrix renormalization group (DMRG) [8], and the tensor network
state (TNS) representations. The later includes matrix products states (MPS) [9], pro-
jected entangled-pair states (PEPS) [10], multi-scale entanglement renormalization
ansatz (MERA) [11], tensor renormalization group (TRG) [12], tensor-entanglement-
filtering renormalization (TEFR) [13] and algebraically contractible tensor network
representations [14]. A tensor network description of the wavefunction of a quantum
many body system is given by a collection of tensors whose values are determined by
means of a variational search procedure. Those are connected into a network while the
number of parameters defining them is much smaller than the dimension of the full
system’s Hilbert space. This allows an efficient representation of the wavefunction of
the system in the thermodynamic limit.

In [15], tensor network states have been classified according to the connectivity
of the sites within the network. On one hand, there are networks that reproduce the
physical connectivity between the sites as specified by the pattern of interactions
dictated by the Hamiltonian. The MPS representation for one dimensional systems and
its generalization for higher dimensional systems, lie within this category. Otherwise,
there are tensor network representations in which the tensor connectivity organizes the

123



Entanglement, tensor networks and black hole horizons Page 3 of 23 1823

quantum entanglement within that state along different length scales associated with
successive coarse grained versions of the original lattice. These representations span
an additional dimension related with the RG scale which has led to define a generalized
notion of holography inspired by the AdS/CFT correspondence [16]. After the initial
proposal, a substantial amount of work has appeared supporting and extending the
original idea [15,17–27].

In this work, based on a previous proposal by Hartman and Maldacena [17], we
elaborate on a tensor network which accounts for the scaling behaviour of the entan-
glement entropy in a quantum system at finite temperature. There, authors depart
from the thermofield double construction of the eternal black hole [28,29] to pro-
pose a tensor network which doubles the standard MERA for a pure state [17,19,20].
Here, we provide a detailed tensor network construction which implements such a
proposal by introducing a bridge state between both copies of the MERA network.
This network also accounts for the behaviour of the entanglement and correlations
during the thermalization process of a system after a quantum quench. To this end, a
tensor network representation for the action of local unitary operations on the bridge
state is proposed. This amounts to a tensor network which grows in size by adding
layers of these bridge states. Under the action of these local operations, an initially
highly localized entanglement distribution between sites located on both copies of
the MERA network, scrambles in a way which may be efficiently represented by
the network. We also discuss on the holographic interpretation of the tensor network
based on a notion of distance between its sites, which emerges from the entanglement
structure it supports. Namely, it has been argued that quantum entanglement between
separated regions of boundary system is a key to the emergence of a classical smooth
spacetime geometry in the bulk Van Raamsdonk [30–32]. Thus, in the tensor network
construction, each MERA copy correspond to the degrees of freedom lying in the two
exterior regions of the eternal black hole. The future interior region of the eternal black
hole, i.e, the entanglement between the degrees of freedom in both exterior regions
according to [30–32], is then encoded in the pattern of entanglement supported by the
bridge state.

This paper is organized as follows: in Sect. 2 we review the class of MPS and
MERA tensor network states for gapped and critical one dimensional systems respec-
tively, and discuss on the computation of entanglement entropy in these states, which
has led to propose their holographic interpretation in [16]. In Sect. 3, we elabo-
rate on previous proposals [17,19] to provide a detailed tensor network description
of a thermal state in AdS/CFT. The prescription is builded up in order to quali-
tatively account for the scaling of the entanglement entropy known for the AdS
dual of a CFT state at a finite temperature. With this aim, we first introduce the
tensor network representation of reduced density operators from which the bridge
state is subsequently derived. In Sect. 4, we present a tensor network description
of a local time evolution of the bridge state. According to Hartman and Malda-
cena [17], this addresses the behaviour of the entanglement and correlations dur-
ing the thermalization process of a system after a quantum quench. Finally we
discuss some issues concerning the holographic interpretation of the tensor net-
work.
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2 Tensor network states

Tensor network states are a newly developed class of numerical real space renormaliza-
tion group methods which efficiently describe ground states and low lying excitations
of strongly correlated quantum systems. In this section we discuss on how a tensor
network represents the entanglement structure of the wavefunction by reviewing two
kinds of tensor network representations, MPS and MERA, and how entanglement
entropy is computed within these states.

2.1 Review of tensor network representations

The tensor network representation of the wavefunction of a one dimensional gapped
system is known as Matrix Product State (MPS). We will briefly discuss on it by
considering the MPS representation of a lattice with N sites, each being described by
vectors in a Hilbert space of dimension d. The Hilbert space of this system is normally
spanned by the tensor product of local basis states | j1〉⊗| j2〉⊗ · · ·⊗ | jN−1〉⊗| jN 〉 =
| j1 j2, . . . , jN 〉, which amounts to a description of the wavefunction in a total Hilbert
space of dimension d N which is given by,

|�〉 =
d∑

j1, j2,..., jN =1

T j1, j2,..., jN | j1 j2, . . . , jN 〉. (2.1)

The MPS ansatz [9] assumes that each probability amplitude T j1, j2,..., jN can be
written in terms of a set of matrices as,

|�〉 =
d∑

j1, j2,..., jN =1

F
(

A[1]
j1

A[2]
j2
, . . . , A[k]

jk
A[k+1]

jk+1
, . . . , A[N ]

jN

)
| j1 j2, . . . , jN 〉, (2.2)

where A[k]
jk

is a set of d complex matrices of dimension (χk−1 × χk) labeled by the

physical index jk and F(.) is a function which maps the matrix A[1]
j1

A[2]
j2
, . . . , A[N ]

jN
of dimension (χ0 × χN ) into the scalar T j1, j2,..., jN . If one deals with periodic
boundary conditions, F(.) amounts to the trace of the resulting matrix product, i.e,

Tr
(

A[1]
j1

A[2]
j2
, . . . , A[N ]

jN

)
. In case of having open boundary conditions, the map is

implemented by introducing a left vector 〈�0| and a right vector |�N 〉 to obtain
T j1, j2,..., jN = 〈�0|A[1]

j1
, . . . , A[N ]

jN
|�N 〉.

The MPS representation has a gauge freedom which may be fixed at any site of
the lattice. This fixing is related with the amount of block-wise entanglement in the
state. Let us clarify this point by sketching how to exploit this freedom to transform an
unconstrained matrix product representation into a canonical form made up of a series
of contiguous Schmidt decompositions. To proceed, let us first to insert a non-singular
square matrix �k and its inverse �−1

k , both with dimensions (χk × χk) at site k. We
impose�k to be diagonal with real elements λαk . It is straightforward to note that, by
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changing A[k]
jk

A[k+1]
jk+1

→ A[k]
jk
�k �

−1
k A[k+1]

jk+1
into the full matrix product, one leaves

invariant the MPS representation of the amplitude T j1, j2,..., jN , which now reads as,

〈
�0|A[1]

j1
, . . . , A[k]

jk
�k �

[k+1]
jk+1

, . . . , A[N ]
jN

|�N

〉
, (2.3)

where �[k+1]
jk+1

= �−1
k A[k+1]

jk+1
. Using the identity �k = ∑χk

αk=1 λαk |αk〉 〈αk |, it is
possible to write the state |�〉 as,

|�〉 =
∑

j[1...N ]

χk∑

αk=1

λαk 〈�0|A[1]
j1
, . . . , A[k]

jk
|αk〉

〈αk |�[k+1]
jk+1

. . . A[N ]
jN

|�N 〉 | j[1...k]〉| j[k+1...N ]〉, (2.4)

or in a more compact form as,

|�〉 =
χk∑

αk=1

λαk |φ[L]
αk

〉 |φ[R]
αk

〉, (2.5)

where,

|φ[L]
αk

〉 =
∑

j[1...k]
〈�0|A[1]

j1
, . . . , A[k]

jk
|αk〉 | j[1...k]〉

|φ[R]
αk

〉 =
∑

j[k+1...N ]
〈αk |�[k+1]

jk+1
, . . . , A[N ]

jN
|�N 〉 | j[k+1...N ]〉, (2.6)

are states of the blocks comprising all the sites to the left-[L] and all the sites to the
right-[R] of site k respectively. In order to identify the bipartite splitting of the state
in Eq. (2.5) as a genuine Schmidt decomposition of |�〉, it is necessary to impose
that {|φ[L]

αk 〉} and {|φ[R]
αk 〉} both constitute χk-dimensional basis for the states of the

[L]-block and the [R]-block respectively. This may be accomplished by imposing
a set of orthogonality constraints on all the matrices A[m]

jm
, 1 ≤ m ≤ N , where

A[k+1]
jk+1

≡ �
[k+1]
jk+1

. A detailed discussion of these constraints may be found in, for
instance, [9]. Finally, one would require |�〉 to be normalised, which amounts to
Tr(�2

k) = 1 = ∑χk
αk=1 λ

2
αk

= 1, allowing the diagonal matrix �k to be identified
with the matrix of the Schmidt coefficients and χk with the Schmidt rank of the
decomposition Eq. (2.5).

It is thus straightforward to see how the dimension of �k measures the amount
of entanglement between these blocks. To this aim, we compute the entanglement
entropy between the two blocks,

S(ρL ,(R)) = −Tr (ρL ,(R) log ρL ,(R)) = −
χk∑

αk=1

λ2
αk

log λ2
αk
, (2.7)
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Fig. 1 Representation of an MPS state. a Pictorial representation of Eq. (2.2) in which each blue triangle

corresponds to a matrix A[m]
jm

. Downward legs represent physical indices jm while horizontal lines refer to
an index contraction between adjacent matrices. b An entangled bond between two nearby sites given by a
matrix� is depicted as a diamond within an horizontal line. c Pictorial representation of Eq. (2.9) in which
blue triangles correspond to matrices �. Downward legs represent physical indices j and horizontal lines
with an inserted diamond are entangled bonds � between nearby sites (color figure online)

where ρL ,(R) = TrR,(L)|�〉〈�| are given by,

ρL =
χk∑

αk=1

λ2
αk

|φ[L]
αk

〉〈φ[L]
αk

|

ρR =
χk∑

αk=1

λ2
αk

|φ[R]
αk

〉〈φ[R]
αk

|. (2.8)

In the tensor network literature, �k represents an entangled bond between the
[L]-states and the [R]-states. From Eq. (2.7) it is easy to provide an upper bound to
the entanglement between the adjacent blocks [L] and [R], which is maximal when
λαk = 1/

√
χk , ∀αk , in which case S(ρL ,(R)) = logχk .

The above procedure yields an orthonormalised matrix product representation of
|�〉 equivalent to a particular Schmidt decomposition which depends on where the
left and right bipartion occurs. It is then possible to repeat the procedure along each
site in the lattice to obtain (by impossing another set of constraints [9]) a canonical
MPS representation given by,

T j1,..., jN =
〈
�0|�[1]

j1
�1, . . . , �

[k]
jk
�k �

[k+1]
jk+1

, . . . , �N−1�
[N ]
jN

|�N

〉
, (2.9)

which explicitly shows how a tensor network given by a set of � and � matrices,
encodes the block-wise entanglement structure of the wavefunction1 (Fig. 1).

1 An alternative way to find the canonical form of an MPS representation can be found in [33].
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Fig. 2 Scale invariant MERA network representing a CFT

2.2 Entanglement renormalization tensor networks

The entanglement renormalization (MERA) tensor network representation of a one-
dimensional state takes up a decomposition of Ti1,i2,...,iN in terms of a set of tensors
organized in a two-dimensional layered graph. Each site of the graph represent a tensor

and those may divided into the typew −
(

2
2

)
unitary tensors known as disentanglers

and the type λ −
(

1
2

)
tensors called isometries (Fig. 2). In a quantum critical system,

a MERA tensor network posses a characteristic scale invariant structure in which a
unique w and a unique λ define the full MERA graph.

The MERA representation of the wavefunction implements an efficient real space
renormalization group procedure through a tensor network organized in different layers
labelled by u, where u = 0 for the state lying on the initial lattice (UV). Each layer
of MERA performs a renormalization transformation in which, prior to the coarse
graining of a block of typically two sites located at layer u into a single site by means
of a λu tensor, the short range entanglement between these sites is removed through
the action of a disentangler wu . Thus, each layer of the MERA network, decouple
the relevant low energy degrees of freedom from the high energy ones, which are
then removed, by unitarily transforming with disentanglers small regions of space.
As one iteratively proceeds, the coarse-graining transformation carried out by MERA,
generates an RG map that can be applied arbitrarily many times (u → ∞ for the case
of an infinite scale invariant system).

In [16], it was firstly observed that, from the entanglement structure of an static
wavefunction represented by MERA, one may define a higher dimensional geometry in
which, apart from the coordinates �x labelling the sites in the lattice, it is possible to add
the “radial” coordinate u which accounts for the hierarchy of scales. The discrete geom-
etry emerging at the critical point is a discrete version of the hyperbolic AdS spacetime,

ds2 = R2
(

du2 + e−2 ud �x2
)
, (2.10)

where R is a constant called the AdS radius; it has the dimension of a length and
it is related with the curvature of the AdS space. With this choice of the spacetime
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coordinates, the one dimensional quantum critical system lies at the boundary (u = 0)
of the MERA geometry.

2.3 Entanglement entropy in tensor networks states

Following [15], an upper bound for the entanglement entropy SA in a tensor network
state can be given as follows. First, one arbitrarily splits the network into two connected
parts,�A and�B , where A ⊂ �A and�B contains the rest of sites of the network. The
region�A amounts to the tensor network description of the reduced density matrix ρA

of the subsystem A. Then, we count the n(A) bond indices which connect the regions
�A and �B . Since each bond contributes a maximum of log χ to the entropy of ρA,
an upper bound to SA can be written as,

SA ≤ n(A) log χ. (2.11)

As a result, the splitting which minimizes n(A) provides the tightest upper bound
to SA and the entanglement entropy SA scales proportional to n(A). In the discrete
“geometry” of the tensor network, n(A) acts as a “distance” measuring the size of the
boundary |∂�A| of the the region �A. Thus is possible to recast Eq. (2.11) as,

SA ≈ |∂�A| log χ, (2.12)

which amounts to say that the entropy SA is proportional to the length of the boundary
of region�A. The scaling of SA for an specific tensor network state, is obtained as one
states the explicit dependence of |∂�A| with the size L of region A. In a 1-dimensional
MPS, |∂�A| = 2 while in the discretized hyperbolic geometry of a 1-dimensional scale
invariant MERA, |∂�A| ∼ log L .

The standard way to display the AdS/MERA connection [16] compares the com-
putation of the entanglement entropy in both cases. In the classical gravity limit of
AdS/CFT, Ryu and Takayanagi (RT) derived a formula to obtain the entanglement
entropy of a region A provided that the (boundary) conformal field theory admits an
holographic gravity dual [34–37]. In the RT proposal, the entanglement entropy is
obtained through the computation of a minimal surface in the dual higher dimensional
gravitational geometry. As a result, SA is given by,

SA = Area(γA)

4G(D+1)
N

, (2.13)

where D is the number of spacetime dimensions of the boundary CFT, γA is the
(D − 1)-dimensional static minimal surface in AdSD+1 and G(D+1)

N is the D + 1
dimensional Newton constant.2 To look for the minimal surface γA which optimally
separates the degrees of freedom within A from those lying in the complementary

2 In this paper, we will be mainly focused in the D = 2 case, for which the Eq. (2.13) reduces to,

SA = Length(γA)/4G(3)N .
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region B, amounts to obtain the severest entropy bound on the information hidden in
the AdSD+1 region related with B.

One may notice the close similarity between the formula (2.13) and the Eq. (2.12)
which gives the entanglement entropy of a region A in MERA, as one realizes that
n(A) ∼ |∂ �A| can be regarded as the minimal curve γA in the RT proposal [16].

3 Entanglement renormalization tensor networks and black holes

In this section we propose a simple MERA tensor network to describe quantum critical
systems at finite temperature. In the AdS/CFT, the gravity dual of a finite temperature
state is the well-known AdS black hole [1–4]. The inverse temperature of the system
is related with the distance of the boundary CFT to the black hole horizon. It has been
argued that, inspired by the thermofield double construction of the eternal black hole
[28,29], a MERA network with an horizon may be described by doubling the standard
MERA for a pure state and then connecting together the infrared regions of both net-
works [17,19,20] through a gluing-through-entanglement operation [30–32]. In [20]
it is noted that the definition of this IR entangled state is rather ambiguous. Here, we
show that the gluing operation may be satisfactorily characterized through the tensor
network representations of density operators (MPDO) [38] and their purifications.

3.1 Matrix product density operators and purifications

The standard way of building up an MPDO takes advantadge of the fact that every
mixed state can be seen as the state of a partial subsystem of a bigger pure system,
namely its purification. If one models this purification as an MPS |�〉, then the MPDO
ρ is obtained by tracing over the purifying degrees of freedom. In this picture the
purification is builded by attaching to every original degree of freedom i , a locally
accompanying purifying site j , in such a way that in the pure state, these pairs of sites
correspond to one bigger site i j :

|�〉 =
d∑

i1,i2,... j1, j2,...=1

Tr
(

A[1]
i1 j1

A[2]
i2 j2

, . . . ,
)

|i1〉| j1〉 ⊗ |i2〉| j2〉 ⊗ . . . ,

ρ = Tr j1, j2,... (|�〉〈�|)

=
d∑

i1,i2,...i
′
1,i

′
2,...=1

Tr

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

j1 j
′
1

A[1]
i1 j1

⊗ Ā[1]
i
′
1 j

′
1

︸ ︷︷ ︸
M [1]

i1 i
′
1

∑

j2 j
′
2

A[2]
i2 j2

⊗ Ā[2]
i
′
2 j

′
2

︸ ︷︷ ︸
M [2]

i2 i
′
2

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|i1〉〈i ′
1| ⊗ |i2〉〈i ′

2〉 ⊗ . . . ,

=
d∑

i1,i2,...i
′
1,i

′
2,...=1

Tr

(
M [1]

i1i
′
1

M [2]
i2i

′
2

. . .

)
|i1〉〈i ′

1| ⊗ |i2〉〈i ′
2〉 ⊗ . . . , (3.1)
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where Ā denotes complex conjugation. One case which will be of interest to us in the
following is the purification of the infinite temperature mixed state. Let us consider a
block of N i-sites in the completely mixed state,

ρN = 1

d N (Id)
⊗N . (3.2)

The entropy of ρN is given by,

S(ρN ) = S

⎛

⎜⎜⎝
1

d
Id ⊗ 1

d
Id . . .⊗ 1

d
Id

︸ ︷︷ ︸
N

⎞

⎟⎟⎠ = S

(
1

d
Id

)
+ · · · + S

(
1

d
Id

)

︸ ︷︷ ︸
N

= N log d.

(3.3)

As ρN factorizes, one may purify the local mixed state on each i-site in terms of a
maximally entangled state at each i j-site. Indeed, noticing that,

1

d
Id =

d∑

α=1

1

d
|α〉i 〈α| = Tr j

[(
d∑

α=1

1√
d

|α〉i |α〉 j

)(
d∑

α′=1

1√
d

〈α′|i 〈α′| j

)]
, (3.4)

it is easy to see that the purification is given by a maximally entangled state on each
i j-site (which contributes log d to the entanglement entropy),

|ψ〉i j =
d∑

α=1

1√
d

|α〉i |α〉 j . (3.5)

This amounts to write the global purified state as |�〉 = (|ψ〉i j )
⊗N which is an MPS

of dimension 1.3 In terms of matrices one also may express |�〉 through Ai j = δi j .

3.2 A first ansatz

Following [16] and [18,19] we assume some general features for a tensor network
avatar of an AdS black hole with an inverse temperature β: the system under con-
sideration is gapped so first, we initially expect a region of discrete AdS geometry
(standard MERA layers with tensors associated to the neighbouring critical point) for
energy scales much greater than the temperature. As more MERA renormalization
steps are carried out (as u grows), it is expected that thermal effects gradually prevail
on the IR sector of the system so, the coarse-grained description of the sites must

3 In the following we use the notation {i} = {i1, . . . , iN }, { j} = { j1, . . . , jN } and {i j} = {i}∪ { j}. In case

d = 2, the state can be written as |�〉 =
(

1√
2
(|00〉 + |11〉)

)⊗N
, i.e the purified MPS state resembles a

system of N Bell pairs shared between the {i} and { j} sites.
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Fig. 3 Capped MERA network with log β/2πa layers of tensors associated with the neighbouring critical
point and an MPDO acting as a capping top layer (dashed red line). From now on we use the compressed
pictorial notation in [17] for the MERA network in which each vertex represents a tensor with five indices
(color figure online)

incorporate these thermalized degrees of freedom. Eventually, after ∼ logβ renormal-
ization steps, a final scale is reached. At this final scale, the reduced density matrix of
any coarse grained site is proportional to the identity, and the coarse-grained density
matrix completely factorizes.

In [16], this situation was interpreted as corresponding to the presence of a black
hole horizon because: (1) the geometry ends from the point of view of an observer
“hovering” at fixed scale,4 (2) the completely mixed state amounts to considering
a thermal state with an infinite temperature, and the local temperature probed by
a hovering observer diverges at simple black hole horizons, (3) the final layer has
nonzero entropy because the coarse-grained sites are in mixed states. In particular,
one expects that the entropy of a large block in the UV (first MERA layer) consists of
two pieces: the contribution coming from the MERA curtain plus an extensive piece
due to the “horizon”.

According to these arguments, one might naively guess the following ansatz for
the MERA network of a finite temperature state (Fig. 3): we build an hybrid tensor
network composed by a finite number u = log β/2πa of MERA layers and a matrix
product density operator (MPDO) acting as a cap “horizon” layer. Each site in the top
MPDO represents a cluster of ∼eu coarse grained sites of the original lattice and a is
a distance UV-cutoff regulator chosen to ensure that, even for high temperatures, the
minimum number of layers in the MERA curtain is u ≥ 1, i.e., logβ/2πa ≥ 1.

As in [16,18], we compute the entanglement entropy SA of a region A with |A| =
�/a sites in the tensor network, to check if it matches some qualitative aspects of the
entropy obtained through the AdS dual of a finite temperature state. To this end, we
split the SA into two contributions: the first one, SU V

A , corresponds to a MERA curtain
with log β/2πa layers and a second one, SIR

A , has a value which is controlled by the
entropy of ∼ �/β sites in the top MPDO state. Namely, the top layer is a completely
mixed state such as the one discussed in Eq. (3.2). Thereby, the SU V

A amounts to count
the number of bonds connecting �A with the rest of the sites to give,

SU V
A ∼ n(A)U V log χ =

⎛

⎝2 + · · · + 2︸ ︷︷ ︸
log β/2πa

⎞

⎠ log χ = 2 log χ log
β

2πa
, (3.6)

4 In the gravitational terminology this is a fiducial observer FIDO for which the local temperature diverges
near the horizon.

123



1823 Page 12 of 23 J. Molina-Vilaplana, J. Prior

with χ the bond dimension of the MERA network. Eventually, once the top layer
is reached, the original �/a degrees of freedom have been coarse grained into ∼
(�/a) e−u = 2π �/β sites with dimension d ∼ χ . Thus, the extensive contribution
SIR

A of these sites can be written as,

SIR
A = 2π log χ

(
�

β

)
, (3.7)

yielding a total amount of entanglement,

SA = SU V
A + SIR

A ∼ 2 log χ

[
π�

β
+ log

β

2πa

]
. (3.8)

These general features of the tensor network for a finite temperature state, match the
behaviour of the holographic entanglement entropy corresponding to the AdS3 black
hole background. The minimal length curves connecting two points u, v located at
the boundary of the AdS3, separated by a distance � = |u − v| are given by,

Length(u, v) = 2R log

[
β

πε
sinh

(
π�

β

)]
, (3.9)

with ε the regularizing UV cut-off and R the radius of AdS3. Using the RT formula
and c = 3 R/2G(3)

N [39], one gets the entanglement entropy of a large block A of
length � = |u − v| � β,

SA = Length(u, v)

4G(3)
N

= c

3
log

[
β

πε
sinh

(
π�

β

)]
≈ c

3

π�

β
+ c

3
log

β

2πε
. (3.10)

As expected, when the size of the interval A is bigger than the distance of the horizon
from the boundary, the geodesics probe the black hole horizon extending tangentially
to it; this originates the extensive contribution to the entanglement entropy which
describes a thermal state at temperature T = 2π/β. As a result, one realizes that
Eq. (3.8) and Eq. (3.10) qualitatively agree once provided the fixing of the bond
dimension given by,

log χ = c

6
. (3.11)

3.3 Doubled MERA networks and bridge states

Despite the picture given above yields anappealing result, the construction is rather
unnatural from a tensor network point of view; since each layer in MERA represents
a different renormalized coarse grained version of the UV pure state, it is difficult to
justify a capping layer given by a mixed state, in our case, the completely mixed state.
A more crucial point is that the entropy gathering in the IR is not related with any
bond counting process such as the one considered in, for instance, Molina-Vilaplana
[18] to deal with a different kind of gapped systems.
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Fig. 4 A doubled MERA network with log β/2πa layers of tensors associated at each MERA curtain and
an entangled bridge MPS state |�〉 gluing the two halves of the system. Blue triangles with a downward
leg represent {i}-sites while triangles with an upward leg correspond to { j}-sites. Thick lines between them
represent entangled bonds of dimension χ (color figure online)

To overcome this difficulty and inspired by the thermofield double representation of
the eternal black hole [17,19,29], a doubled MERA circuit representing the wavefunc-
tion of the thermofield double is proposed. The tensor network represents a gapped
state with an scale invariant UV region. The circuit is composed of two copies of a
MERA curtain with u = log β/2πa layers, so the scale invariance is broken by the
temperature T = 2π/β. At this scale, we place a “bridge” MPS state which entangles
the IR degrees of freedom of the two MERA curtains (Fig. 4).

This pure IR state is builded by attaching to every i-coarse grained IR degree
of freedom corresponding to one copy, a locally purifying j-site corresponding to a
coarse grained IR site of the other copy. One might say that the bridge MPS, in some
sense, glues the two MERA curtains. The entanglement structure and distribution of
the bridge MPS thus defines the infrarred MPDO states corresponding to each MERA
copy as discussed in Sect. 3.1. This construction suggests that the ordinary entan-
glement renormalization flow given by MERA has to be supplemented by additional
entanglement structures at scales larger than ∼ logβ/a.

We choose to construct the bridge state using a set of simple building blocks which
amounts to a collection of N maximally entangled Bell pairs,

|ψ〉i j =
χ∑

α=1

1√
χ

|α〉i |α〉 j , (3.12)

which yields the state,
|�〉 = (|ψ〉i j )

⊗N . (3.13)

It is worth to note that for every MPS state one can always construct a so-called
parent Hamiltonian. This is a local, frustration free, Hamiltonian which has the MPS
state as its unique ground state and is gapped [9]. Parent Hamiltonians are extremely
useful as they allow us to use the MPS formalism to analyze the behaviour of one-
dimensional Hamiltonians. The parent Hamiltonian of the state given in Eq. (3.13)
may be generically written as,

Hparent = H{i} + H{ j} + Hint{i j}, (3.14)
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where H{i} and H{ j} are Hamiltonians acting only on {i}-sites and { j}-sites respectively
and Hint{i j} mediates the interaction between the IR degrees of freedom of the two
separated MERA curtains from which the entanglement structure supported by the
bridge state arises.

Within this tensor network structure, the computation of the entanglement entropy
SA of a block A of �/a sites in the first layer of one of the MERA curtains comes
as follows: as before, we count the number n(A) of bonds needed to isolate �A

from the rest of sites in the network. One may split n(A) into two contributions, the
n(A)U V ∝ 2 log β/2πa in the MERA curtain under consideration and a second one,
n(A)IR, accounting for the ∼2π(�/β) i j-bonds which must be cutted out in order to
isolate ∼2π(�/β) i-sites from the rest of the network, each contributing log χ to the
entanglement entropy. Therefore,

SA =
[
n(A)U V + n(A)IR

]
log χ ∼ 2 log χ

[
π�

β
+ log

β

2πa

]
. (3.15)

One might demur on the apparently fine tuning of the bridge state |�〉. In this
sense, our guess for |�〉 is done in order to match the behaviour of SA in a black
hole geometry while establishing a reasonable simple relationship between the bond
dimension χ of MERA and some conformal data of the boundary system.

4 Entanglement scrambling and black hole interiors

Any purification of the reduced density matrixρ such as the one used to build the bridge
MPS state |�〉 = (|ψ〉i j )

⊗N , deals with an irreducible amount of arbitrariness in the
following sense: from the point of view of the entanglement entropy between sub-
systems {i} and { j}, this purification is completely equivalent to any state |�(θ, θ ′)〉
generated as,

|�〉 = (|ψ〉{i j})⊗N −→ U{i}(θ)⊗ U{ j}(θ ′)(|ψ〉{i j})⊗N = |�(θ, θ ′)〉, (4.1)

where U{i}(θ) and U{ j}(θ ′) are local unitary operations acting on {i}-sites and { j}-sites
respectively and θ, θ ′ parametrize these unitarities.

As an example one might introduce forward time evolution on both sides ({i}
and { j}) of the bridge MPS state with θ = θ ′ = t , U{i} = exp(−i Hu

{i} t),
U{ j} = exp(−i Hu

{ j} t) and H = Hu
{i} = Hu

{ j} being the coarse grained Hamiltonian
of the original lattice system obtained under u ∼ logβ/a MERA renormalization
steps. Although |�(θ, θ ′)〉 is not time translational-invariant, each individual density
matrix ρ on either side is time independent. Under this point of view, the thermofield
double MERA state of the previous section might be considered as the tensor network
configuration at t = 0. As posed above, the tensor network at t = 0 has a mass gap
of the order of the temperature T = 2π/β, which is a common feature of AdS black
holes.

In the following, we show that the entanglement structures generated along the
forward time evolution on both sides of the bridge state, have a tensor network repre-
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Fig. 5 A matrix product
operator acting on the entire
lattice. Red circles represent
matrices W . The MPO is applied
to an MPS by simply contracting
the upper vertical legs with the
physical indices of the state.
After contracting the MPO with
the initial MPS state, a new
matrix product structure with
increased bond dimension thus
emerges (color figure online)

sentation [17]. The effect of the unitary operations U{i}(t) and U{ j}(t) is to scramble
the initially highly localized maximal entanglement structure between the {i} and { j}
subsystems. Namely, as t grows, although the total amount of entanglement does not
change, it spreads in such a way that, in general, it is not possible to describe the
bridge state |�〉 as a collection of unentangled i j-sites anymore. Despite this scram-
bling process, due to the entanglement invariance between the {i} and { j} subsystems
under local unitary transformations, it is thus not possible to end up in any configura-
tion in which the bridge state may be written as the product state |�〉 = |�〉{i}⊗|�〉{ j}.
It will be shown below that, the full θ -dependent unitary evolution can be interpreted
in terms of a tensor network which grows along a spacelike θ direction, i.e, it is a
tensor network which adds layers of |�(θ, θ ′)〉 states forming a stack of bridge states.

4.1 Local unitary evolution of the bridge state

In Eq. (3.1) it has been shown a matrix product representation of a reduced den-
sity operator in terms of matrices M [k]

jk j ′k
with two physical indices. Similarly, it has

been shown in [9] that, given a local Hamiltonian H , the infinitesimal time evolution
operator U = exp(−i Hδt) can be given a similar matrix product operator (MPO)
decomposition in terms of a set of matrices W [k]

jk j ′k
of dimension d2 × d2. The beauty

of this picture is that applying an MPO to an MPS, leaves the the MPS structure of the
resulting state invariant, in other words, the resulting state can be written as an MPS
in terms of a new set of matrices {�′, �′} at the cost of increasing the bond dimension
χ , i.e the dimension of the � matrices, from χ → d2 χ (see Fig. 5). Thus, the time
evolution of any MPS state has a tensor network representation which dynamically
encodes each resulting MPS state generated at each time step of the process.

In the following, we elaborate on a tensor network description first proposed in
[17] which accounts for the scaling of the entanglement entropy of a quantum system
during its thermalization after a quantum quench. To this aim, we present a procedure
to independently time evolve both sides of the initial bridge state |�〉 which generates
two MPS states at each infinitesimal time step δt . The protocol has a tensor network

123



1823 Page 16 of 23 J. Molina-Vilaplana, J. Prior

Fig. 6 a The initial bridge MPS
state. b The MPO representation
of U{i}(δt) acting on the initial
bridge state generates a new
bridge state |�(δt, 0)〉 in which
the initially highly localized
entanglement between {i} and
{ j} sites has been scrambled out
so it cannot be written as
(|ψ〉i j )

⊗N anymore. c The
MPO representation of U{ j}(δt)
acting on the initial bridge state
yields another bridge state
|�(0, δt)〉

(a)

(b)

(c)

representation depicted in Fig. 6 and, assuming that both the MPO representations of
the operators U{i}(δt) and U{ j}(δt) are provided, it amounts to generate the doubled
series of MPS states,

|�(t + δt, 0)〉 = U{i}(δt) ⊗ U{ j}(0) |�(t, 0)〉 = U{i}(δt) ⊗ I{ j} |�(t, 0)〉
|�(0, t + δt)〉 = U{i}(0) ⊗ U{ j}(δt) |�(0, t)〉 = I{i} ⊗ U{ j}(δt) |�(0, t)〉, (4.2)

each having the same time independent entanglement structure between {i} and { j}
sites as the locally evolved states commented above. These states are bridge states in
which the initially highly localized pattern of entanglement has been scrambled out.
By carrying out a finite time evolution of this sort, its tensor network representation
implictly builds up a full history of the process as it dynamically encodes each MPS
state generated along it. It is clear that the structure of the network increases as time
grows and eventually, the tensor network representation is equivalent to a stack of
∼2 t MPS states.

4.2 Linear growth of entropy from the black hole interiors

In this section, we analyze, following [17], the scaling of the entanglement entropy
in a tensor network which grows in a spacelike manner as t grows. As commented
above, this network adds layers of bridge states in the middle region within the two
u-end layers of both MERA curtains. In other words, the time evolution produces a
wavefunction that may be represented in terms of a tensor network with a geometry
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Fig. 7 The region �A represents the reduced density matrix ρA in a tensor network. Its boundary |∂�A|
(red) scales as the number of entangled bonds n A that must be cutted to isolate the sites lying inside �A
from the rest of the sites of the network. While t < �/2, �A is connected and its boundary is depicted in
the leftmost figure. For t ≥ �/2, there is a transition and�A becomes disconnected as well as its boundary,
as shown in the rightmost figure (color figure online)

which is simply longer. In some sense, the growing part of the tensor network acts as
a record of the “history” of the state. As in [17], we interpret the middle region of the
network, builded up as a stack of MPS, as the interior of the AdS black hole. As we
are implementing the forward θ evolution on both sides of the state commented above,
we expect the number Nb of these layers to be Nb = 2 θ while we fix θ = 2π t/β.

We consider a region A consisting of two identical disjoint pieces A1, A2 both
characterized with � � β, each one lying on the boundary of each of the two MERA
curtains. Then, we count the n(A) bond indices which connect the region �A with
the rest of the sites in the network (Fig. 7 left). While t is small enough, this can be
written as,

n(A)t = 4 log
β

2πa
+ 2Nb = 4 log

β

2πa
+ 8π

t

β
. (4.3)

Since each bond contributes a maximum of log χ to the entropy, the upper bound
to SA is given by,

St
A = 2SMERA + 8π logχ

t

β
,

SMERA = 2 logχ log
β

2πa
, (4.4)

which increases linearly in time as t grows. For these regimes, �A amounts to be a
connected region inside the tensor network. Namely, |∂�A|, the “extremal” minimal
surface at early times, extends across the black hole interior from one asymptotic
MERA curtain to the other. This is consistent with the fact that, in holography, when
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considering static situations, the minimal surfaces do not penetrate into the event
horizon, i.e, do not probe the black hole interior, but this interior can be probed as far
as a time dependent system is under consideration. Thus, as time evolves, the bond
counting progresses into the interior made of Nb piled up MPS states, cutting two
bonds for each state, each contributing, at most, logχ to the entanglement entropy.
Eventually, given Eq (2.11), after some time evolution, the entropy of the region A is
better bounded by the thermal entropy of the two pieces of �/a sites, which reads as,

Sth
A = 2SMERA + 4 logχ

π�

β
. (4.5)

Once this happens, the region �A consists in two disconnected pieces as shown in
Fig. 7 (right). This transition in the structure of�A has been also adressed in the context
of AdS3/CFT2 and MERA tensor networks in [40] and [21] respectively. Therefore,
the entropy of region A may be written as,

SA = min{Sth
A , St

A} =

⎧
⎪⎨

⎪⎩

St
A = 2SMERA + logχ (8π t/β) , t ≤ �/2

Sth
A = 2SMERA + logχ (4π �/β) t > �/2.

(4.6)

Thus, after a time t = �/2, the extremal surface |∂�A| ∼ n(A) splits off into two
pieces. Both pieces stuck to each one of the two states |�(�/2, 0)〉 and |�(0, �/2)〉
yielded on both sides by forward time evolution, while |∂�A| becomes a static surface
wich reproduces the thermal entropy. As a result, the entanglement grows linearly due
to size increasing of the middle region along the θ direction, and eventually saturates
at the thermal value Sth

A at time t ∼ �/2. The scaling of SA given in Eq. (4.6) agrees
with those obtained using direct CFT techniques [41] and holographic settings [17].
One might interpret this fact in the following sense: after time t ∼ �/2, sites in region
A are thermalized due to the spread of quantum correlations between its sites and the
rest of the network.

From Eq. (4.6), it is easy to obtain the mutual information I(A1 : A2) between the
subsystems A1 and A2, which can be written as,

I(A1 : A2) = S(A1)+ S(A2)− S(A1 ∪ A2)

= Sth
A − min{Sth

A , St
A} =

⎧
⎪⎨

⎪⎩

logχ [8π/β (�/2 − t)] , t ≤ �/2

0 t > �/2,

(4.7)

where S(A1) = S(A2) = 1/2 Sth
A and S(A1 ∪ A2) = SA. The transition in the shape of

�A at time t ∼ �/2 commented above is thus also responsible for the vanishing of the
mutual information between the two regions. As the mutual information I(A1 : A2)

acts as an upper bound on the correlators between operators defined in those regions
[42],

I(A1 : A2) ≥ (〈OA1OA2〉 − 〈OA1〉〈OA2〉)2
2|OA1 |2|OA2 |2

, (4.8)
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its vanishing signals an exponential decay of correlations between A1 and A2. Namely,
in the AdS/CFT, this result arises because the RT formula only represents the leading
term in a 1/N (or G N ) expansion. The subleading terms in the long range expansion
of the mutual information do lead to power-law corrections that in any case indicate
that, for those regimes of separation, I(A1 : A2) can be made parametrically small.

In [15,16] it was pointed out that the behaviour of correlators in a tensor network
(exponential in MPS [43–45] and polynomial in MERA [46]), is governed by the shape
of geodesics in the discrete geometry of the tensor network. As commented above,
once provided two sites x1 and x2 in a tensor network, then it is possible to define a
distance between them, as far as they are connected through paths lying within the
tensor network. Each one of these paths consists of a set of tensors and entangled bonds
connecting the sites. One may associate a length to each path by simply counting the
number of entangled bonds in the path. Finally, the distance D(x1, x2) between x1 and
x2 is defined by the length of the shortest path connecting them, i.e,

D(x1, x2) = min {nbonds(x1, x2)} . (4.9)

It is worth to note that any “continuous” path within the network does not contain
any unentangled bond. Indeed, an entangled bond between two adjacent sites is what
precisely allow us to establish a notion of proximity between them. This notion of
distance relates with the possibility to adscribe a metric to the network [24] so, at least
in the tensor network language, one might conclude that no entanglement means no
geometry 5.

Let us now consider the the correlation function of an operator O inserted at posi-
tions x1 and x2 in a tensor network, C(x1, x2) ≡ 〈O(x1)O(x2)〉. The behaviour of
C(x1, x2) for both the MPS and the scale invariant MERA may be written in terms of
the distance D(x1, x2) within the tensor network as,

C(x1, x2) ≈ e−αD(x1,x2), (4.10)

with α some positive constant. As posed in [15], this is an asymptotic limit of the
expression for the algorithmic computation of the correlator C(x1, x2) in the tensor
network, which is given by,

C(x1, x2) ≈ �v †
L · T

D(x1,x2) · �vR . (4.11)

This amounts to a scalar product of two vectors �vL and �vR with the D(x1, x2)-th
power of a transfer matrix T from whose eigenvalues arise the correlation length ξ for
the gapped MPS or the power law for the scale invariant MERA (see [43–46] for the
original derivation of this result for MPS and MERA).

Let us now to consider the isertion at t = 0 of two operators O at similar locations
x1 and x2 within A1 and A2 respectively. After unitary time evolution of the middle

5 As has been pointed out in [16,17], each tensor may represent the wavefunction of a region of AdS radius,
so this notion of proximity could be appropriate between regions which size is similar to the AdS radius
but not for smaller distances.
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region of the tensor network, it is thus expected that the minimal number of bonds
connecting O(x1) and O(x2) for t ≤ �/2 is given by,

nbonds = 2 log
β

2πa
+ 4π

t

β
. (4.12)

Thus, assuming nbonds amounts to a distance D(x1, x2)within the discrete geometry
of the tensor network, one obtains the exponential decay of C(x1, x2),

C(x1, x2) ≈ exp (−α nbonds) =
(

2πa

β

)2α

e−4π α t/β, (4.13)

which characterizes the gapped nature of the middle region of the tensor network.

4.3 Holographic interpretation

The structure of the middle region of the tensor network given by the forward time
evolution on both sides of the bridge state, has been argued to be similar to the structure
of the nice slices in the interior of the black hole [17]. The gapped region represented
by that tensor network is thus interpreted as the interior of the black hole in which each
spacelike slice (a constant t region from outside the horizon) corresponds to an MPS
|�(t)〉 state. In this sense, the full interior region of the black hole, including the hori-
zon, is then represented by means of low energy eigenstates of a parent Hamiltonian.

This clearly differs from a time evolution of the MERA class of states which com-
prises both curtains of the tensor network, which can be simulated, in principle, as
proposed in [47]. Now, the ansatz’s tensors of MERA are the varying parameters along
the evolution. In this case, it is clear that one evolves degrees of freedom outside the
horizon. This approach has been addressed in terms of a continuous version of MERA
in [20,25]. It would be interesting to compare both pictures in order to clarify whether
the middle region of the tensor network detailed here, represents degress of freedom
lying on the interior or just the region near, but outside the horizon.

Nevertheless the interior interpretation of the middle region seems quite reasonable.
In [30–32] it has been argued that the structure of the entanglement between different
parts of a system could act as a sort of glue from which a smooth classical spacetime
between those regions emerges. Namely, in our tensor network construction, each
MERA curtain and its associated {i}({ j})-sites correspond to the reduced density
matrices of sets of complementary fundamental degrees of freedom lying at A1, A2.
These density matrices might be interpreted as those from which one determines the
value of observables within the left or right wedge of the eternal black hole (see Fig. 8
left). The future interior region of the eternal black hole (upper part in Fig. 8 left),
i.e, the entanglement between A1 and A2 according to [30–32], is then encoded in the
pattern of entanglement supported by the bridge MPS state. The non trivial forward
time evolutions on both sides of the bridge state, grow the interior region, which
amounts to modify the entanglement distribution (but not the amount) between the
{i} and { j} sites of the state (see Fig. 8 center). In this gravitational interpretation, the
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Fig. 8 Left connected AdS eternal black hole spacetime. Center Connected AdS eternal black hole after
local unitary evolution of the degrees of freedom lying inside the future interior region. Right two discon-
nected spacetimes from which a common interior region has been excised by carrying out a global unitary
disentangling operation

correlators in the right field theory are given by the right wedge while correlators in
the left field theory are reproduced by the left wedge of the geometry. Similarly, in
the tensor network, correlators on each side of the middle region are managed on each
MERA curtain separately. Furthermore, in the eternal black hole geometry, correlators
with one leg on the left wedge and and the other one on the right wedge are specified
through the future and past regions of the interior. In the tensor network description,
these correlators are ruled out by the middle region, i.e, by the stack of bridge MPS
states accounting for the entanglement distribution between the two MERA curtains.

Nevertheless, it is worth to note that the most general case, i.e, a global unitary
operation of the bridge state,

|�〉 = (|ψ〉i j )
⊗N −→ U{i j}(θ) (|ψ〉i j )

⊗N = |�(θ)〉, (4.14)

has not been adressed. Here, U{i j}(θ) amounts to a global unitary operation whose
action, does not forbid to end up with a completely disentangled bridge state,

|�(θ)〉 ∼ |�〉{i} ⊗ |�〉{ j}, (4.15)

in which, all the initially localized entanglement has been removed. In this case,
recalling the arguments of the previous section, one obtains a disconnected tensor
network comprising two separated MERA curtains from which neither a notion of
a distance nor a geometry between the degrees of freedom of A1 and A2 can be
established. This would correspond to excising the interior region of the black hole
(see Fig. 8 right).

5 Conclusions

In this paper we have elaborated on the previous proposal in [17] providing a ten-
sor network in which the computation of entanglement entropy in certain situations
remains consistent, at least qualitatively, with its holographic computation in the con-
text of the eternal black hole in AdS/CFT. We have tried to emphasize that, in a tensor
network, any two regions must be considered connected as far as there exist a contin-
uous set of entangled bonds between them. This allows to establish a proto-notion of
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distance within the network which could be useful in order to elucidate the proposed
connection between entanglement (e.g, in tensor networks and quantum many body
systems) and geometry [48]. It is also worth to investigate as well if the knowledge
of the structure of entanglement supported by systems with a suitable tensor network
description, may clarify the role of large N in a conjectured tensor network represen-
tation of a classical geometry. Presumably, this is related to the specific way in which
the entanglement entropy bounds given by the network might be saturated in these
systems. For this task, it could help to formulate the tensor network structures in terms
of their continuous versions.
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