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Abstract We study the behaviour of the density contrast in quasi-spherical Szekeres
spacetime and derive its analytical behaviour as a function of t and r . We set up the
inhomogeneity using initial data in the form of one extreme value of the density and
the radial profile. We derive conditions for density extremes that are necessary for
avoiding the shell crossing singularity and show that in the special case of a trivial
curvature function, the conditions are preserved by evolution. We also show that in this
special case if the initial inhomogeneity is small, the time evolution does not influence
the density contrast, however its magnitude homogeneously decreases.

Keywords Inhomogeneous cosmology · Szekeres spacetime · Shell crossing
singularity · Initial data

1 Introduction

Homogeneous cosmological models have successfully explained many important fea-
tures of our universe. However, we know that the distribution of matter is not homo-
geneous and so these models are only an approximation. In the last decade modelling
of inhomogeneity in cosmology has become a topic of substantial interest. There are
several different approaches to the problem. Due to the nonlinear nature of Einstein
equations one should not rely on perturbation theory completely therefore exact mod-
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els with nonuniform distribution of matter should be considered as well. Among the
most studied exact inhomogeneous solutions of Einstein equations belong Lemaitre-
Tolman-Bondi (LTB) metric [1], Szekeres solution [2], Szafron family of solutions
[3], Stephani solution [4] or Lemaitre metric [1], which is a generalization of LTB for
a fluid with nonzero pressure. An overview of inhomogeneous cosmological solutions
can be found in [5].

LTB metric was extensively studied by Krasinski and Hellaby to model structure
formation [6–8]. Together with Bolejko they used the solution to describe formation of
voids in the universe [9]. LTB metric is a special case of the Szekeres solution that was
discovered by Szekeres [2] and was developed by Hellaby and Krasinski in a series
of papers [10–13]. They gave a geometrical interpretation of the metric functions in
all three different types of geometry that are quasi-spherical, quasi-pseudospherical
and quasi-planar. The quasi-spherical case is currently the best understood of all three
types. It has found a cosmological application in the study of Bolejko who focused
on structure formation [14,15] and constructed models of a void with an adjourning
supercluster. Bolejko also investigated Buchert averaging of the quasispherical Szek-
eres metric [16], constructed a Szekeres-Swiss-cheese model that he used to estimate
the impact of inhomogeneity on the propagation of light [17] and CMB observations
[18].

Walters and Hellaby showed in a recent paper [19] how to model inhomogeneity
in quasispherical Szekeres metric using initial and final data. They constructed three
models where they specified initial and final radial density profile and one extreme
value of the density on the final time slice in terms of a deviation function along with
the position of the extreme. In this way they set up all 5 degrees of freedom in the
Szekeres metric and worked out an algorithm to calculate all other metric functions
in the model.

For practical purposes it would be desirable to consider the evolution of inhomo-
geneities in Szekeres spacetime determined only by initial data. In our approach we
specify the curvature function f and the radial density profile with one extreme value
at the initial time. Thus we set up only 3 degrees of freedom which is however sufficient
to model the density contrast. To make an appropriate choice for the initial density
extreme we investigate the shell crossing conditions in terms of the density extremes
and show that the resulting constraints are preserved throughout the evolution (for the
assumed value of f ).

The paper is organized as follows. In the next section we give an overview of the
Szekeres metric and describe its basic properties. In sect. 3 we derive conditions that the
density extremes have to satisfy in order to avoid a shell crossing singularity. In sect. 4
we show that if these conditions are met at the initial time, then they are fulfilled
at later times if the curvature function vanishes. In sect. 5 we derive an analytical
formula for the density contrast defined as the difference of the extreme values and
for the case f = 0 we show that if the initial radial inhomogeneity is small, then the
density contrast is proportional to t−3 and the radial dependence of the function does
not evolve substantially in time. In sect. 6 we set up the model by specifying two more
functions and show the time evolution of the density contrast in a specific example.
We conclude in sect. 7.
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2 Szekeres spacetime

The Szekeres spacetime is an exact dust solution of Einstein equations without any
symmetries. It was found by Szekeres [2] and generalized by Szafron [3] for an energy
momentum tensor describing a perfect fluid. The LT type of Szekeres metric can be
written as [20]

ds2 = −dt2 +
(

R′ − R E ′
E

)2

ε + f (r)
dr2 + R2

E2

(
d p2 + dq2

)
, (1)

where

E (r, p, q) ≡ S

2

[(
p − P

S

)2

+
(

q − Q

S

)2

+ ε

]
, (2)

E ′ = S′

2

[
1 − (p − P)2

S2 − (q − Q)2

S2

]
− P ′

S
(p − P) − Q′

S
(q − Q) (3)

and f, P, Q, S are arbitrary functions of r . The parameter ε can have only three values
−1, 0, 1 and it determines the geometry of the two-spaces of constant t and r . From
Einstein equations it follows a dynamical equation for the function R

Ṙ2 = 2M (r)

R
+ f (r) + ΛR2

3
(4)

and an equation for the density evolution

ρ = 2

κc2

M ′ − 3M E ′
E

R2
(

R′ − R E ′
E

) , (5)

where prime denotes a derivative with respect to r, M is another arbitrary function and
Λ is cosmological constant. So we have two Einstein Eqs. (4) and (5) and by solving
the first one we obtain one more arbitrary function tB (r), which enters the solution in
the form t − tB . From now on we will use a redefined form of the density ρ̄ ≡ κc2ρ

and for the sake of simplicity we will drop the bar.
As mentioned above, the metric does not have any symmetries, in other words it

has no Killing vectors. Nevertheless the three spaces of constant t are conformally flat
[21].

The parametrization of the metric involves 6 arbitrary functions however the number
of physical degrees of freedom is 5, because we can still rescale the radial coordinate
(the metric is invariant with respect to the transformation r ′ = g(r)).
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2.1 Interpretation of f and tB

The sign of the function f effects the solution of the Einstein Eq. (4). It is a dynamical
equation for R and it looks very similar to the Friedman equation, except that here the
functions f and M depend on r . We will assume only the case when Λ = 0. There
are three different types of evolution [22]. If f < 0 the evolution is elliptic which
means that the universe is first expanding and at some point the expansion stops and
the universe is collapsing to a final singularity. The solution is given in a parametric
form

R = M

(− f )
(1 − cos η) , η − sin η = (− f )

3
2 (t − tB)

M
. (6)

For f > 0 the evolution is hyperbolic in the sense that the sign of the expansion does
not change, the universe either expands or collapses depending on initial conditions
and the parametric solution to the equation (4) is

R = M

(− f )
(cosh η − 1) , sinh η − η = f

3
2 (t − tB)

M
. (7)

For f = 0 the evolution is parabolic and is given by equation

R =
(

9

2
M

) 1
3

(t − tB)
2
3 . (8)

Since f is a function of r , the universe may have different evolution in different
regions. The parabolic evolution can be on the boundary between two regions, one
having elliptic evolution and the other one hyperbolic. So the sign of f determines
the sign of scalar curvature of the three-spaces of constant t and when f = 0 = f ′,
the three-spaces are flat which corresponds to a presence of pure decaying modes as
was shown in [23].

The function tB is called the bang time function, because t = tB is the moment
when big bang happened. So unlike in homogeneous models, the initial moment of
evolution is position dependent.

The interpretation of the other metric functions (R, M, P, Q, S ) depends on ε

and from now on we will only consider the case ε = +1 which is often called the
quasi-spherical case.

2.2 Coordinate transformation and interpretation of R

We can make a coordinate transformation [10]

p − P

S
= cot

θ

2
cos φ,

q − Q

S
= cot

θ

2
sin φ (9)
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and rewrite the induced two-metric of the surfaces of constant t and r into coordinates
θ and φ. After applying the transformation we get

ds2 = 4

S2 sin4 θ

2

(
d p2 + dq2

)
= dθ2 + sin2 θdφ2, (10)

which is a metric on a unit sphere. The transformation (9) is nothing but a stereographic
projection and the function E describes how the (p, q) plane is mapped onto a unit
sphere. Every sphere is multiplied by R2 and the function is sometimes called the areal
radius, because it is actually the radius of a sphere on a comoving coordinate r .

2.3 Geometrical meaning of E

In order to understand more about the geometrical properties of the metric (1) it is
important to investigate the function E . We can see that this function appears in the
metric and in the equation for the density (5) in the form E ′

E . Particularly, we can
investigate when the function is equal to zero and what are its extreme values. Using
the transformation (9) in (2) and (3) we can write E ′

E as

E ′

E
= − S′ cos θ + sin θ

(
P ′ cos φ + Q′ sin φ

)

S
. (11)

The equation E ′
E = 0 now becomes

S′ cos θ + P ′ sin θ cos φ + Q′ sin θ sin φ = 0 (12)

and after realizing that cos θ = z, sin θ cos φ = y and sin θ sin φ = x , the equation
(12) becomes

S′z + P ′x + Q′y = 0, (13)

which is an equation of a plane that goes through the origin of the spherical coordinate
system and intersects the r = t = const sphere in a great circle. Now calculating
the derivatives of (11) with respect to θ and φ and putting it equal to zero we can
find that there are two extreme values and they are located at opposite sites on the
sphere, in other words if one extreme is at the coordinates (θ1, φ1), the other one is at
(π − θ1, φ1 + π) and they are located symmetrically with respect to the plane E ′

E = 0,
because the coordinates of the extremes are exactly the components of the unit normal
to the plane E ′

E = 0. The values of the extremes are

(
E ′

E

)

max
=

√
(S′)2 + (P ′)2 + (Q′)2

S
,

(
E ′

E

)

min
= −

√
(S′)2 + (P ′)2 + (Q′)2

S
,

(14)
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where max and min refers to maximum and minimum respectively. So the extremes
have opposite values and the function E ′

E behaves on the sphere like a dipole [10].

3 Shell crossing conditions in terms of the density extremes

We are now going to study the formula for the density (5). We can see that under certain
circumstances the density can change sign or possibly diverge if the denominator
becomes zero. Those points where this happens are called the shell crossing singularity.
The conditions that the metric functions M, f, tB and R have to satisfy in order to
avoid shell crossing singularity can be found in [10]. In this section we will derive
the conditions that the extreme values of the density ρmax and ρmin have to satisfy in
order to avoid the shell crossing singularity.

We can rewrite (5) as

ρ (t, r, θ, ϕ) = 2
M ′ − 3M E ′

E

R2
(

R′ − R E ′
E

) = R′ρLT − R E ′
E ρAV

R′ − R E ′
E

, (15)

where we define

ρLT (t, r) ≡ 2M ′

R2 R′ (16)

and

ρAV (t, r) ≡ 6M

R3 . (17)

Here ρLT is the density that we get from (5) if we set E ′
E = 0. It is also a radial

density in the sense that on a given r it is the value of the density around the great
circle that lies in the plane that defines the dipole on the sphere. The index LT refers
to Lemaitre-Tolman-Bondi metric, because its density is given with exactly the same
formula as (16). If we make the choice

R (ti ) ≡ r (18)

and use the fact that the function M depends only on r , we can express it on the initial
time slice when E ′

E = 0 as

M = 1

2

∫ r

0
ρLT 0r ′2dr ′, (19)

where the index 0 refers to the value of the function at the initial time ti . In that case
the definitions (16) and (17) can be further rewritten as

ρLT (t, r) = 1

R2 R′ ρLT 0r2, ρAV (t, r) = 3

R3

∫ r

0
ρLT 0r ′2dr ′. (20)
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The initial condition (18) and formulas (19)–(20) will however not be used in the
following calculations (with the exception of Eq. (44) giving critical point position)
and the main results of this section are independent of it, thus giving us generally
applicable criteria.

It is good to take a look at the derivative of the density with respect to E ′
E

∂ρ

∂ E ′
E

= R R′ ρLT − ρAV(
R′ − R E ′

E

)2 . (21)

From the derivative we can see, that if R′ (ρLT − ρAV ) > 0 the derivative is positive
and the density is growing as E ′

E increases. On the other hand if R′ (ρLT − ρAV ) < 0

the density will decrease as E ′
E increases. Either way we can see that the density

behaves on each sphere also like a dipole in the sense that it has two extreme values,
maximum and minimum and they are located at the same position as extreme values
of the function E ′

E . In the case when R′ (ρLT − ρAV ) < 0 we can write for the density
maximum

ρmax =
R′ρLT − R

(
E ′
E

)
min

ρAV

R′ − R
(

E ′
E

)
min

(22)

and for the minimum

ρmin =
R′ρLT − R

(
E ′
E

)
max

ρAV

R′ − R
(

E ′
E

)
max

. (23)

In the case when R′ (ρLT − ρAV ) > 0 the role of
(

E ′
E

)
max

interchanges with
(

E ′
E

)
min

in the last two equations.
We split the investigation of the density into three parts, in the first part we investigate

when both the numerator and the denominator are positive, in the second case we check
when they are both negative and in the last case we take a look at the special case when
they are both zero. It will be convenient to split the first part into three more subcases
depending on the value of R′ (ρLT − ρAV ). For the investigation we will also need a
formula for the function E ′

E given in terms of ρLT and ρAV which we can derive from
(15)

E ′

E
= R′

R

ρ − ρLT

ρ − ρAV
. (24)
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3.1 First case: numerator and denominator of the density are both positive

3.1.1 Subcase A: R′ (ρLT − ρAV ) < 0

From the positivity of the denominator in (15) we get

R′

R
>

(
E ′

E

)

max
= R′

R

ρmin − ρLT

ρmin − ρAV
, (25)

because as follows from (21) if R′ (ρLT − ρAV ) < 0 we can see that E ′
E has maximum

where the density has minimum. From the dipole property

(
E ′

E

)

max
= −

(
E ′

E

)

min
(26)

we know that
(

E ′
E

)
max

is non-negative and (25) implies that R′ > 0 and therefore we

have to consider ρLT < ρAV . We can now set conditions for ρmin so that the right
hand side in (25) is non-negative. Inequality (25) simplifies to

1 >
ρmin − ρLT

ρmin − ρAV
(27)

It is reasonable to require ρmin ≤ ρLT , because the minimum should be the small-
est value on each sphere (ρmin = ρLT corresponds to the case when the density is
homogeneously distributed on the whole sphere). Since we consider ρLT < ρAV it
follows that ρmin < ρAV and the right hand side of (25) is non-negative. It means that
besides the obvious condition ρmin ≤ ρLT we don’t have any other restriction for the
minimum.

Due to the dipole property we can try to derive a condition for the maximum

R′

R
>

(
E ′

E

)

max
= − R′

R

ρmax − ρLT

ρmax − ρAV
. (28)

Since ρmax should be greater than or equal to ρLT it implies that ρmax < ρAV in order
for the right hand side in (28) to be non-negative. This condition is reasonable since
ρAV is not true value of the density as follows from its definition (17). Taking this into
consideration we can solve the inequality (28) and the solution is

ρmax <
1

2
(ρLT + ρAV ) (29)

and this condition is clearly more restrictive than ρmax < ρAV .
For the numerator of (15) we need

R′

R
ρLT >

E ′

E
ρAV (30)
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Fig. 1 In this figure we can see 4 different surfaces that constrain the density extremes. In the right part of
the figure they are from the bottom to the top: ρAV , 2 ρAV ρLT

ρAV +ρLT
, 1

2 (ρAV + ρLT ) , ρLT

which can be rewritten as

R′

R

ρLT

ρAV
>

(
E ′

E

)

max
= R′

R

ρmin − ρLT

ρmin − ρAV
. (31)

It again follows that R′ > 0 and ρLT < ρAV . The right-hand side of (31) has to be
non-negative and we know that ρmin ≤ ρLT and since ρLT < ρAV we also have
ρmin < ρAV so the inequality (31) is always true and we don’t get any new condition
for ρmin . We now use the property (26) and look for a condition for ρmax

ρLT

ρAV
> −ρmax − ρLT

ρmax − ρAV
. (32)

We know that ρmax ≥ ρLT so to make the right hand side non-negative we need
ρmax < ρAV . The solution to the inequality (32) is

ρmax < 2
ρAV ρLT

ρLT + ρAV
. (33)

The conditions for the denominator and the numerator have to be satisfied simultane-
ously, so for the maximum we have (29) and (33) and (as can be seen from Fig. 1) the
condition (33) is stronger in the case of ρLT < ρAV and has to be fulfilled in order for
the density to be positive. As far as the minimum is concerned, apart from the obvious
condition ρmin ≤ ρLT it is not constrained at all.
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3.1.2 Subcase B: R′ (ρLT − ρAV ) > 0

The subcase B will be investigated similarly. The only difference is that from (21) we
know that if R′ (ρLT − ρAV ) < 0 the function E ′

E has maximum where the density
has maximum and this modifies (22) and (23) accordingly. From the denominator of
(15) we have

R′

R
>

(
E ′

E

)

max
= R′

R

ρmax − ρLT

ρmax − ρAV
, (34)

which again implies R′ > 0 and ρLT > ρAV because
(

E ′
E

)
max

≥ 0 and it simplifies

to

1 >
ρmax − ρLT

ρmax − ρAV
. (35)

The analysis is basically the same, we again need the right-hand side to be non-negative.
We know that ρmax ≥ ρLT and therefore ρmax > ρAV as well, so the inequality (35)
will be always true as long as ρLT > ρAV and we don’t get any further condition for
the maximum. For the minimum we have

R′

R
>

(
E ′

E

)

max
= − R′

R

ρmin − ρLT

ρmin − ρAV
. (36)

In order for the right-hand side to be non-negative we need ρmin > ρAV which is a
valid condition for the density minimum, because as mentioned above ρAV is not true
value of the density. The inequality (36) has the solution

ρmin >
1

2
(ρAV + ρLT ) . (37)

From the numerator of (15) we have the condition

R′

R

ρLT

ρAV
>

(
E ′

E

)

max
= R′

R

ρmax − ρLT

ρmax − ρAV
. (38)

It again implies R′ > 0 and ρLT > ρAV and it does not give us any constraint for the
maximum, because we know that ρmax ≥ ρLT and therefore ρmax > ρAV . So (38)
holds as long as R′ > 0 and ρLT > ρAV . For the minimum we can write

R′

R

ρLT

ρAV
>

(
E ′

E

)

max
= − R′

R

ρmin − ρLT

ρmin − ρAV
. (39)

The right-hand side will be positive if ρmin > ρAV and the solution to (39) is

ρmin > 2
ρLT ρAV

ρLT + ρAV
. (40)
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All together in the case of R′ (ρLT − ρAV ) > 0 we have two conditions (37) and
(40) for the minimum and as can be seen from Fig. 1 the first one is stronger. For the
maximum, except for the obvious ρmax ≥ ρLT , we don’t have any constraint so the
density will be positive as long as (37) holds and ρmax ≥ ρLT .

3.1.3 Subcase C: R′ (ρLT − ρAV ) = 0

Before we consider this special case we can first rewrite (15) as

ρ =
R′ (ρLT − ρAV ) + ρAV

(
R′ − R E ′

E

)

R′ − R E ′
E

(41)

Now using R′ (ρLT − ρAV ) = 0 we can see that the formula for the density simplifies

ρ = ρAV
R′ − R E ′

E

R′ − R E ′
E

= ρAV , (42)

in other words the value of the density is independent of θ and φ and the density is
homogeneously distributed on the whole sphere as follows also from (21) because the
derivative of the density is now zero. Using the same argument as in subcase A and B
we have R′ > 0 and therefore ρLT = ρAV . For the extreme values of the density we
obviously need in this case

ρmax = ρmin = ρAV = ρLT . (43)

The point where ρLT = ρAV is especially interesting because the shell-crossing
conditions for ρmax and ρmin change here and the location of ρmax and ρmin inter-
changes by passing through the plane E ′

E = 0. The position of this critical point rc

generally evolves and we can get its value as the solution to the equation

3
R′

R

∫ rc

0
ρLT 0r2dr = ρLT 0r2

c , (44)

where we used the initial condition (18) and formulas (20) in order to express ρLT

and ρAV . So the time evolution of the critical point will depend on the time evolution
of the function R′

R .

3.2 Second case: numerator and denominator of the density are both negative

In order for the denominator of the density (15) to be negative, we need

R′

R
<

(
E ′

E

)

min
. (45)
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This condition will not be fulfilled unless R′ < 0 because
(

E ′
E

)
min

≤ 0. The investi-

gation is than similar as in the first case and leads to the same conditions for ρmin and
ρmax as can be easily verified.

On the other hand if R′ > 0 and we allow the denominator to be negative on a
given r , it will be also positive on that r for some specific θ and φ. This behaviour may
or may not be correct, depending on the behaviour of the numerator and specifically
depending on whether or not the numerator changes sign at the same θ, φ. For the
numerator we have inequality

R′ρLT − R
E ′

E
ρAV < 0. (46)

This can be rewritten as

R′

R

ρLT

ρAV
<

(
E ′

E

)

min
. (47)

The same argument as in the case of denominator tells us that this will be satisfied
only if R′ < 0. So if the numerator is negative on a given r but R′ > 0, there is a
region on this r where it is positive too. For the positiveness of the denominator in a
region (θ, φ) we have

R′

R
>

E ′

E
(48)

and for the numerator the condition is

R′

R

ρAV

ρLT
>

E ′

E
. (49)

Clearly the conditions are not the same unless ρLT = ρAV , so except for this special
case, there will always be a region on a given r where the numerator and the denom-
inator will have different signs. The places where the sign changes are in both cases
circles on the sphere, that are parallel to the great circle that defines the plane of the
dipole. The order in which the circles go are seen in Fig. 2, where the parallel circles
are mapped as parallel lines.

So if in the second case R′ > 0 there are no conditions for the density extremes
that would prevent shell crossing.

3.3 Third case: numerator and denominator of the density are both zero

The denominator is zero when

R′

R
= E ′

E
, (50)
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ρ > 0

ρ > 0

ρ < 0
ρ > 0

E′
E

)
max

E′
E

)
min

(a)

ρ > 0

ρ > 0

ρ < 0
ρ > 0

E′
E

)
max

E′
E

)
min

(b)

Fig. 2 The behaviour of the density for ρAV > ρLT in a and ρAV < ρLT in b when the conditions for
no shell-crossing are not met. The circle represents a sphere on a given r , the solid line represents the plane
E ′
E = 0. The dashed line represents a plane E ′

E
ρLT
ρAV

= R′
R , that is parallel to the plane E ′

E = 0, the density

becomes zero here. The dotted line is the plane E ′
E = R′

R and it is the plane where the density diverges.
The density is negative between the dashed and dotted line

Table 1 The list of shell
crossing conditions for density
extremes in terms of ρLT and
ρAV

Conditions for ρmin Conditions for ρmax

ρAV > ρLT

ρmin ≤ ρLT < ρAV ρmax ∈ 〈ρLT ; 2 ρAV ρLT
ρLT +ρAV

)

ρAV < ρLT

ρmin ∈
(

ρAV +ρLT
2 ; ρLT 〉 ρmax ≥ ρLT > ρAV

ρAV = ρLT

ρmin = ρLT ρmax = ρLT

but this equation will be satisfied on a given r for all θ and φ only if both R′
R and E ′

E
are zero. This consequently means that E ′ = P ′ = Q′ = S′ = R′ = 0. The same
arguments are valid for the numerator of the density. As was discussed in [10] and in
the context of LTB metric in [22] this point will not be a singularity if also M ′ = 0.
Since M ′ and E ′ are independent of time it implies that R′ cannot evolve and we need
stationary configuration in order to avoid shell crossing.

The Table 1 summarizes the conditions for the extreme values of the density that
we obtained so that shell crossing would be avoided. From the dipole property (26) it
follows that there is a constraint between the density extremes

ρmin − ρLT

ρmin − ρAV
= −ρmax − ρLT

ρmax − ρAV
, (51)
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which means that knowing one extreme value allows us calculate the other one with
a formula

ρmax = ρmin (ρAV + ρLT ) − 2ρLT ρAV

2ρmin − ρLT − ρAV
(52)

that follows from (51). And for the other extreme we just interchange min for max in
the last equation. Consequently it is sufficient to ensure that just one of the extremes
satisfies the conditions in table 1 and the constraint (51) ensures that the other density
extreme has a value that does not break the conditions in Table 1.

4 Time dependence of the shell crossing conditions, case f = 0

In the previous section we derived conditions that ρmax and ρmin have to satisfy in
order to avoid shell crossing singularity. To find out if a shell crossing occurs at a given
time, we need to calculate ρmax or ρmin at that time and then check if the conditions
are met. It would be useful to have conditions in terms of the initial ρLT 0 and ρmin0
or ρmax0 that would ensure no shell crossing at any time during the evolution. In this
section we show that in the special case when f = 0, if we avoid shell crossing at the
initial time, it is guaranteed that no shell crossing occurs during the time evolution.

First we show that if on the initial time slice ρAV 0 > ρLT 0, then this condition holds
at any later time. We will use the initial condition (18) and start with the inequality
that we want to prove ρAV > ρLT

3

R3

∫ r

0
ρLT 0r ′2dr ′ >

1

R2 R′ ρLT 0r2, (53)

this can be rewritten as

R′

R
r

3
∫ r

0 ρLT 0r ′2dr ′

ρLT 0r3 > 1 (54)

and the inequality sign depends on the sign of R′ and here we assumed R′ > 0. We
can see that the time dependence in the last inequality is hidden in the function R′

R r .
The choice f = 0 has parabolic evolution and the solution to the Eq. (4) is given by
(8). If we substitute in (8) for M from (19) we get

R(t, r) =
(

9

4

) 1
3
(∫ r

0
ρLT 0r ′2dr ′

) 1
3

(t − tB)
2
3 . (55)

We can fix the bang time function tB using (18) to be

tB =
⎡
⎣ti − 2

3

(
r3

∫ r
0 ρLT 0r ′2dr ′

) 1
2
⎤
⎦ , (56)
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where ti is the initial moment of the evolution. By calculating the radial derivative of
(55) we can express R′

R r as

R′

R
r = ρLT 0r3

3
∫ r

0 ρLT 0r ′2dr ′ − 2

3

t ′B
t − tB

r. (57)

After calculating radial derivative of the bang time function (56) and substituting it in
the last formula we obtain

R′

R
r = ρLT 0r3

3
∫ r

0 ρLT 0r ′2dr ′ + 2

3

3
∫ r

0 ρLT 0r ′2dr ′
ρLT 0r3 − 1

(
3

∫ r
0 ρLT 0r ′2dr ′
ρLT 0r3

) 3
2

1

t − tB

√
3

ρLT 0
. (58)

Now we define

A ≡ ρAV 0

ρLT 0
= 3

∫ r
0 ρLT 0r ′2dr ′

ρLT 0r3 (59)

and using this definition we can rewrite (58) as

R′

R
r = 1

A
+ 2

3

A − 1

A
3
2

1

t − tB

√
3

ρLT 0
. (60)

From this formula it can be shown that R′
R r is a monotonic function of t . For t = ti , its

value is 1, which follows from our initial condition R (ti ) = r and for t → ∞, R′
R r →

1
A so it is increasing if ρAV 0 > ρLT 0 and it is decreasing if ρAV 0 < ρLT 0. In any case
the function is positive which implies R′ > 0 so our assumption of the inequality sign
in (54) is justified. Using the definition (59) and substituting for R′

R r into (54) we get

2

3

A − 1√
A

1

t − tB

√
3

ρLT 0
> 0. (61)

Since t > tB the last inequality will be satisfied as long as A > 1, which is equivalent
to ρAV 0 > ρLT 0 as can be seen from the definition of A. So we can see exactly what
we wanted to prove, if ρAV 0 > ρLT 0 than ρAV > ρLT at any time. Similarly we could
prove that if ρAV 0 < ρLT 0 than ρAV < ρLT at any time. Next we will assume that
ρAV 0 > ρLT 0 and we will express the shell crossing condition ρmin < ρLT in terms
of initial data. For the function E ′

E we have formula (24) and since the function does
not depend on time, we can express it on the initial time slice

E ′

E max
= 1

r

ρmin0 − ρLT 0

ρmin0 − ρAV 0
. (62)
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We plug the last formula into (23) and after some calculations we get

ρmin = r3

R3 ρLT 0

ρmin0
ρLT 0

(
1 − ρAV 0

ρLT 0

)

R′
R r

(
ρmin0
ρLT 0

− ρAV 0
ρLT 0

)
− ρmin0

ρLT 0
+ 1

(63)

and we used ρAV
ρLT

= R′
R r ρAV 0

ρLT 0
which follows from its definitions (16) and (17). We will

now define

C ≡ ρmin0

ρLT 0
(64)

and using this definition with (59) we can rewrite (63) as

ρmin = r3

R3 ρLT 0
C (1 − A)

R′
R r (C − A) + (1 − C)

. (65)

The inequality ρmin < ρLT can now be rewritten as

R′

R
r

(1 − A) C
R′
R r (C − A) + (1 − C)

< 1. (66)

We need to multiply the last inequality by the denominator, but in order to do that we
need to find out its sign. From (59) and (64) it follows

C − A = − 1

ρLT 0
(ρAV 0 − ρmin0) < 0, (67)

next using the minimal value of R′
R r to be 1

A we can write for the denominator of (66)

(1 − C) − R′

R
r (A − C) ≤ 1 − C − 1

A
(A − C) = C

(
1

A
− 1

)
< 0, (68)

because we assume ρAV 0 > ρLT 0, i.e A > 1. So the denominator is negative and
when we multiply by it in (66), we get after some calculations

R′

R
r A > 1, (69)

which is inequality (54) written in terms of A and we already proved that it holds as
long as A > 1. So we can see that if ρAV 0 > ρLT 0 than ρmin < ρLT is fulfilled and
the shell crossing will be avoided at any time. Similarly it could be shown that in the
case ρAV 0 < ρLT 0, i.e. A < 1, if ρmax0 > ρLT 0 than ρmax > ρLT at any time.

We can also see that if ρAV 0 = ρLT 0 at some point rc, it means that we have A = 1
and from (60) it follows R′

R r = 1. So the position of the critical point rc as defined in
(44) is time independent.
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5 Density contrast, case f = 0

We will choose ρLT 0 in such a way that ρLT 0 < ρAV 0. We already expressed ρmin in
terms of ρLT and ρmin0 in (65). Similarly we can express ρmax in terms of ρLT 0 and
ρmax0 as

ρmax = r3

R3 ρLT 0
D (1 − A)

R′
R r (D − A) − (D − 1)

, (70)

where we define

D ≡ ρmax0

ρLT 0
. (71)

We are now interested in the time evolution of the difference of the extreme values
of the density, so we define

�ρ ≡ ρmax − ρmin = r3

R3 ρLT 0 (1 − A)

×
[

D
R′
R r (D − A) − (D − 1)

− C
R′
R r (C − A) − (C − 1)

]

(72)

We can now substitute for R from (55) and after some more calculations it can be
rewritten in the form

�ρ (t, r) = 4

3

1

(t − tB)2

�ρ0

ρLT 0
h (t, r) , (73)

where we have defined �ρ0 ≡ ρmax0 − ρmin0,

h (t, r) ≡ 1 − A

A

1 − R′
R r A

(
R′
R r

)2
(D − A) (C − A) + (D − 1) (C − 1)

, (74)

and we used

2 (C D + A) − (C + D) (A + 1) = 0, (75)

which can be derived from the constraint (52). We will now investigate the behaviour
of the function h.

We set A = 1 + ε and take a look at how the function h behaves in the case when
ε << 1, which corresponds to the situation when the radial derivative of ρLT 0 is
small. First we approximate R′

R r that is given by (60),
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R′

R
r = 1

1 + ε

(
1 + 2

3

1

t − tB

√
3

ρLT 0

ε√
1 + ε

)
≈

≈ 1 +
(

2

3

1

t − tB

√
3

ρLT 0
− 1

)
ε +

(
2 − 1

3

1

t − tB

√
3

ρLT 0

)
ε2 + o

(
ε3

)
.

(76)

So in the numerator on the right hand side of (74) we get

(1 − A) (1 − R′

R
r A) = −

(
1 − R′

R
r

)
ε + R′

R
rε2 ≈ 2

3

1

t − tB

√
3

ρLT 0
ε2 + o

(
ε3

)
.

(77)

In order to simplify the denominator in (74) we set D = 1 + δ and C = 1 − ξ and
we assume that �ρ0 << ρLT 0 in which case δ << 1 and ξ << 1. In this case the
approximation of the denominator reads

A

[(
R′

R
r

)2

(C − A) (D − A) + (C − 1) (D − 1)

]
≈

≈ (C − A) (D − A) + (C − 1) (D − 1) (78)

and for the function h we get

h ≈ 2√
3

1

t − tB

1√
ρLT 0

(A − 1)2

(C − A) (D − A) + (C − 1) (D − 1)
. (79)

From (75) it follows

2C D = AC + AD − 2A + C + D. (80)

Using (71) we can rewrite the denominator in (79)

(C − A) (D − A) + (C − 1) (D − 1) = A2 − 2A + 1 = (A − 1)2 . (81)

So for h we can write

h ≈ 2√
3

1

t − tB

1√
ρLT 0

(82)

and for �ρ we have

�ρ ≈ 8
√

3

9

1

(t − tB)3

�ρ0

ρ
3
2
LT 0

. (83)
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From the last equation we can see that if the radial derivative of ρ
− 3

2
LT 0 is small then it

does not effect much the shape of the initial difference of the density extremes. Also
if at late time t the bang time function is small compared to t we can see that �ρ is
proportional to 1

t3 . We can try to evaluate (83) at the initial time t = ti

�ρ (t = ti ) ≈ 8
√

3

9

27

8

(∫
ρLT 0r2dr

) 3
2

r
9
2

�ρ0

ρ
3
2
LT 0

= A
3
2 �ρ0, (84)

so we can see that if A is close to 1 the approximation gives us what we expect.

6 Model specification

The Szekeres spacetime has 5 degrees of freedom, so to fully specify the model we
need to set up 5 functions. But since we are only interested in the density contrast, it
is sufficient to specify just three functions, which is the curvature function f that we
assume to be zero, the initial radial profile ρLT 0 and one extreme value of the density.
We will set up two models a and b. For the initial radial profile we choose

a : ρLT 0 = ρb0

(
1 + 1

10
e− r2

500

)
,

b : ρLT 0 = ρb0

(
1 + 1

5
e− r2

500

)
.

(85)

Both of them are peaked at the origin and ρb0 is the background density at the initial
time. The ρLT 0 is chosen in such a way that besides the origin it is less then ρAV 0,
therefore for the extreme value we specify the density minimum since the only require-
ment for it is that it has to be equal to ρLT 0 at the origin and less everywhere else. We
choose ρmin0 as

a : ρmin0 = ρb0

(
1 + 1

10
e− r2

400

)
,

b : ρmin0 = ρb0

(
1 + 1

5
e− r2

400

)
.

(86)

The models differ by the size of the radial inhomogeneity that is in the model b
twice as big as in the model a and we want to demonstrate, that the approximation
formula will work better for the model a, because the function A is closer to 1 than in
the model b. The functions ρLT 0, ρmin0, ρmax0 and ρAV 0 for the model a are shown in
Fig. 3a. The function A for both models is shown in Fig. 3b. The initial time is chosen
as ti = 5 · 105 y that approximately corresponds to the time of last scattering. The
final time t f = 13.7 · 109 y which is approximately present time. The initial density
contrast �ρ0

ρb0
and the final density contrast �ρ

ρb
for both models are shown in Fig. 4, ρb

denotes the background density at the final time. The impact of the time evolution on
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(a) (b)

Fig. 3 a The functions ρmin0, ρmax0, ρLT 0 and ρAV 0 for the model a. The dotted line represents the
chosen initial density minimum ρmin0 according to (86). The dashed line is the initial density maximum
ρmax0 computed according to (52). The solid line between the dotted and dashed lines is the chosen initial
radial density profile ρLT 0 as specified in (85). The top solid line is the computed ρAV 0. All values on
the vertical axis are divided by ρb . b The function A as defined in (59) for both models. The lower curve
corresponds to the model a, the upper curve corresponds to the model b

(a) (b)
Fig. 4 a The behaviour of the initial density contrast �ρ0

ρb0
for both models. b the behaviour of the final

density contrast �ρ
ρb

for both models. The solid curve represents the exact formula (73). The dotted curve is
the density contrast as calculated according to the approximation formula (83). The lower and upper curves
correspond to the model a and b respectively. The lower curve is apparently approximated better, because
the radial inhomogeneity was chosen smaller

the initial shape is minimal as we expected since A is close to 1, on the other hand the
magnitude of the density contrast drops significantly because of the factor t−3 in (83).
We can also see in the Fig. 4 that the formula (83) approximates the density contrast
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better for the model a, that corresponds to the lower peak, because we chose the radial
inhomogeneity lower than in model b.

7 Conclusion

We studied model of inhomogeneity in quasispherical Szekeres model. We set up only
3 of 5 degrees of freedom, which is sufficient for studying the evolution of the density
contrast. The lack of specification of the last two degrees of freedom means that we do
not have the detailed information about the density distribution, particularly we do not
know the position of the extreme values on the spheres. We specify the initial radial
density profile ρLT 0 which is the value of the density around the great circle that lies
in the plane that defines the dipole. Next, we choose one extreme value of the density
at the initial time, either ρmin0 or ρmax0, and the last function that we choose is the
curvature function f . In order to choose an appropriate value for the density extremes,
we investigated the shell crossing conditions in terms of density ρmax , ρmin, ρLT and
ρAV . We derived conditions that ρmax and ρmin have to satisfy in order to avoid shell
crossing and we showed that in the special case f = 0, if the conditions are fulfilled
on the initial time slice, then they will hold at any time.

Next, we derived an analytical formula for the density contrast �ρ as a function
of t and r . In the special case f = 0, we derived an approximation formula that is
valid if the initial inhomogeneity is small and we showed that in this approximation
the density contrast is proportional to the initial density contrast and depends on time
as t−3, so there is a decrease in magnitude during time evolution, however the shape
of the function is preserved. It shows that the dynamics is very simple and close to
homogeneous one for small inhomogeneity confirming the expected behaviour. In
this sense one may argue that a small inhomogeneity can be successfully treated in
perturbation theory and the influence of nonlinearity is negligible.

The next research will be focused on the situation when the curvature function is
chosen more generally and is not equal to zero.
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