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Abstract A wormhole solution in Newtonian gravitation, enhanced through an equa-
tion relating the Ricci scalar to the mass density, is presented. The wormhole inhabits
a spherically symmetric curved space, with one throat and two asymptotically flat
regions. Particle dynamics in this geometry is studied, and the three distinct dynami-
cal radii, namely, the geodesic, circumferential, and curvature radii, appear naturally
in the study of circular motion. Generic motion is also analyzed. A limiting case,
although inconclusive, suggests the possibility of having a Newtonian black hole in a
region of finite (nonzero) size.

Keywords Wormholes · Black holes · Newtonian gravitation

1 Introduction

When many alternative theories to general relativity are being suggested, and the grav-
itational field is being theoretically and experimentally put to test, it is interesting to try
an alternative to Newton’s gravitation through an unexpected but simple modification
of it. The idea is to have Newtonian gravitation, not in flat space, as we are used to,
but in curved space. This intriguing possibility has been suggested by Abramowicz
[1]. It was noted that Newtonian gravitation in curved space, and the corresponding
Newtonian dynamics in a circle distinguishes three radii, namely, the geodesic radius
(which gives the distance from the center to its perimeter), the circumferential radius
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(which is given by the perimeter divided by 2π ), and the curvature radius (which is
Frenet’s radius of curvature of a curve, in this case a circle). Using these ideas, the
perihelion advance formula for a planet in an elliptical orbit in the gravitational field
of a star in spherical space in curved Newtonian gravitation has been computed [1]. A
further development appeared in [2] where it was proposed that besides considering
Poisson’s equation for Newtonian gravitation in curved space, one could add an equa-
tion linking the three-dimensional Ricci scalar to the matter density [3,4], yielding an
enhanced Newtonian gravitation. It was argued that even having Newtonian gravita-
tion as a limit of general relativity the limit could yield a space with nonzero Gaussian
curvature and that observers could find that the curvature of space is a function of
the distance to the center of attraction. In this curved Newtonian gravitation, one can
postulate a vacuum spherical symmetric curved space solution, and then calculate the
perihelion advance of a planet in such a space, as well as the bending of light rays
[2]. The calculations in [5] have corroborated this idea where the field equations of
Einstein were solved by appealing to how Einstein gravity covers Newtonian gravity
when one deals with orbits of test particles.

By opening up the possibility of having Newtonian gravitation in curved space
a plethora of new situations can appear. One can immediately ask whether such an
enhanced theory has objects that are the analogues of the black holes, a concept that
sprang from general relativity [6]. The dark stars of Mitchel and Laplace [7] could
be candidates to fill the gap. These are stars so compact that the escape velocity from
their surface is equal or exceeds the speed of light. A realization of such stars was
provided by Chandrasekhar in his celebrated study of white dwarfs [8,9]. By using
Newtonian gravitation and studying the full structure of the matter in those stars,
he found that diminishing the radius from star configuration to star configuration,
and finally sending the radius to zero, there was a limiting mass, a maximum mass,
called now the Chandrasekhar mass. Of course, in the final stages of the sequence of
configurations, there is a star, the first star that is a dark star in the sense of Mitchel and
Laplace. The other configurations with lesser radii, including the one with r = 0, also
belong to the class of dark stars. However, it is known that the dark stars of Michell and
Laplace suffer severe problems in the analogy with the general relativistic black holes.
Indeed, since in Newtonian gravitation there is no particular status for the velocity of
light, it is difficult to argue that stars cannot be seen through light when sufficiently
compact, and even if this was the case, one could resort to tachyonic particles that could
be detected after all [10,11]. One can try to remedy the situation by ingenious reasoning
[12] but in the end it is fruitless [13], i.e., in one manner or the other one can find
ways that enable light and test particles to escape from the Michell-Laplace dark stars
(see also [14]). The true Newtonian black holes are point-like gravitational attractors
(point particles if one prefers), as at the location of the attractor the gravitational
field is infinite and so there is no possibility of escape, one would need an infinite
acceleration and thus an infinite velocity to escape. Indeed, the r = 0 location of a
point gravitational attractor in Newtonian gravitation has one property that somehow
fits with what is called a singularity in general relativity: it is a singularity of the
gravitational field, the gravitational field and the tidal forces go to infinity at r = 0.
On the other hand it has two properties that fit the definition of an event horizon of a
black hole: (i) it is not a singularity of space, since space is flat, and (ii) nothing can

123



Newtonian wormholes Page 3 of 23 1803

escape from it, defining thus a horizon. On top of that point particles in Newtonian
gravitation have in common with black holes the fact that they have no hair, only their
mass (and spin and electric charge if that is the case) characterize the particle. So in
pure Newtonian gravitation point gravitational attractors are the analog of the general
relativistic black holes. But now, given that there is an enhanced Newtonian gravitation
[1,2] one can ask if there are Newtonian black holes with a finite, non-zero radius,
horizon. Paczinski potential [15,16], an ad hoc potential that simulates the effect of
a horizon in the study of accretion disks in Newtonian gravitation, is a candidate that
would have to be derived from first principles. We have not been able by direct means to
solve the problem for this potential or for any similar one that could possess a horizon.

But, another, simpler problem can be solved. In particular, a curved space in New-
tonian gravitation allows the possibility of building Newtonian wormholes, i.e., spaces
not simply connected, having a nontrivial topology that permit a passage through it. In
general relativity, wormholes have a long existence but their appearance can be traced
to the work of Morris and Thorne [17]. They were put on a firm basis in Visser’s book
[18], and several works have showed other special features of this system, see, e.g.,
[19–32]. The main features of a wormhole are a throat and some type of asymptotics.
In addition, in general relativity the matter that supports the throat violates the aver-
age null energy condition [17,18]. In particular as emphasized in [17] this means that
there are always some observers that see a negative energy density. What can we say
in enhanced Newtonian gravitation? We will show by presenting a simple Newtonian
wormhole how these features translate into this Newtonian gravitation.

The paper is organized as follows. In Sect. 2 we write the fundamental equations of
the enhanced Newtonian gravitation. In Sect. 3 we construct a Newtonian wormhole,
static and spherically symmetric. We display the requisites for its construction and
then give the matter and the metric. We perform an embedding and show the condition
for having a throat, give the geometry in final form, and study the spatial geodesics in
such a space. We then analyze the gravitational field, the gravitational potential, the
mass, and the pressure support. We also study test particle motion and dynamics in the
wormhole geometry and gravitational field. Finally, in Sect. 4 we discuss a limiting
case which suggests the possibility of having a Newtonian black hole in a region of
finite (nonzero) size. In Sect. 5 we conclude.

2 The fundamental equations

Newtonian gravity was devised for an infinite flat absolute 3-dimensional space such
that Poisson’s equation ∇2 φ = 4π G ρ holds, where φ is the gravitational potential
at some spatial point, ∇2 is the Laplace operator, G is the gravitational constant and ρ

is the mass density of the continuum. To this equation one should add the continuity
and Euler equations for the continuum. The equation of motion for a test particle in
the gravitational field φ is Fi = mai , where Fi is the gravitational force given by
Fi = −m∇iφ,∇i is the gradient in the i th spatial direction, with i = 1, 2, 3, m is the
test particle’s mass, and ai its acceleration. There is, however, nothing in Newton’s
theory of gravitation that forbids that Newtonian gravitation be applied to a curved
space or even a finite space. Indeed, it was recently proposed by Abramowicz [1] and
Abramowicz et al. [2] a formulation of Newtonian gravitation in curved space.
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In curved space, Poisson’s equation is modified to

gi j∇i∇ jφ = 4π G ρ, (1)

where gi j is the metric for the given curved space, and the indices i, j are spatial
indices running from 1 to 3. For static systems the continuity equation is trivial, and
the Euler equation reduces to

∇i p + ρ∇i φ = 0, (2)

where we have assumed minimal coupling, so that terms involving the curvature of
the three-space do not directly appear in the equation. These are Newton’s equations
for a given imposed geometry for the space. They are self-contained.

Now, following general theory of relativity, where the spacetime geometry and mat-
ter are connected, it would be interesting to have, in Newton’s gravitation, the geometry
of space and the matter directly related through a new equation. One candidate for
such an equation was proposed in [2],

R = 2kρ, (3)

where R is the Ricci scalar, the factor 2 appears for convenience, and k is, in this
context, an arbitrary constant, that can be picked up from observations or consistency
arguments. This is an enhanced Newtonian gravitation [2]. Other relations, different
from Eq. (3) can be sought for.

To study the motion of a test particle with mass m in such a gravitational field φ

one uses Newton’s second law,

m ai = −m gi j∇ jφ, (4)

where ai is the particle’s acceleration, and we have assumed that the test particle’s
inertial mass m is equal to the gravitational mass.

The full enhanced theory comprises Eqs. (1)–(4).

3 Newtonian wormholes

3.1 Premises and assumptions

Making use of Eqs. (1)–(3) we can build wormholes within the framework of Newton’s
theory of gravity, and then through Eq. (4) one studies the motion of test particles in
such a geometry.

Our starting point is to impose a geometry that has a throat that connects two
asymptotic branches, so that there is a wormhole. We also assume a matter density ρ

that is (i) finite and differentiable everywhere, and (ii) goes to zero sufficiently fast as
the distance from the wormhole throat goes to infinity. The first condition is justifiable
in order to keep space a smooth manifold. As for the second condition, it is imposed
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to guarantee that at sufficiently far distance from the wormhole’s throat we recover
flat space and the usual form for the Newton’s potential. So imposing a geometry and
a density compatible with each other, one then finds the gravitational potential and the
mass of the wormhole, the pressure support, and the behavior of test particles.

3.2 Construction of the wormhole

3.2.1 Matter density and metric

Our purpose is to construct a spherical symmetric space with geometry of a wormhole.
For this we consider its metric to be of the form

ds2 = A (r) dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

. (5)

This general form of the metric allows us to find the expression for the Ricci scalar R
in terms of the function A as

R = 2
[
(A (r) − 1) A (r) + r A′ (r)

]

r2 A (r) 2 . (6)

Found the general expression for the Ricci scalar, we can impose a physical mean-
ingful matter density and find then A(r) using Eq. (3). So, in order to proceed with
the construction of the Newtonian wormhole, we assume the form of the mass density
to be

ρ (r) = αe
− r2

b2

(
2 − b2

r2

)
, (7)

where α and b are two parameters with dimensions of mass density and distance,
respectively. Notice that, since we expect the geometry of the space to be that of a
wormhole, the coordinate r obeys r > 0. Therefore, our imposition of the mass density
to be finite everywhere is verified.

Given Eqs. (6) and (7) we can write Eq. (3) as

2
[
(A (r) − 1) A (r) + r A′ (r)

]

r2 A (r)2 = 2kα
e
− r2

b2
(
2r2 − b2

)

r2 . (8)

The solution for A is then

A (r) = r

r + βr e
− r2

b2 + C1

, (9)

where C1 is a constant of integration and we have defined β as

β ≡ b2kα. (10)
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Note that β is a pure number. Therefore, the general form of the metric of the space,
for the imposed mass density, is

ds2 = r

r + β re
− r2

b2 + C1

dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

. (11)

3.2.2 The value of the integration constant

Although we have found the general form of the metric of the spherically symmetric
space for the imposed matter density, we still have to restrict the values of the parame-
ters k, α and C1 to have a wormhole space. To do so, we will follow the method adopted
by Morris and Thorne [17]. We use an embedding diagram, that is, we construct in a
3-dimensional Euclidean space, a 2-dimensional surface with the same geometry of
an equatorial slice, θ = π/2, of the spherically symmetric metric given in Eq. (11).

Using cylindrical coordinates (r, z, ϕ) on the Euclidean embedding space, the
Euclidean metric can be written as

ds2 = dr2 + r2dϕ2 + dz2. (12)

The embedded surface will be axially symmetric and thus can be described by a single
function z = z(r), such that, on that surface the line element is

ds2 =
[

1 +
(

dz

dr

)2
]

dr2 + r2dϕ2. (13)

This line element will be the same as that of an equatorial slice through the wormhole
space, so comparing Eq. (11) with θ = π/2 to Eq. (13), identifying the coordinates
(r, ϕ) of the embedding Euclidean space with the coordinates (r, ϕ) of the wormhole
space, we find that

dz

dr
= ±

√
r

r + β re
− r2

b2 + C1

− 1. (14)

This equation can now be used to study the properties of the wormhole space. Taking
the limit of Eq. (14) when r → +∞ we find that

lim
r→+∞

dz

dr
= 0, (15)

for every value of the constants C1, k andα, concluding that the condition of asymptotic
flatness of the wormhole space is always verified.

Next we shall analyze the throat condition, i.e., we verify that when the coordinate r
goes to a minimum positive value, which we shall set to be b—defining the geometric
meaning of the parameter b in Eq. (7)—the embedding surface has a vertical slope,
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thus

lim
r→b+

dz

dr
= ±

√
1

1 + β e−1 + C1
b

− 1 = ±∞. (16)

For this equation to be verified we must have

C1 = −b

(
1 + β

e

)
. (17)

Substituting this value for the constant C1 in Eq. (16) we find that

limr→b+ dz
dr = ±

√
1

sgn(e−β)
∞ . Thus, from the throat condition, Eq. (16), besides

finding the value of the integration constant C1 as given in Eq. (17), we also find an
upper bound for the product β ≡ kα b2, namely, −∞ < β < e. This restriction to β

is also implied from the flare out condition, d2r/dz2 > 0, at the throat. Taking into
account Eq. (17) we can write Eq. (11) as

ds2 = 1

1 − b(r)
r

dr2 + r2
(

dθ2 + sin2 θdϕ2
)

, (18)

where

b (r) = b + β

e

(
b − re

1− r2

b2

)
, (19)

is the usually called the shape function.
To finalize the definition of the geometry of the Newtonian wormhole, there is still

one more restriction that the space must verify in order to be a wormhole. Although
the radial coordinate r is ill behaved near the wormhole’s throat, the proper radial
distance

r∗ (r) =
∫ r

b

√
1

1 − b(r ′)
r ′

dr ′, (20)

where the function b (r) is defined by Eq. (19), must be finite throughout the space.
This implies that

1 − b(r)

r
� 0. (21)

Working out the details this implies

− ∞ < β � βcrit, (22)
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where

βcrit ≡ inf
1 ≤ r

b <∞

⎡
⎣

r
b − 1

e−1 − r
b e

− r2

b2

⎤
⎦ , (23)

and inf represents the infimum of the function in parenthesis over its domain. The
infimum of the right hand side of Eq. (23) cannot be found analytically, but using
numerical methods we find that

βcrit = 2.338, (24)

up to the third decimal place. Comparing Eq. (24) with the one found from the flare out
condition, namely, β < e, we conclude that the upper bound to the product β = kα b2

is then given by Eq. (24) itself.
The class of wormholes we are interested in here are the one that obeys 0 < β � βcrit

together with α > 0, and so k > 0, i.e., for this class we have wormhole spaces with
positive density and positive connection between the density and the curvature. That β
can have positive values means that it is possible to have non-exotic wormholes in this
enhanced Newtonian gravitation. This is in contrast to general relativistic wormholes
where the flare out condition imposes some form of exoticity for the matter.

Note, however, that from the range of the parameter β = kα b2 given in Eq. (22)
there are three classes that can be considered: (i) 0 < β � βcrit — this class represents
wormholes that can also be subdivided into (a) wormholes with non-exotic matter,
α > 0, and so k > 0, and (b) wormholes with exotic matter α < 0, and so k < 0, i.e.,
an exotic connection between the curvature and the density; (ii) β = 0—this class
can be further subdivided into three subclasses: (a) if b = 0, k 	= 0, and α 	= 0, then
the space is trivially flat, (b) if α = 0, b 	= 0, and k 	= 0, then the space is vacuum,
nevertheless is curved with perhaps interesting properties, and (c) if k = 0, b 	= 0,
and α 	= 0, then there is no connection between the curvature and the density and the
space can also be curved; (iii) −∞ < β < 0—this class represents wormholes that
can be subdivided into (a) wormholes with non-exotic matter α > 0, and so k < 0, i.e.,
a space with positive density and negative exotic connection between the density and
the curvature, (b) wormholes with exotic matter α < 0, and so k > 0, i.e., a space with
negative density and positive connection between the density and the curvature. We
will exploit the interesting class (i) (a), the wormhole spaces with non-exotic matter
(i.e., positive density) and positive connection between the density and the curvature.
All classes could be explored.

3.2.3 The wormhole metric in final form in three coordinate systems

(i) Metric in the original coordinates:
Gathering all the results of the previous sections we can now write the metric of
the Newtonian wormhole as
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ds2 = 1

1 − b
r

(
1 + β

e − β
b re

− r2

b2

) dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (25)

The Ricci scalar is given by

R = 2kαe
− r2

b2

(
2 − b2

r2

)
, (26)

whereas the density ρ(r) is given in Eq. (7).
(ii) Metric in wormhole coordinates:

Now that we have written the metric of the Newtonian wormhole in its final form,
Eq. (25), we have to deal with the problem of the coordinate singularity at r = b.
To remove this singularity we have to find a change of coordinates such that
the components of the metric are finite throughout the space. Considering a new
coordinate l in the range −∞ < l < ∞, such that l2 = r2 − b2. We can then
rewrite the metric of the space as

ds2 = e l2

(
b2 + l2

) (
e + β e

− l2

b2

)
− b

√
b2 + l2 (e + β)

dl2

+
(

l2 + b2
) (

dθ2 + sin2 θ dϕ2
)

, (27)

whose Ricci scalar is given by

R = 2kα
e
−1− l2

b2
(
b2 + 2l2

)

b2 + l2 . (28)

Taking the limit l → 0 as we approach the wormhole’s throat, we see that the
coordinate singularity is removed. Moreover, if the wormhole space verifies the
condition Eq. (22) there are no other singularities. This form of the metric is the
most used in this work. In what follows it is also useful to write the matter density
in the new coordinates as

ρ (l) = α
e
−1− l2

b2
(
b2 + 2l2

)

b2 + l2 . (29)

(iii) Metric in radial geodesic coordinates:
It is also convenient to write the metric of our space in a third coordinate system,
one that uses the proper (see [17]) or geodesic (see [2]) radial distance r∗ given
in Eq. (20), such that the metric takes the form

ds2 = dr2∗ + [r̃ (r∗)
]2 (

dθ2 + sin2 θ dϕ2
)

, (30)
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where here

r∗ (l) = ±
∫ l

0

√√√√√
e x2

(
b2 + x2

) (
e + β e

− x2

b2

)
− b

√
b2 + x2 (e + β)

dx, (31)

and

r̃2 (l) = b2 + l2. (32)

The coordinate r̃ in Eq. (30) is the circumferential radius, defined such 2π r̃ is
the circumference of a circle concentric to the wormhole’s throat.

3.2.4 Spatial geodesics

The spatial geodesics of the wormhole space should be treated with care. For that
reason we do this in the “Appendix 1”.

3.3 Gravitational field, gravitational potential and mass of the wormhole

Now that we have defined and studied the geometry of the wormhole space we can use
Eq. (1) to find the gravitational potential of the Newtonian wormhole. To proceed we
could start by finding the expression for the Laplace operator for this geometry and
then, using the expression for the mass density, Eq. (29), try to solve the differential
equation for the gravitational potential φ, see Eq. (1). This, however, considering the
symmetries of the system, is not the most expedited way to find the gravitational
potential since, in a more direct approach, we can use the Gauss law to find the
gravitational field and thus the gravitational potential.

We will use the metric in wormhole coordinates (l, θ, φ), see Eq. (27), and start
by noticing that since the space is spherically symmetric and the mass density is
independent of the polar and azimuthal angles, see Eq. (29), the gravitational field
will only depend on the radial coordinate l, implying that the gravitational field is
constant along the surfaces of constant l-coordinate.

Now, the Gauss law for gravity states that the outward gravitational flux through
any volume’s boundary is proportional to the mass within that volume. Taking into
account that the space and the mass density are also invariant under the transformation
of l → −l, so is the gravitational potential φ. Let us define the magnitude of the
gravitational field as

G =
√

gi j Gi G j (33)

where

Gi ≡ gi j φ, j , (34)

is the gravitational force field, with a comma denoting a simple derivative. Since φ

depends only on l, the only nonzero component of Gi is Gl . Thus, G = √
gll Gl Gl ,
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where Gl ≡ gll φ, l and we see that G is also invariant under the transformation l → −l.
Now, the considered mass is enclosed by a surface of positive constant l-coordinate,
	+, and another of negative constant l-coordinate, 	−. The outward unit normal
vectors to those surfaces are given by ni+ = 1√

gll
δi

l and ni− = − 1√
gll

δi
l , where the

plus and minus signs represent the fact that if we consider the branch of the space with
positive l-coordinate the outward normal has the same direction of the coordinate basis
l-vector field and if we consider the other branch the outward normal points in the
opposite direction of the l-vector field. Thus, through Eq. (27) the unit normals are

ni± = ±

√√√√√
(
b2 + l2

) (
e + β e

− l2

b2

)
− b

√
b2 + l2 (e + β)

e l2 δi
l . (35)

All is left is to define the direction of the gravitational field. Since, for a positive
mass, the gravitational force is attractive, the outward gravitational flux through the
considered volume must be negative, which implies that the gravitational field must
have opposite direction to the normals ni±, therefore the components of the gravita-
tional field are given by Gl+ = −Giδl

i and Gl− = Giδl
i , where Gi is given by Eq. (34).

We can now integrate the Poisson equation, Eq. (1), over the volume whose boundary
are the surfaces 	+ and 	−, such that, using the Gauss theorem

∮

	+
gi jGi n j

+
√

g	+d	+ −
∮

	−
gi jGi n j

−
√

g	−d	− = 4πG m (l) , (36)

where g	+ and g	− are the determinants of the induced metric on the surfaces 	+
and 	−, respectively, given by g	+ = g	− = (l2 + b2

)2
sin2 θ , and m (l) is the mass

within radius l, defined as

m(l) =
∫ 2π

0

∫ π

0

∫ +l

−l
ρ (x)

√
g dx dθ dϕ, (37)

where g is the determinant of the metric of the 3-space.
Since the magnitude of the gravitational field G, Eq. (33), is invariant under trans-

formations l → −l, the gravitational flux over one of the surfaces 	i is the same as the
gravitational flux over the other. Remembering that the gravitational field is constant
along the surfaces 	+ and 	− we conclude that

Gi (l) = G m (l)

2
(
b2 + l2

)

√√√√√
(
b2 + l2

) (
e + β e

− l2

b2

)
− b

√
b2 + l2 (e + β)

e l2 δi
l , (38)
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Fig. 1 Magnitude of the gravitational force field given by Eqs. (38) and (33) for various values of the
parameter β ≡ b2kα

where the mass within radius l is, after some simplification, given by,

m (l) = 4παb3
∫ 1+ l2

b2

1

e−x (2x − 1)√
x
(
1 + βe−x

)−
(

1 + β
e

)√
x

dx . (39)

The integral that defines the mass within radius l, Eq. (39), cannot be solved ana-
lytically which, therefore, prevents us from finding a closed form expression for the
gravitational field.

We then present in Fig. 1 the magnitude of the gravitational field for various values
of the parameter β. In Fig. 1 we consider only positive values of the radial coordinate l
since, as explained in the beginning of this section, the magnitude of the gravitational
field is invariant under transformations of l → −l.

Using the expression for the gravitational field, Eq. (38), we can find the gravita-
tional potential using Eq. (34). In Fig. 2 we present the gravitational field for various
values of the parameter β, imposing that when we move away from the wormhole’s
throat the gravitational potential goes to zero.

3.4 Pressure support on the wormhole

The results found in the last section allow us to further define the fluid that permeates
the Newtonian wormhole. In the case of a static fluid the Euler equation reduces to
Eq. (2) and in the wormhole coordinate system is given by

dp

dl
= −ρ

dφ

dl
. (40)
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Fig. 2 Gravitational potential of the wormhole for the same values of the parameter β ≡ b2kα as given in
Fig. 1

Fig. 3 Behavior of the pressure of the fluid that permeates the Newtonian wormhole for the same values
of the parameter β ≡ b2kα as given in Fig. 1

Since it is not possible to find a closed form expression for the gravitational field,
Eq. (40) can only be solved numerically. The behavior of the fluid’s pressure is then
presented in Fig. 3 where it was imposed that at infinity the pressure of the fluid is
zero since the density of the fluid, Eq. (29), goes to zero exponentially fast as l → ∞.

Note that the pressure is positive throughout the space. This means that matter
gravitates and tends to collapse. However, the negative curvature of space tends to
have a repulsive effect on the matter, trying to balance out the gravitational force.
There is, however, still the need of a pressure to hold the wormhole against collapse.
As is suggested by Fig. 3, from Eqs. (27), (29) and (38) we see that as the value of the
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parameter β approximates its upper bound, Eq. (23), the pressure of the fluid goes to
infinity at the throat.

3.5 Test particle dynamics and motion in the wormhole gravitational field

3.5.1 The equations of motion

In the previous section we found the expression for the gravitational field of the New-
tonian wormhole, Eq. (38). From this gravitational field we can write the equations of
motion for a test particle subjected to the wormhole gravitational field in the worm-
hole geometry. We use Eq. (4). We start by considering that the particle’s path is
described by a curve c, whose components xi are given by the parametric equations
xi = (l (t) , θ (t) , ϕ (t)). The particle’s generalized velocity vi ≡ ẋ i , is given by
vi = (l̇ (t) , θ̇ (t) , ϕ̇ (t)

)
, where a dot means derivative in relation to time.

The left hand side of Eq. (4) involves the acceleration of the particle, defined as

ai = v j ∇ j vi = v̇i + �i
jkv

jvk, (41)

where the �i
jk are the Christoffel symbols for the Newtonian wormhole metric given

in Eq. (27). The right hand side of Eq. (4) is the gravitational field given in Eq. (38).
Gathering these results, we are able to write Eq. (4) explicitly.

First, we study the equation for the coordinate θ . Eq. (41) yields θ̈ + 2 l
b2+l2 l̇ θ̇ −

sin θ cos θϕ̇2 = 0. If we take the value of θ = π/2, then this equation implies that
θ̇ = 0 is a possible solution. Checking that the higher order derivatives are also zero,
we conclude that θ = π/2 is a consistent solution of the equations of motion.

With this result in hand we can write the equations of motion in a simplified form
for the coordinates l, θ , and ϕ, namely,

l̈+

⎡
⎢⎢⎣

b e
l2

b2
(
2b2+l2

)
(e+β)−2

√
b2 + l2

[
β l2

(
1+l2/b2

)+b2
(

e
1+ l2

b2 +β

)]

2l
(
b2 + l2

) [
b e

l2

b2 (e + β) − √
b2 + l2

(
e

1+ l2

b2 + β

)]

⎤
⎥⎥⎦ l̇2

+

⎡
⎢⎢⎣

b
√

b2 + l2 (e + β) − (b2 + l2
) (

e + β e
− l2

b2

)

e l

⎤
⎥⎥⎦ ϕ̇2

= − G m (l)

2
√

e
(
b2 + l2

)
l

√
(
b2 + l2

) (
e + β e

− l2

b2

)
− b
√

b2 + l2 (e + β), (42)

θ = π

2
, θ̇ = 0, (43)

ϕ̈ + 2
l

b2 + l2 l̇ ϕ̇ = 0. (44)
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Before trying to solve these equations of motion let us first analyze them.
On the left hand side of Eq. (42), we have two terms that depend on the first

derivative of one of the coordinates, one in ϕ̇2 and the other in l̇2. The former is the
usual centripetal force that also arises in classical mechanics in flat space. However
the latter term has no flat space counterpart. This term arises indeed from the curvature
of space along the radial direction. The curvature, then, implies that a force similar to
a centripetal force arises when the particle’s motion has a radial component. Taking
the limit l → ±∞, and recalling that the wormhole is asymptotically flat, we find that
the term in l̇2 vanishes, i.e., in flat space it is nonexistent. Still in Eq. (42) one finds
that the particle suffers an usual centripetal acceleration ac given by

ac =

⎡
⎢⎢⎣

b
√

b2 + l2 (e + β) − (b2 + l2
) (

e + β e
− l2

b2

)

e l

⎤
⎥⎥⎦ ϕ̇2. (45)

We also see that Eq. (44) can be readily integrated, obtaining

h =
(

l2 + b2
)

ϕ̇, (46)

where h is a constant of integration that can be interpreted as the angular momentum
per unit mass of the particle. Thus, angular momentum is conserved as one expects
for a central force.

Once the equations of motion of a test particle are found, we have now to solve
them. We will study two cases, pure circular motion and a general motion.

3.5.2 Circular motion

Let us first consider the problem of circular motion of a test particle in the Newtonian
wormhole background. In this case the radial coordinate l does not change throughout
the particle’s motion, therefore, l = l0 say, l̇ = 0, and l̈ = 0. From this, Eq. (42)
reduces to

ϕ̈ = 0, (47)

which in turn has a first integral ϕ̇ = constant. With the help of Eq. (42) we can
determine this constant and obtain

ϕ̇ =
√√√√√√√

√
e G m (l0)

2
(
b2 + l2

0

)
√√√√(b2 + l2

0

) (
e + β e

− l20
b2

)
− b
√

b2 + l2
0 (e + β)

, (48)

where it is implicit that the particle can rotate in both senses. Equation (48) relates
the radial position l0 of the particle and the azimuthal velocity ϕ̇ that the particle must
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Fig. 4 Circular motion of a
particle in the Newtonian
wormhole for some initial radial
position l0 and initial angular
velocity ϕ̇ given by Eq. (48).
The wormhole parameters are b
and α

have in order to describe a circular orbit around the wormhole’s throat. In Fig. 4 we
present an example of such circular motion.

This case of circular motion can also be used to check the consistency of our
treatment against the analysis presented by Abramowicz et al. [1,2]. Thereby, our
purpose is to find the centripetal acceleration using the following expression presented
in [2], i.e.,

ai = −v2

R ni±, (49)

where v =
√(

l2 + b2
)
ϕ̇ is the modulus of the linear velocity of the particle in circular

motion, ni± is the outside pointing unit normal to the circle given in Eq. (35), and R
is the the curvature radius of the circle described by the particle’s motion given by
Abramowicz et al. [2]

R = r̃

(
dr∗
dr̃

)
. (50)

Using Eqs. (31) and (32) for the geodesic radius r∗, and the circumferential radius r̃ ,
respectively, we find that in this case the curvature radius is given by

R =
√√√√√√

(
b2 + l2

)2
e

(
b2 + l2

) (
e + β e

− l2

b2

)
− b

√
b2 + l2 (e + β)

. (51)

Gathering all the intermediate results, and putting the centripetal acceleration ac as
ac = al , we can write Eq. (49) explicitly has

ac =

⎡
⎢⎢⎣

b
√

b2 + l2 (e + β) − (b2 + l2
) (

e + β e
− l2

b2

)

e l

⎤
⎥⎥⎦ ϕ̇2, (52)
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Fig. 5 a Particle’s motion in the wormhole background for a relatively small initial angular velocity ϕ̇.
b Particle’s motion in the wormhole background for a relatively large angular velocity ϕ̇. In all figures
the particle’s initial radial position is taken to be at some l0, and the initial radial velocity l̇0 is zero. The
wormhole parameters are b and α

which is exactly the expression that we found for the centripetal acceleration that
appears in Eq. (45).

3.5.3 General motion

Aside the case of circular motion which can be treated analytically, we can use numer-
ical methods to solve the Eqs. (42)–(44) to study a more generic motion of a particle
on the Newtonian wormhole given its initial position and velocity. We present in Fig. 5
some graphical solutions of Eqs. (42)–(44) for general motions.

4 The limiting case: are there Newtonian black holes?

Figures 1 and 2 suggest that as the parameter β approaches the upper bound given by
Eq. (23) the value of the gravitational field Gi (l) and the gravitational potential itself
have a somewhat weird behavior. Indeed, analyzing Eqs. (38) and (39), one finds that,
for some value lh of the radial coordinate l, the gravitational field Gi (l) goes to infinity
when the value of the parameter β approaches the value βcrit , given by Eq. (23).

This is a very surprising behavior since the system somehow develops a Newtonian
event horizon, in the sense that for β = βcrit every test particle that crosses the sphere
defined by l = lh can only return back from that inner sphere to the outside if it
has infinite acceleration, and thus an infinite velocity. Hence, an observer beyond that
sphere can never affect an outside observer. It characterizes a Newtonian black hole.

However, note also that as the value of the parameter β approximates its upper
bound, Eq. (23), the fluid pressure goes to infinity at the throat, see also Fig. 3. Thus,
the black hole cannot be sustained with this type of matter at such an extreme situation.
Presumably at such βcrit , the matter collapses leaving behind two disjoint regions in
each side of the original space with a singularity at the center where the density and
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the space curvature blow up. This final singularity formed from the collapse of the
original matter could also be considered a Newtonian black hole in this enhanced
Newtonian gravitation, since only test particles with infinite velocities could escape
from it.

5 Conclusions

We have presented a Newtonian wormhole in Newtonian gravitation in curved space,
enhanced with relation between the curvature and the matter density. The wormhole
is spherically symmetric having two connected asymptotic flat regions. The worm-
hole’s mass density is positive throughout the space. This is distinct from worm-
holes in general relativity where the flare out condition imposes some form of exotic-
ity for the matter. The wormhole is hold against collapse by pressure. Test particle
motion in the wormhole gravitational field have shown that the three distinct dynam-
ical radii, namely, the geodesic, circumferential, and curvature radii, appear natu-
rally in the study of circular motion. A limiting case, when the parameter β satisfies
β = βcrit , suggests the possibility of having a Newtonian black hole in a region of finite
size.

Appendix 1: Spatial geodesics

Here we display the spatial geodesics of the wormhole space.

Spatial geodesic equations

To complete the analysis of the Newtonian wormhole geometry, we find the expres-
sions for the geodesics in this space. To start we consider a spatial curve c on the
Newtonian wormhole parametrized by a parameter λ. A point on c is given by the
parametric equation ci (λ) = (l (λ) , θ (λ) , ϕ (λ)) and the tangent vector to the curve
at a given point by ci ′ (λ) = (

l ′ (λ) , θ ′ (λ) , ϕ′ (λ)
)
, where a dash means derivative

with respect to the affine parameter λ. The curve ci is said to be a geodesic if it parallel
transports its tangent vector along itself, i.e., its tangent vector must be such that the
equation

ci ′∇i c j ′ = 0, (53)

is verified, and where ∇i is the covariant derivative. Before we write the geodesic
equations explicitly for this space, we can simplify the calculations by noticing that
due to the spherical symmetry of the space we can always choose a coordinate system
in such a way that the polar angle, represented by the coordinate θ , is constant along
the curve and equal to π/2. In other words, since the 2-sphere, S2, is a submanifold
of the space and it is a well known fact that part of great circles are geodesics in S2,
then any geodesic on the space, under isometries, is part of a great circle. Thus, the
geodesic equations for the wormhole space are
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l ′′ +

⎡
⎢⎢⎣

b e
l2

b2
(
2b2 + l2

)
(e + β) − 2

√
b2 + l2

[
β l2

(
1 + l2/b2

)+ b2
(

e
1+ l2

b2 + β

)]

2l
(
b2 + l2

) [
b e

l2

b2 (e + β) − √
b2 + l2

(
e

1+ l2

b2 + β

)]

⎤
⎥⎥⎦ l ′2

+

⎡
⎢⎢⎣

b
√

b2 + l2 (e + β) − (b2 + l2
) (

e + β e
− l2

b2

)

e l

⎤
⎥⎥⎦ ϕ′2 = 0 ;

ϕ′′ + 2
l

b2 + l2 l ′ϕ′ = 0 ;
θ ′ = 0,

θ = π/2.

(54)

The geodesic equations in their general form are quite complicated to solve and find
an analytical solution. We can however consider simpler cases than the general one.

Spatial azimuthal geodesics

Let us first consider the case of purely azimuthal geodesics, i.e., consider geodesics
of the form ci (λ) = (l0, π/2, ϕ (λ)). In this case, the geodesic equations simplify to
ϕ′′ = 0. If we take the initial and final position of the geodesic to be, respectively,
ci (0) = (l0, π/2, ϕ0) and ci

(
λ f
) = (l0, π/2, ϕ f

)
we conclude that

ϕ (λ) = ϕ f − ϕ0

λ f
λ + ϕ0. (55)

Spatial radial geodesics

Let us now consider the case of purely radial geodesics. In this case the geodesics are
of the form ci (λ) = (l (λ) , π/2, ϕ0), such that the geodesic equations simplify to

l ′′+

⎡
⎢⎢⎣

b e
l2

b2
(
2b2+l2

)
(e+β)−2

√
b2+l2

[
β l2

(
1+l2/b2

)+b2
(

e
1+l2

b2 +β

)]

2l
(
b2+l2

) [
b e

l2

b2 (e+β)−√
b2+l2

(
e

1+ l2

b2 +β

)]

⎤
⎥⎥⎦ l ′2 =0.

(56)

This equation is still too complicated and it does not seem to be possible to find an
analytical solution to it. We can, however, consider a further simplification, namely,
we consider that the initial and final radial coordinate, l0 and l f , respectively, are
very close to the wormhole’s throat. This allow us to Taylor expand the expression in
parenthesis in Eq. (56) such that
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l ′′ +
[

l (e − 3β)

4b2 (β − e)

]
l ′2 = 0. (57)

This expression can be analytically integrated. If we then consider the initial and final
points to be ci (0) = (l0, π/2, ϕ0) and ci

(
λ f
) = (

l f , π/2, ϕ0
)
, respectively, we find

that

l (λ) = −i

√
8b2 (β − e)

e − 3β
erf−1

×
(

i
λ f − λ

λ f
erfi

(√
e − 3β

8b2 (β − e)
l0

)
+ i λ

λ f
erfi

(√
e − 3β

8b2 (β − e)
l f

)) (58)

where erf−1 represents the inverse Gauss error function and erfi the imaginary Gauss
error function. Equation (58) gives the expression for the radial coordinate of purely
radial geodesics when the two considered points are very close to the wormhole’s
throat.

Spatial general geodesics

The simplifications adopted in the previous subsections greatly simplified the geodesic
equations and allowed us to find closed form solutions for those simplified cases. Let
us, however, tackle the general problem of studying geodesics of the form ci (λ) =
(l (λ) , π/2, ϕ (λ)), with initial and final points ci (0) = (l0, π/2, ϕ0) and ci

(
λ f
) =(

l f , π/2, ϕ f
)
, respectively. Notice that we imposed the angular coordinate θ = π/2.

This reflects the argument that we presented in the beginning of this section, i.e., given
any two points on the spherically symmetric Newtonian wormhole we can always find
an isometry such that the geodesic that connects those two points is part of a great
circle.

To start, we introduce a new equation:

l ′2

⎛
⎜⎜⎝

e l2

(
b2 + l2

) (
e + β e

− l2

b2

)
− b

√
b2 + l2 (e + β)

⎞
⎟⎟⎠+ ϕ′2 (b2 + l2

)
= 1. (59)

This equation represents the restriction that the norm of the tangent vector to the curve
ci is constant, which we normalized and set to 1. Next, we integrate the azimuthal
equation in Eq. (54), obtaining

ϕ′ = C

b2 + l2 , (60)
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where C is a constant of integration. Substituting Eq. (60) in Eq. (59) we find that

l ′ =

√√√√√
⎡
⎣e + β e

− l2

b2

e l2 − b (e + β)

e l2
√

b2 + l2

⎤
⎦(l2 + b2 − C2

)
. (61)

Dividing Eq. (60) by Eq. (61) we finally find that

dϕ

dl
= C

√√√√√
e l2

[(
b2 + l2

)2 (
e + β e

− l2

b2

)
− b
√(

b2 + l2
)3

(e + β)

] (
l2 + b2 − C2

) ,

(62)

or

ϕ
(
l f
)

=C
∫ l f

li

√√√√√√
e l2

[(
b2 + l2

)2 (e + β e
− l2

b2

)
− b
√(

b2 + l2
)3

(e + β)

] (
l2 + b2 − C2

) dl+ϕ0,

(63)

which can be numerical integrated, provided the value of the constant C is given, such
that the geodesic’s path is described by c(l) = (l, π/2, ϕ(l)).

We can further define the constant of integration C . Let’s consider the unit vector

Xi
ϕ = 1√

b2 + l2
δi
ϕ, (64)

defined has the tangent unit vector to curves with constant l and θ coordinates. Taking
the dot product of Xi

ϕ and the tangent vector of the geodesic ci ′, we have, using
Eq. (27), that

Xi
ϕ c′

i =
√(

b2 + l2
)
ϕ′ = C√

b2 + l2
, (65)

where in the last step we used Eq. (60). On the other hand, defining the smaller angle
between Xi

ϕ and ci ′ as ξ , the definition of the dot product implies that

Xi
ϕ c′

i = cos (ξ) , (66)

where we used the fact that the vectors Xi
ϕ and ci ′ are unitary vectors. Comparing

Eqs. (65) and (66) we find that the integration constant C is related to the angle ξ by:

C =
√

b2 + l2 cos (ξ) . (67)
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Incidentally, Eqs. (63) and (67) allow us to further describe the purely radial geodes-
ics, studied in the previous subsection where a closed form solution for such geodesics
was only possible if the beginning and ending points were very close to the wormhole’s
throat. If we consider that the angle ξ = π/2 in Eq. (67), using Eq. (63) we find that
the coordinate ϕ (l) is constant along the geodesic. This is exactly as we expected since
for ξ = π/2 the geodesic ci is orthogonal to the geodesics with constant l-coordinate,
i,e., ci is a radial geodesic. This result allow us to describe all the radial geodesics on
the wormhole space, such that, ci (l) = (l, π/2, ϕ0), supplanting Eq. (58) which was
valid only when the initial and final points were very close to the wormhole’s throat.
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