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Abstract We study the thermodynamics and the different thermodynamic geometric
methods of Reissener-Nordström-de Sitter black hole and its extremal case, which
is similar to the de Sitter black hole coupled to a scalar field, rather called an MTZ
black hole. While studying the thermodynamics of the systems, we could find some
abnormalities. In both cases, the thermodynamic geometric methods could give the
correct explanation for all abnormal thermodynamic behaviors in the system.

Keywords Black hole thermodynamics · Phase transitions · Thermodynamic
metric · Geometrothermodynamics

1 Introduction

Black hole thermodynamics (BHT) is receiving more and more attentions in recent
times. The path breaking findings of Hawking and Bekenstein [4,5,9] made in 1970s
helped us to think that black holes are not truly black but are thermal objects emitting
radiations. The main reason for the interest shown in BHT is that it unites quantum
theory, gravitation and thermodynamics and it may open a way to quantum formulation
of gravity. The normal BHT is evolved by considering the black hole mass as one of the
thermodynamic potentials and assuming the area law straightforwardly. We have usual
thermodynamic expressions to derive the quantities like temperature, entropy, heat
capacity etc. In the thermodynamic studies, heat capacity is quite important because it
can tell upon the thermodynamic stability of systems. For example, we could easily find
the heat capacity of Schwarzschild black hole where one can see that it is negative and
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hence we may conclude that Schwarzschild black hole is thermodynamically unstable.
In a similar fashion we can extend this stability analysis to other black holes and we
could see that certain black holes show both positive and negative heat capacities.
The transition is through an infinite discontinuity in the heat capacity. Such a phase
transition is called a second order thermodynamic phase transition in BHT.

While closely looking at the normal thermodynamics of black holes, in many cases
we could not identify the exact reasons for the abnormalities of energy (mass), tem-
perature and heat capacity shown by the system. During the last few decades many
attempts have been made to introduce different geometric concepts into ordinary ther-
modynamics. Hermann [10] formulated the concept of thermodynamic phase space as
a differential manifold with a natural contact structure. In the thermodynamic phase
space there exists a special subspace of thermodynamic equilibrium states.

In 1975 Weinhold [26] introduced an alternative geometric method in which a metric
is introduced in the space of equilibrium states of thermodynamic systems. There he
used the idea of conformal mapping from the Riemannian space to thermodynamic
space, in which the new metric could be identified in terms of the thermodynamic
potentials. Weinhold metric is given by

gW
i j = ∂i∂ jU (S, Nr ), (1)

where S is the entropy,U is the internal energy and Nr denotes other extensive variables
of the system. There are systems which Weinhold metric gives correct explanation.
In an attempt to formulate the concept of thermodynamic length, in 1979 Ruppeiner
[21] introduced another metric which is conformaly equivalent to Weinhold’s metric.
The Ruppeiner metric (which is the minus signed Hessian in entropy representation)
is given by

gR
i j = −∂i∂ j S(M, Nr ). (2)

The Ruppiner geometry is conformaly related to the Weinhold geometry by [16,23]

ds2
R = 1

T
ds2

W (3)

where T is the temperature of the system under consideration. Since the proposal
of Weinhold, a number of investigations have been done to analyze the thermody-
namic geometry of various thermodynamic systems. The Weinhold and Ruppeiner
geometries have also been used for several black holes to find out the thermodynamic
abnormalities [1–3,6,8,11,12,14,15,17,22,24,25].

Geometrothermodynamics (GTD) [18–20] is the latest attempt in this direction. In
order to describe a thermodynamic system with n degrees of freedom, we consider in
GTD, a thermodynamic phase space which is defined mathematically as a Riemannian
contact manifold(T ,Θ, G), where T is a 2n + 1 dimensional manifold, Θ defines a
contact structure on T and G is a Legendre invariant metric on T . The pair (T ,Θ) is
called a contact manifold [10] only if T is differentiable and Θ satisfies the condition
Θ ∧ (dΘ)n �= 0; which actually preserves the essential Legendre invariance while
making the conformal transformations. The space of equilibrium states is an n dimen-
sional manifold (E, g), where E ⊂ T is defined by a smooth mapping φ : E → T
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such that the pullback φ∗(Θ) = 0, and a Riemannian structure g is induced naturally
in E by means of g = φ(G). It is then expected in GTD that the physical proper-
ties of a thermodynamic system in a state of equilibrium can be described in terms
of the geometric properties of the corresponding space of equilibrium states E . The
smooth mapping can be read in terms of coordinates as, φ : (Ea) → (Φ, Ea, I a) with
Φ representing the thermodynamic potential, Ea and I a representing the extensive
and intensive thermodynamic variables respectively if the condition φ∗(Θ) = 0 is
satisfied, i.e.,

dΦ = δab I ad Eb ,
∂Φ

∂ Ea
= δab I b. (4)

The first of these equations corresponds to the first law of thermodynamics, whereas
the second one is usually known as the condition for thermodynamic equilibrium [7].

Legendre invariance guarantees that the geometric properties of G do not depend
on the thermodynamic potential used in its construction. Hernavo Quevedo [19] intro-
duced the idea and constructed a general form for the Legendre invariant metric. The
general choice of GTD metric is as follows

g = φ∗(G) =
(

Ec ∂Φ

∂ Ec

) (
ηabδ

bc ∂2Φ

∂ Ec∂ Ed
d Ead Ed

)
. (5)

The thermodynamic geometry of a black hole is still a most fascinating subject
and there are many unresolved issues in BHT. Using this we could solve a number of
issues related to the abnormal behaviour of mass, temperature and heat capacity. The
metric is built up from a Legendre invariant thermodynamic potential and from its first
and second order partial derivatives with respect to the extensive variables. The earlier
studies show that the thermodynamic stability of systems depends on the potential we
have chosen. This contradiction has been removed by using new Legendre invariant
metric introduced in the GTD. In this paper we describe the phase transition in terms
of curvature singularities.

The main purpose of the present work is to show that the thermodynamic geometric
methods can be used to explain the thermodynamics of RNdS black hole and MTZ
black hole, in both cases we are taking the cosmological constant as an extensive
variable. The organization of the manuscript is as follows, in Sect. 2 we study the
usual thermodynamics of RNdS black hole. We analyze the thermodynamic geometry
of RNdS as well. The extremal case of RNdS or the MTZ black hole has been studied
in Sect. 3 followed by its thermodynamic geometry. Section 4 is devoted to conclusion
and discussions.

2 RN de Sitter Black hole

2.1 Thermodynamics

The Reissner-Nordström-de Sitter solution describes a static, spherically symmetric
black hole carrying mass M , charge Q and a non vanishing cosmological constant �.
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The metric of the RNdS black hole is written as

ds2 = f (r)dt2 − f (r)−1dr2 − r2
(

d	2
)

, (6)

where f (r) is equal to

f (r) = 1 − 2M

r
+ Q2

r2 − �r2

3
, (7)

here we could find the mass of the black hole M , in terms of its entropy S, charge
Q and the radius of curvature of the de Sitter space α, where α is connected to the
cosmological constant � through the relation

� = (N − 1)(N − 2)

2α2 , (8)

where N is the dimension of the space time. Using the relation between entropy S and
event horizon radius r+, S = πr2+ (from area law), we can write the mass term as,

M(S, Q, α) = π2 Q2α2 + π Sα2 − S2

2π
3
2 α2S

1
2

. (9)

The other thermodynamic parameters can be identified using the above expression
of mass as T = ∂ M

∂S , C = T ∂S
∂T and hence we can obtain the temperature as a

function of S and Q,

T = α2π(S − π Q2) − 3S2

4α2π
3
2 S

3
2

. (10)

The heat capacity is also obtained as

C = 2S[α2π(π Q2 − S) + 3S2]
3S2 + α2π(S − 3π Q2)

. (11)

Here we have obtained three thermodynamic quantities: mass(M), temperature(T )

and specific heat(C) and we have plotted all of them in terms of horizon radius r+
(Figs. 1, 2, 3). We could easily identify the abnormal behaviors in each of these quan-
tities from their plots. In Fig. 1, we could see that mass of the black hole becomes zero
at two places and reaches a maximum value at a particular value of r+. Temperature is
positive only in between a certain range of horizon radius r+, which is shown in Fig. 2;
the negative temperature is one of the issues we need to find a satisfactory explanation.
Finally, the heat capacity changes from negative (unstable) phase to positive (stable)
phase through an infinite discontinuity, as in Fig. 3. It refers to a second order ther-
modynamic phase transition in BHT. Thus the black hole will be thermodynamically
stable for only a certain range of values of mass, temperature and heat capacity.

On a close examination of Fig. 1 we can see that mass becomes zero at two points,
viz, r+ = 0.446 and r+ = 1.739. The maximum value for mass is for r+ = 0.872.
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Fig. 1 Variation of mass with respect to horizon radius r+. We set α = √
3 and Q = 0.4

Fig. 2 Variation of temperature with respect to horizon radius r+. We set α = √
3 and Q = 0.4. The

dashed portion is the negative—unphysical regime of temerature

Fig. 3 Variation of heat capacity with respect to horizon radius r+. We set α = √
3 and Q = 0.4
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Temperature is positive only for the range of points r+ ≥ 0.872 and r+ ≤ 0.446.
Heat capacity becomes zero at r+ = 0.446 and r+ = 0.872, and suffers an infinite
discontinuity at r+ = 0.59.

While plotting the temperature and heat capacity verses the horizon radius we could
find the so called abnormal behaviours of the RNdS black hole.

2.2 Thermodynamic geometry

Now we will apply the geometric techniques of Weinhold and Ruppeiner metrics of
the system as well as the GTD. In this case the extensive variables are Nr = (α, Q).
Weinhold metric can be written from the above Eq. (1) as,

gW
i j = ∂i∂ j M(S, Q, α), (12)

d S2
W = MSSd S2 + MQ Qd Q2 + Mααdα2

+2MSQd Sd Q + 2MSαd Sdα + 2MαQdαd Q, (13)

and therefore,

gW =
⎡
⎣ MSS MSQ MSα

MQS MQ Q 0
MαS 0 Mαα

⎤
⎦ .

The second order partial derivatives can be found using the expression of M given
in Eq. 9, in which MαQ term will become zero while calculating. So there exists 5
independent elements in the metric.

We could calculate the curvature scalar of the Weinhold metric as,

RW =
√

Sα2π
3
2 (α2π2 Q2 + α2π S − 9S2)

(α2π2 Q2 − α2π S + 3S2)2 . (14)

The numerator is of little physical interest and we are interested in the denominator
function. The denominator makes the RW singular at S = π

6 [α2 ∓ √
α4 − 12α2 Q2].

For each solution of S there exists a pair of r+, which can explain the singularities
and zero points in the thermodynamic systems. We will avoid the negative values of
the solution as it gives imaginary and negative roots. For the appropriate choices of
the values of the parameter, we can see that it could explain the zero points of heat
capacity, temperature and the peak value of mass at the value S = 2.39 or r+ = 0.872
and zeros of temperature and heat capacity at the value S = 0.636 or r+ = 0.45.

Now we will go for the Ruppiner metric which can be conformaly transformed to
Weinhold metric. Ruppiner metric is given by

gR =
(

1

T

) ⎡
⎣ MSS MSQ MSα

MQS MQ Q 0
MαS 0 Mαα

⎤
⎦ ,
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which is equal to

gR =
(

4α2π
3
2 S

3
2

α2π(S − π Q2) − 3S2

)⎡
⎣ MSS MSQ MSα

MQS MQ Q 0
MαS 0 Mαα

⎤
⎦

Now the curvature of the Ruppeiner metric is obtained as,

RR = α2π(2π Q2 − S)

S(3S2 − πα2S + π2 Q2α2)
. (15)

Here also the numerator is of less physical importance. We can see that the denom-
inator throws light on the singularities. In addition to the singularities obtained from
the Weinhold metric, we can see S = 0 or r+ = 0 is also a singular point in the
Ruppiner method.

We can also use the Legendre invariant transformation of either Weinhold or Rup-
piner metric to make further studies. In GTD it is possible to derive, in principle, an
infinite number of metrics which preserve Legendre invariance, according to Eq. 5.
The simplest way to attain the Legendre invariance for gW is to apply a conformal
transformation, with the thermodynamic potential as the conformal factor, which may
unfold other hidden singularities in the present thermodynamic system of black hole.
Here we are taking the conformal transformation which keeps the Legendre invariance
as

gW ′ = M ⊗ gW . (16)

Thus we could get the GTD metric as

gW ′ = (M)

⎡
⎣ MSS MSQ MSα

MQS MQ Q 0
MαS 0 Mαα

⎤
⎦ ,

which is equal to

gW ′ =
(

1

2

√
S

π
+ Q2

2

√
π

S
− 1

2α2

(
S

π

) 3
2
)⎡

⎣ MSS MSQ MSα

MQS MQ Q 0
MαS 0 Mαα

⎤
⎦ .

The curvature in the GTD is given by

RW ′ = N
3(−S2 + π2 Q2α2 + Sα2π)3(3S2 + π2 Q2α2 − Sα2π)2 . (17)

Here the numerator (N ) is a lengthy expression and of little physical importance.
We will get an extra term in the denominator apart from what we obtained in the
Weinhold and Ruppeiner cases. That term makes the RW ′

singular at S = π
2 [α2 ∓√

α4 + 4α2 Q2]. This can give an extra information about the zero point of mass at the
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Fig. 4 Variation of most generic curvature scalar of RNdS black hole with respect to horizon radius r+.
We set α = √

3 and Q = 0.4

value S = 2.39 or r+ = 0.872. The singularity in the heat capacity is not explained
here by the curvature.

Finally we will do the most important GTD calculations in which the choice of
thermodynamic potential does not affect the answer. In this method we could see the
metric using Eq. 5 as follows,

gGT D = (SMS + QMQ + αMα)

⎡
⎣−MSS 0 0

0 MQ Q 0
0 0 Mαα

⎤
⎦ . (18)

The corresponding curvature is obtained as

RGT D = N
(3S2 + πα2S − 3π2 Q2α2)2(S2 + πα2S + 3π2 Q2α2)3 . (19)

Here also the numerator (N ) is a lengthy expression and of little physical impor-
tance. We obtain an extra term in the denominator, and that makes RGT D singular at
S = π

6 [−α2 ∓ √
α4 + 36α2 Q2]. This extra singularity arose here could explain the

divergence of heat capacity at S = 1.1 or r+ = 0.59.
Hence the geometric methods we have elaborated above could give the singularities

in the thermodynamic space. The metric which we used above could be transformed
to Legendre invariant metric. The importance of GTD is that it won’t change the
results even if we change the choice of thermodynamic potential choosen to obtain the
metric. Here in our results we got the singular and zero points repeatedly in different
methods, but the points were unique. And they are absolutely independent of the choice
of thermodynamic potential we used to write the metric.

Thus we could plot a most generic curvature scalar with the horizon radius as in
Fig. 4. From the figure, it is easy to find all the singular points and zeros of the curvature,
which uncover the thermodynamic abnormalities in the system. Here the maxima, min-
ima and zeros of the curvature actually correspond to the thermodynamic behaviour.
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Now we are interested in the extremal case of RNdS black hole we discussed above,
known as MTZ black hole.

3 de Sitter black hole coupled with a scalar field

Now we study the thermodynamics and GTD of dS black hole coupled with a scalar
field, which we shall refer to as the MTZ black hole [13]. MTZ black hole is the
solution of the field equations arising from the action

IL =
∫
M

d4x
√−g[ 1

16π
(R − 2�) − 1

2
gab∂aφ∂bφ

− 1

12
Rφ2 − ζφ4 − 1

16π
Fab Fab, (20)

where ζ is the coupling constant. The metric of MTZ black hole is written as

ds2 = −N (r)dt2 + N (r)−1dr2 + r2(d	2), (21)

where

N (r) =
(

1 − M

r

)2

− �

3
r2. (22)

This black hole has inner, event and outer horizons at the values of the radial coordinate
r given by

r− = α

2

[
−1 +

√
1 + 4M

α

]
,

r+ = α

2

[
1 −

√
1 − 4M

α

]
; and

r++ = α

2

[
1 +

√
1 − 4M

α

]
,

where α =
√

3
�

. From the above equation it is clear that, the solution is defined only

for 0 < M < Mmax = α
4 . When M = 0 the metric reduces to the de Sitter space and

there is only a cosmological horizon. In the other limit, M = Mmax = α
4 , the event

and the cosmological horizons coincide, leaving the charge at the Nariai limit. Now
we can do the usual thermodynamics of the event horizon at r+.

3.1 Thermodynamics

The usual thermodynamics of MTZ black hole is explained below. Using area law, we
can express entropy as a function of M and α as,
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Fig. 5 Variation of mass with respect to horizon radius r+. We set α = 4. The dashed portion is the
negative—unphysical regime of mass

S(M, α) = πα2

4

[
1 −

√
1 − 4M

α

]2

. (23)

We can now deduce the mass as,

M = S

απ
−

√
S

π
(24)

Now we can straightforwardly write the temperature as

T = 1

απ
− 1

2
√

π S
, (25)

while the heat capacity is

C = −2S + 4S
3
2

α
√

π
. (26)

Here we have plotted all the three thermodynamic parameters as a function of
horizon radius (r+). In Fig. 5, we find that mass of the black hole is positive only
for a particular range of r+. In the case of temperature also, in Fig. 6, it goes to the
negative range after a particular value of r+. For heat capacity, here there is no infinite
discontinuity, but it also falls to the negative(unstable) phase after a particular value
of r+, as in Fig. 7.

Thus we see that the thermodynamic parameters of the MTZ black hole also shows
abnormal behaviours. The particular point about the present system is the validity of
the choice of r+, which has been used to find the horizon thermodynamics here. The
value of r+ lies in the range, M < r+ < α

2 .
Mass of the black hole becomes zero at r+ = 0 and at r+ = 4. r+ = 2 corresponds

to the maxima of the curve in Fig. 5. Temperature of the black hole becomes negative
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Fig. 6 Variation of temperature with respect to horizon radius r+. We set α = 4. The dashed portion is
the negative—unphysical regime of temerature

Fig. 7 Variation of heat capacity with respect to horizon radius r+. We set α = 4

after reaching zero at r+ = 2. Heat capacity also reaches zero at r+ = 2 and then falls
to the unstable phase.

3.2 Thermodynamic geometry

Now we construct the thermodynamic geometry of the MTZ black hole using Weinhold
metric. In this case the extensive variable is Nr = [α] so that the general Weinhold
metric becomes,

gW =
[

MSS MSα

MαS Mαα

]
. (27)

We could easily find the metric elements from the expression of mass given by Eq. 23
and the corresponding scalar curvature becomes
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RW = α2π
3
2[

2
√

S(α
√

π − 2
√

S)2
] . (28)

This curvature could explain two singularities in the thermodynamics of MTZ black
hole. One at which S = 0 and the other at which S = α2π

4 . The latter brings the
information of zeros in both heat capacity and temperature.

Now we construct the Ruppeiner metric,

gR =
(

− 1

T

) [
MSS MSα

MαS Mαα

]
, (29)

while calculating the curvature scalar, we can see that it is zero. So we can’t explain
any of the singular behavior of the thermodynamic system under consideration using
Ruppeiner method. Now we apply the GTD approach and we can find the GTD metric
in a couple of ways by Legendre invariant conformal transformations,

gGT D = (SMS + αMα)

[−MSS 0
0 Mαα

]
(30)

and the corresponding curvature is

RGT D = −3π

S
, (31)

which obviously gives only one singularity.
Another Legendre transform of this as g → �−1g gives

gGT D∗ = (SMS + αMα)−1
[−MSS 0

0 Mαα

]
(32)

Here the curvature gives

RGT D∗ = −1

4
. (33)

It’s merely a scalar and independent of any of the parameters. So in this case, the
Weinhold metric gives more good results regarding the thermodynamic abnormalities
of MTZ black hole. Thus we consider a generalized Weinhold metric as in Eq. 16 as,

gW = (M)

[
MSS MSα

MαS Mαα

]
. (34)

Following the previous steps, we could see that the curvature scalar gets the form,

RW∗ = α3π
5
2 (3α2π − 9α

√
π S + 8S)

4S(α
√

π − 2
√

S)2(
√

S − α
√

π)3
. (35)
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Fig. 8 Variation of most generic curvature scalar of MTZ black hole with respect to horizon radius r+. We
set α = 4

Here the generalized Weinhold metric reveals the remaining zeros and singularities
of the present thermodynamic system. One singularity is obviously at S = 0 or r+ = 0;
where the mass and heat capacity have zero values. Second singularity is at S = α2π

4
or r+ = 2; where the temperature and heat capacity have zero value, and mass has
the maximum value. The final singularity is at S = πα2 which in turn gives r+ = 4
and this corresponds to the second point in Fig. 5, where mass becomes zero. Thus,
this metric provides us almost all of the thermodynamic singular and zero points. In
general, the geometric methods uniquely determine the points of the thermodynamic
parameters of MTZ black hole at which the thermodynamic quantities become singular.
The generic scalar curvature can be plotted with horizon radius as in Fig. 8, and all
the thermodynamic behaviours are revealed in this calculation.

4 Conclusion

In this work we have analyzed the thermodynamics and thermodynamic geometry of
RNdS black hole and its extremal case. First we have found the thermodynamics of
RNdS black hole. The thermodynamics showed abnormalities in temperature, mass
and heat capacity. The heat capacity exhibits a second order phase transition as well.
So our aim is to express these abnormalities with the geometric tools available in
thermodynamics. We have used three different thermodynamic geometric techniques
to analyze these abnormalities.

We have found that in the case of RNdS black hole, the geometric methods of
Weinhold, Ruppeiner and Quevedo (GTD), combined together give the singularities
which could explain the abnormal behaviours of the system whereas in the case of
MTZ black hole, the generalized Weinhold method only gives the correct results.
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