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Abstract Black holes play an important role in many areas of physics. Their mod-
eling in the highly-dynamic, strong-field regime of general relativity requires the use
of computational methods. We present a review of the main results obtained through
numerical relativity simulations of black-hole spacetimes with a particular focus on
the most recent developments in the areas of gravitational-wave physics, astrophysics,
high-energy collisions, the gauge-gravity duality, and the study of fundamental prop-
erties of black holes.
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1 Introduction

Throughout the history of Einstein’s theory of general relativity, black holes (BH) have
played a very important role in the study of the theory. Even though the term black
hole was not coined until the 1960s by John Wheeler, corresponding solutions of the
Einstein equations have been known ever since 1916 when Schwarzschild discovered
the metric that bears his name
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Analytic solutions such as that of Schwarzschild have contributed enormously to
the understanding of general relativity [88] but their status as real physical objects had
been in doubt for a long time. This viewpoint changed drastically in the 1960s when
astrophysical observations started accumulating evidence of highly concentrated mas-
sive objects in X-ray binaries [159] or as sources of accretion processes in quasi-stellar
radio sources [139]. Astrophysical BHs are commonly classified as either stellar mass
BHs with masses M ∼ O(10 M�) or supermassive BHs with M ≈ 106 . . . 1010 M�.
Whether the mass gap in between is filled by so-called intermediate-mass BHs remains
unclear. It should be noted, however, that our evidence of the existence of BHs is of
indirect nature. The current efforts to directly observe the universe through gravita-
tional waves (GW) may change this picture and provide direct evidence in the rather
near future. BHs are indeed expected to form one of the strongest sources of detectable
GWs and their observation is likely to provide us with new and unexpected insight
into the dynamics of the universe. In more recent years, the range of physics where
BHs play an important role has expanded further, including for example high-energy
physics, fluid analogs and, through the gauge gravity duality, nuclear and condensed
matter physics. In view of these developments, the modeling of BHs has become an
increasingly urgent issue in contemporary physics.

The theoretical description of BH spacetimes is provided by general relativity or,
in some cases, a modified version thereof describing an alternative theory of gravity.
The task at hand, therefore, is to find solutions to the Einstein equations

Gαβ + �gαβ = 8πTαβ. (2)

In many applications, we consider a vanishing cosmological constant � and energy-
momentum tensor Tαβ . The vacuum Einstein equations for this case simplify to
Rαβ = 0.

Approaches to obtaining solutions to these equations can roughly be classified into
the following groups. (i) For BH spacetimes with a sufficient degree of symmetry, the
Einstein equations simplify enormously, so that analytic solutions as for example the
Schwarzschild metric (1) are available in closed form; for a review see [69]. (ii) By
expanding the Einstein equations either around a known background solution or in the
form of a post-Newtonian (PN) series expansion in the velocity parameter v/c, one
can derive solutions using perturbation theory [143] or PN calculations [30]. (iii) In
the dynamic, fully non-linear regime the only approach currently available to generate
solutions to the Einstein equations is the use of numerical methods on supercomputers,
a field often referred to as numerical relativity (NR).

The research field of NR saw major breakthroughs in the year 2005 when Pretorius
obtained the first evolution of a BH binary through inspiral, merger and ringdown [132]
and shortly thereafter, the Brownsville and Goddard groups independently achieved
similar results using a method now often referred to as moving punctures [18,45].
Details about the numerical methods employed in the current generation of BH evolu-
tion codes can be found in the books by Alcubierre [8], Baumgarte and Shapiro [23]
and Bona et al. [36] or the reviews by Centrella et al. [50] and Lehner [106]. Numeri-
cal relativity has generated a wealth of results in recent years. Purpose of this article
is to provide a brief review of the most recent developments of numerical relativity
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applied to BH studies and provide some guidance among the plentiful literature NR
has generated in the various areas mentioned above. The reader may find it helpful to
also consult earlier reviews on the topic given in [131,134,150,151]. For reasons of
space limitation, this review is largely focussed on BHs in vacuum and we will not
be able to cover in detail applications such as BH binaries in non-vacuum spacetimes,
core-collapse supernovae or cosmology.

This article is organized as follows. In Sect. 2 we briefly discuss recent developments
in the formulation of the Einstein equations as an initial value problem. In Sects. 3–6
we review results generated by numerical relativity investigations on the role of BHs
in GW physics, astrophysics, high-energy collisions, and the gauge-gravity duality.
Fundamental properties of BHs are discussed in Sect. 7 and we present conclusions
and an outlook to the future in Sect. 8.

2 Formulations of numerical relativity

Numerical simulations of spacetimes with specific symmetries often start from a
simplified line element that employs coordinates adapted to these symmetries. One
derives the Einstein equations for this line element which determine the evolution
of the metric functions in either a space-time or characteristic formulation. As an
example of such applications, see for example the simulations done by Chesler and
Yaffe [53]. For generic, 3+1 dimensional spacetimes, however, the vast majority of
numerical simulations is based on either the Generalized Harmonic Gauge (GHG)
formulation [75,133] or the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [22,145] which form the basis of the breakthrough simulations mentioned in
the introduction. It is interesting to note the different strengths of these two for-
mulations. The GHG system does not generically contain zero speed modes1 and
strongly benefits from the addition of constraint damping terms [83]. Furthermore,
the wave-equation-type principal part allows for a straightforward construction of
constraint preserving boundary conditions [140,141]. The BSSN system, on the other
hand, has proven an exceptionally robust method that is capable of handling even the
most extreme types of configurations as for example high-energy collisions with little
if any modifications in the numerical parameters or gauge conditions. It is tempt-
ing, therefore, to formulate the Einstein equations in a way that combines these
advantages. Recent work has identified a conformal version of the Z4 system, orig-
inally developed by Bona et al. [35], as a highly promising candidate to achieve
this goal.

The Z4 formalism extends the Einstein equations to a wider class of equations
given by

Gαβ = 8πTαβ − ∇α Zβ − ∇β Zα + gαβ∇μZμ + κ1
[
nα Zβ + nβ Zα + κ2gαβnμZμ

]
,

(3)
where Zα is a vector field of constraints which is decomposed into space and time
components according to 	 ≡ −nμZμ and Zi = ⊥μ

i Zμ, where nμ is the timelike unit

1 Strictly speaking, this depends on the choice of gauge conditions.
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normal field, ⊥α
μ = δα

μ +nαnμ the projection operator onto the spatial hypersurface
and κ1, κ2 are parameters. Equation (3) reduces to the Einstein equations if Zμ = 0
and the choice of κ1, κ2 is made such that any deviations from Zμ = 0 are damped
away. The conformal version of the Z4 system is obtained in a manner analogous to
the conformal decomposition applied in the BSSN formulation and results in a set of
equations strikingly similar to the BSSN system but augmented by an extra equation
for the constraint variable 	. Two slightly different conformal versions of the Z4
system have been presented in Refs. [9,49], either of which can be implemented
rather straightforwardly in existing BSSN codes. Applications to BH and neutron-
star evolutions have indeed demonstrated that the active enforcement of constraint
damping leads to a reduction in the constraint violations as compared with the BSSN
system [9,94].

3 Black holes in gravitational wave physics

Astrophysical BH binary systems are one of the strongest expected sources of GWs
expected to be observed with the current generation of ground based detectors as well
as a future space-based mission of LISA type. The weak interaction of GWs with
any type of matter makes the identification of signals of physical origin in the noisy
data stream a highly non-trivial task. In practice, the search for physical signals relies
heavily on a method known as matched filtering [72], where the instrumental data
is cross-correlated with theoretical predictions for a family of expected sources. In
simple terms, the “best-matching” theoretical template is then identified as the best
candidate for the GW source. The key challenge for the BH modeling community
in this context is to cover the BH binary parameter space sufficiently densely with
accurate theoretical waveforms. A detailed discussion on the accuracy standards thus
required for theoretical waveform predictions can be found in [109,110].

BH binaries are characterized as sources of gravitational waves by a number of para-
meters which are commonly divided into so-called intrinsic and extrinsic parameters
[42]. Intrinsic parameters describe the physical properties of the binary systems as for
example the mass ratio and the individual holes’ spins. Extrinsic parameters, such as
the sky location, distance or inclination of the orbital plane with respect to the line of
sight, on the other hand, relate the location of the source with respect to the observer.
From the perspective of the theoretical modeling of BH binaries, it is therefore suffi-
cient to consider only intrinsic parameters. By the time BH binaries enter the sensitivity
regime of GW detectors, their orbits are commonly expected to have vanishing eccen-
tricity due to the circularizing effect of GW emission [130]. Furthermore, vacuum
spacetimes containing BHs are invariant under a rescaling of the total mass of the sys-
tem. Whereas the total mass M must be taken into account in the analysis of GW data,
because the detectors sensitivity introduces a characteristic length or time scale to the
problem, in the theoretical modeling, a change in the total mass corresponds to a trivial
rescaling of the waveform predictions and therefore does not require a separate calcu-
lation. In summary the effective intrinsic parameter space of BH binaries as sources of
GWs is seven dimensional: one mass ratio and six parameters for the individual hole’s
spin.

123



Numerical relativity Page 5 of 23 1689

For illustration of the GW signal and the inspiral, we show in Fig. 1 the trajectory
and the quadrupole of the GW strain h22 for the last 11 orbits of the inspiral of a non-
spinning BH binary with mass ratio q ≡ m2/m1 = 1/4; cf. [153] for a more in-depth
discussion of this system. The generation of GW catalogues now faces two serious
obstacles. (i) Even a rather modest coverage of the BH binary parameter space with,
say, 10 templates per dimension requires 107 simulations which is computationally
too expensive; (ii) waveforms to be used in GW data analysis must contain a larger
number of orbits or GW cycles than the example shown in Fig. 1. Furthermore, the
evolution time per orbit increases rapidly with the separation of the binary members,
so that a significant increase in the number of orbits beyond O(10) becomes very
costly [111].

Overcoming these difficulties requires the combination of numerical relativity
results with (semi-)analytic predictions. The methods developed for this purpose can
be classified into two main approaches.

So-called phenomenological waveform models construct relatively simple func-
tions determined by some model parameters to describe the phase and amplitude of
the GW signal. A map between the model parameters and the physical ones character-
izing the BH binary can then be calibrated by comparison for a set of specific binary
configurations. For these configurations, so-called hybrid waveforms are constructed
out of stitching numerical relativity results for the final O(10) orbits onto a PN pre-
diction that covers a vast number of orbits up to the late inspiral, plunge and ringdown
stage; cf. [7]. The construction of such phenomenological models has so far mostly
focused on either non-spinning binaries or configurations where the BH spin is aligned
with the orbital angular momentum [3–6,142]. Most recent work in Refs. [85,156]
considers the extension to the general case of precessing binaries.

An alternative approach is provided by the effective-one-body (EOB) method which
combines PN predictions with the description of a particle in an effective metric and
BH ringdown [43,44]. The parameters appearing in this model are partially determined
by PN calculations and remaining free parameters can be calibrated using numerical
relativity calculations. EOB models for GW template banks have also concentrated
first on non-spinning or non-precessing binaries (see e.g. Refs. [59–61,125,126,157])
while the extension to general precessing binaries is the subject of ongoing work;
cf. [158].

Investigations also explore the possibility of reducing the effective dimensionality
of the parameter space of BH binary systems to be modeled. This may be achieved
by designing approximate descriptions of the gravitational waveforms using a single-
spin approximation or model waveforms of precessing binary systems in terms of the
signals of non-precessing binaries in a non-inertial frame; see [38,85,128,136] and
references therein.

The use of numerically generated waveforms for the construction of template banks
and use in GW data analysis has been explored in two community wide projects, the
NRAR [175] and Ninja [174] collaborations. The main goal of the NRAR effort is to
pool efforts from nine groups, standardize the analysis tools applied to the numeri-
cal results and establish comparison with analytic models. The waveforms generated
inside this effort for non-precessing binaries demonstrate good agreement with pre-
viously derived EOB models for non-precessing systems. Not unexpectedly, newly
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Fig. 1 Upper Trajectory of the BHs in the inspiral of a binary with mass ratio q = 1/4 and vanishing
spins. Lower The (real part of the) quadrupole of the GW strain h22

generated waveforms of precessing systems display larger deviations, measured in
terms of the unfaithfulness, from these EOB models [95]. As the number of precess-
ing waveforms is continuously increasing (see for example [118] for a recent catalog of
171 waveforms), both phenomenological and EOB models are being improved. Focus
of the Ninja project is the use of GW signals generated by numerical methods in the
analysis of detector data. In its first stage [16,17], purely numerical waveforms were
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injected into a simulated data stream which was analysed with existing GW search
algorithms. While most signals could be detected, more work is needed to optimize
waveforms and search pipelines for parameter estimation [16,17]. The second stage of
the Ninja project therefore focused on complete inspiral-merger-ringdown waveforms
obtained through the above mentioned hybridization procedure. The corresponding
procedures were detailed in Ref. [7] together with a verification of sufficient accuracy
of the waveforms. The injection of this improved set of waveforms into a simulated
data stream is presently under way [1].

Most recently, numerical relativity has started to explore the dynamics of BH bina-
ries in alternative theories of gravity, namely scalar-tensor theory of gravity. In order
to obtain a non-trivial impact of the additional scalar field on the inspiral of the BHs,
it is necessary to have a mechanism that circumvents the no-hair theorem. This has
been achieved by Healey et al. [89] by prescribing initial data in the form of a scalar
field bubble that implodes on the orbiting binary and gives rise to a non-circular orbital
motion. Simulations performed by Berti et al. [27], instead generate initial data con-
taining a spatial gradient in the scalar field as suggested by Horbatsch and Burgess
[96]. This gradient interacts non-trivially with the inspiraling binary which leads to a
scalar wave dipole signal oscillating at twice the orbital frequency. It is encouraging
to see that existing numerical codes for Einstein’s theory of general relativity can be
modified in a straightforward manner to open up wider classes of theories of gravity.

4 Black holes in astrophysical systems

One of the most exciting results of numerical simulations of BH binaries concerns
the gravitational recoil or kick generated in the merger of astrophysical BHs. It has
been known since the 1960s that the gravitational waves emitted by compact objects
can carry momentum and thus impart, by conservation of momentum, a recoil on
its source [26,37,129], but the magnitude of this effect remained uncertain until the
breakthroughs in numerical relativity opened up for source modeling the fully non-
linear regime of general relativity.

By symmetry, the net momentum carried away in the inspiral and merger of non-
spinning equal-mass BH binaries vanishes, so that a non-zero effect requires some
deviation from this symmetry. The attention of numerical simulations first focused
on a breaking of this symmetry by unequal mass ratios. The resulting kick velocity
as a function of the mass ratio q for non-spinning binaries is well approximated by
Fitchett’s [73] formula

v = Aη2
√

1 − 4η(1 + Bη), η = q

(1 + q)2 , (4)

with A = 1.20 × 104 and B = −0.93, and predicts a maximum recoil of 175 km/s
realized for q = 0.36 [78]. To put this number into perspective, we note that estimates
for the escape velocities from globular clusters and small galaxies are in the range of
a few tens to the order of 100 km/s while those from large elliptic galaxies can be
as large as ∼1,000 km/s [116]. Kicks resulting from the merger of non-spinning BH
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binaries are thus unlikely to eject BHs from large galactic hosts which is in agreement
with the observation that large galaxies appear to ubiquitously harbor BHs [112].

It came as quite a surprise when simulations of spinning BHs were found to result in
much larger kicks of ≈2,500 km/s, with an extrapolation to maximal spin magnitude
reaching≈4,000 km/s, for specific spin orientations commonly referred to as superkick
configurations [47,48,77]. These superkicks are realized for equal mass-ratio and BH
spins oriented in the orbital plane opposite to each other. A recent study by Lousto and
Zlochower observed even larger kicks up to 5,000 km/s for configurations where the
spins’ projection onto the orbital plane still points in opposite directions but the spins
also have a component aligned with the orbital angular momentum. Spins aligned with
the orbital angular momentum have been known to result in particularly large amounts
of GW energy [46,93] but no kick (due to symmetry). The configurations resulting
in this particularly large recoil are therefore referred to as hang-up kicks and can be
interpreted as a combination of maximizing the total amount of GW emission while
still maintaining the spin-orbit interaction arising from the opposite spin components
in the orbital plane.

Superkicks or hang-up kicks of such a magnitude clearly have the potential to
eject BHs from even their most massive host galaxies. This ejection may result in
observational signatures (e.g. [51,82,105]) and represents a potential obstacle for
BH growth via merger, and thus puts constraints on merger-history models, which
must be able to explain the assembly of supermassive BHs by redshifts z ≥ 6 [84,
108,160]. As mentioned above, however, frequent ejection of BHs would be at odds
with astrophysical observations which identify BHs residing in most galaxies. It thus
appears that super or hang-up kicks, while theoretically possible, are not frequently
realized in nature. Mechanisms that would result in the suppression of the specific spin
orientations necessary for these large kicks have been suggested in the form of partial
alignment of spins due to the presence of torques from accretion disks and resonance
effects due to spin-orbit coupling in the inspiral [28,34,102,103,144].

Recent years have seen an increasing number of numerical simulations of BH
systems in the presence of matter. Most of this work is motivated by the identification of
potential electromagnetic counterparts resulting from the merger of BH binaries. Such
counterparts may, for example, be realized through accretion of matter, relativistic
beaming or shocks generated in the matter by recoiling binaries [11,32,70,115]. In
comparison with single BHs, BH binaries may result in an enhanced accretion rate and
luminosity [71]. While numerical simulations indicate that circumbinary disks may
not produce detectable electromagnetic counterparts [10,33,117], the interaction of
the disk’s magnetic field provides a way to tap into the rotational energy of the binary
in analogy to the Blandford and Znajek [31] effect. This may result in observable
electromagnetic emission along single or double jets [121–124].

The extraction of rotational energy from BHs also plays a key role in a particularly
intriguing feature in the interaction of BHs with bosonic matter, the superradiant
instability [25,166,167]. The scattering of oscillating scalar or vector fields with a real
part of the frequency Re[ω] below the angular horizon velocity ΩH of the BH results
in an amplification of the field amplitude and energy in a potentially runaway manner
for the case of massive fields. This mechanism should result in a reduction of the BHs
spin rate which has been suggested as a possibility to obtain bounds on the photon
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mass through observations of the BH at the center of the Milky Way [127]. Numerical
relativity has just started exploring the interaction of scalar and vector fields with
rotating BHs. For fixed background spacetimes, the numerical simulations identify
that vector fields get amplified through the superradiant instability on significantly
shorter timescales than scalar fields [64,162]. A main question to be explored in
future numerical work is the impact of the non-linear back reaction on the BH’s
rotation rate.

5 High-energy collisions of BHs

The so-called hierarchy problem of physics is one of the main open issues that is not
explained within the framework of the standard model of particle physics. The hierar-
chy problem consists in the extraordinarily low strength of the gravitational interaction
which is 30 to 40 orders of magnitude weaker than the other fundamental interactions.
One manifestation of the hierarchy problem is the large discrepancy between the
electroweak energy scale O(103) GeV and the Planck scale O(1019) GeV where all
interactions are expected to be of comparable strength. One possible explanation of
the hierarchy problem is given by so-called Tera-electron Volt (TeV) gravity models
which evoke extra dimensions. In a model often referred to as the ADD model, the
weakness of the gravitational force at length scales �1 mm is due to n ≥ 2 compact
extra dimensions; the extra dimensions are accessible to gravitons leading to a faster
fall-off than 1/r2, whereas all other fields of the standard model are confined to a
four-dimensional brane [13–15]. In consequence, the effective Planck scale where
the fundamental interactions become comparable in strength may be reduced from
O(1019) GeV to the TeV regime. The alternative Randall-Sundrum model provides
a similar explanation in terms of extra dimensions with a warp factor [137,138]. An
intriguing possibility arising from an effective Planck scale much below its four-
dimensional value is the creation of BHs in parton-parton collisions at the Large
Hadron Collider (LHC) [63,76]; for a review see Kanti [101].

Formation of BHs in such collision experiments is expected to manifest itself in
specific signatures in the decay products such as their jet multiplicity and transverse
energy. For the detection of such signatures, theoretical predictions from Monte-Carlo
generators such as BlackMax [58] or Charybdis [74,87] are compared with the
experimental data. The scattering cross section for BH formation and the initial mass
and spin functions of the BHs form vital input parameters for these generators. In the
context of numerical relativity, it is of particular interest that at ultrarelativistic ener-
gies, the structure of the colliding particles should become irrelevant for the collision
dynamics and the collision should be well modeled by two point particles or BHs in
d-dimensional general relativity [20,76].

Numerical simulations have been able to confirm this hypothesis for collisions of
concentrated boson fields, perfect fluid balls and BHs with internal structure in the
form of spins. By colliding boson fields with varying initial boost factor, Choptuik
and Pretorius [57] have demonstrated that a BH is formed above a threshold Lorentz
factor γthr ≈ 2.9 in agreement with expectations from the Hoop conjecture. Likewise,
East and Pretorius [68] confirmed this observation for collisions of perfect fluids. In
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Sperhake et al. [152], the impact of spins on the dynamics of BH collisions disappears
at Lorentz boosts �3.

BH collisions at velocities near the speed of light are currently best understood
in four spacetime dimensions. While this case does not contain extra dimensions as
evoked in the TeV gravity models, these studies have revealed exciting features in
the collision dynamics. The first, and simplest, type of collisions studied was that
of a head-on collision of two equal-mass, non-spinning BHs [154]. These collisions
are characterized by a single parameter, the initial boost γ . The amount of energy
radiated away in the form of gravitational waves increases enormously relative to the
non-boosted case and reaches 14 ± 3 % of the total center-of-mass (CoM) energy,
about half of the upper limit obtained from Penrose’s construction quoted in [67].
Even larger amounts of GW energy have been found by Sperhake et al. [155] for
grazing collisions, where a second parameter is introduced in the form of the impact
parameter b. Emission of 35 % of the total energy of the system in GWs has been
observed in these grazing collisions. In addition to scattering and promptly merging
configurations, these simulations revealed a third possible outcome, a delayed merger
where the BHs separate after their first encounter but loose enough kinetic energy in
GWs to form a bound system and eventually merge. These delayed mergers occur
for impact parameters close to a critical value b∗ identified by Pretorius and Khurana
[135] as the threshold of immediate merger. In this regime, the binary completes a
number of orbits proportional to the logarithmic distance of the impact parameter
b from the critical value. A remarkably simple functional relation for the scattering
threshold bscat has been found by Shibata et al. [146]: a merger into a single BH occurs
for impact parameters b � 2.5 M/v, where v represents the initial velocity in units of
the speed of light.

The enormous amounts of energy released in GWs in high-energy collisions has
prompted the question whether it is possible for the binary to loose all kinetic energy
through radiation. This would result in much reduced amounts of energy available
for the formation of BHs in the collision. The above mentioned study of high-energy
collisions of spinning BHs [152], however, demonstrates that there exists an upper limit
of about 50 % of the total energy that can be lost in GWs. The other half inevitably is
absorbed and ends up as BH rest mass in merging as well as scattering configurations.

The main challenge for the numerical relativity community is to extend these results
to collisions in d dimensions. For this purpose, two formulations have been developed
that allow for the modeling of higher-dimensional spacetimes with SO(D−3) isometry
on a computational domain of three (spatial) dimensions: a reduction by isometry
[173] and a modified Cartoon method [147]; for more extended discussions of these
methods see [165,168]. For the numerical construction of initial data, a spectral solver
developed by Ansorg [12] has been generalized to an arbitrary number of spacetime
dimensions by Zilhão et al. [169].

Collisions of two equal-mass, non-spinning BHs starting from rest have been stud-
ied in Witek et al. [161,163] and found to radiate 0.089 % of the CoM energy in GWs
in d = 5 dimensions, just under twice the value found for d = 4. For unequal masses,
this amount decreases in good agreement with point particle predictions. Boosted col-
lisions of BHs in d = 5 dimensions have been studied by Okawa et al. [120] who find
the scattering threshold to decrease from 3.6 to 3.3 Schwarzschild radii as the velocity
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is increased from v = 0.4 to 0.6. Due to numerical stability issues, a determination of
the scattering threshold at higher velocities has not yet been possible.

Collisions of charged BHs starting from rest have been simulated in Zilhão et
al. [171,172]. As expected, for equal charges, the collision is slowed down due to
the repulsive electromagnetic force which results in a decreasing amount of energy
EGW radiated in GWs as the charge-to-mass ratio Q/M is increased. The energy EEM
radiated through electromagnetic waves reaches a maximum at about Q/M = 0.6. For
the case of opposite charges, in contrast, both EGW and EEM increase monotonically
with |Q/M | reaching values of about 0.1 and 0.5 %, respectively, in the extreme limit
|Q| = M .

6 BHs and the gauge-gravity duality

The gauge-gravity duality conjectures the mathematical equivalence or duality
between field theories including gravity in d dimensions and field theories without
gravity in d − 1 dimensions. Because of Maldacena’s prototypical example [113] of
the duality between type IIb string theory on five dimensional Anti-de Sitter (AdS)
times the S5 sphere, and N = 4 supersymmetric Yang-Mills (SYM) conformal field
theory (CFT) in four dimensions, the duality is often referred to as the AdS/CFT cor-
respondence even though the principle covers a wider range of theories. A particularly
attractive feature of the correspondence is that it relates the strong coupling regime
of the field theory to the weakly coupled regime of string theory where classical gen-
eral relativity should provide a good approximation. The duality thus opens up a new
technique to study field theories in the strongly coupled regime through the modeling
of asymptotically AdS spacetimes.

The AdS spacetime in d dimensions is the maximally symmetric solution of the
Einstein equations Gαβ +�gαβ = 8πTαβ with negative cosmological constant � < 0.
It can be represented as a d dimensional hyperboloid embedded in a d +1 dimensional
flat spacetime of signature − − + · · · +. The induced metric on this hyperboloid can
be transformed to two particular coordinate systems that have been used frequently
in the modeling of asymptotically AdS spacetimes. In global coordinates, the AdS
metric is given by

ds2 = L2

cos2 ρ

(
−dτ 2 + dρ2 + sin2 ρ dΩ2

d−2

)
, (5)

where � = −(d − 1)(d − 2)/(2L2), dΩ2
d−2 is the metric on a d − 2 dimensional

unit hyper sphere and the coordinate ranges are 0 ≤ ρ < π/2, −π < τ ≤ π . The
AdS boundary is obtained in the limit ρ → π/2. An alternative description is given
in terms of Poincaré coordinates

ds2 = L2

z2

[
−dt2 + dz2 +

d−2∑
i=1

(
dxi

)2
]

, (6)
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where z > 0 and t ∈ R and the boundary corresponds to z → 0. It can be shown that
the Poincaré patch merely covers half of the AdS spacetime; the other half corresponds
to z < 0 [24].

The exploration of field theories through the gauge-gravity duality requires a trans-
lation of properties of the fields on the gravity side into physical quantities of the field
theory. This so-called dictionary is established by the equivalence of the gravitational
action of the bulk taken in the limit of the boundary and the action of the field theory
on the boundary [81,113,164]. More specifically, the vacuum expectation values of
the field theory 〈Ti j 〉 are given by the quasi-local Brown and York [39] stress-energy
tensor and, thus directly related to the bulk spacetime metric. These relations have been
worked out for both global and Poincaré coordinates; see for example [19,21,86] and
references therein. Detailed reviews of the AdS/CFT correspondence can be found in
[2,104,119].

Many numerical applications of the AdS/CFT correspondence have addressed the
rapid thermalization of quark-gluon plasma generated in heavy-ion collisions. While
the plasma is in a far-from-equilibrium state immediately after the collision, its behav-
ior is well modeled by a hydrodynamic description after short times of the order of
1 fm/c. Even though this process is governed by quantum chromo dynamics (QCD),
many features appear to be captured by N = 4 SYM theory through the duality. Per-
turbative studies predict that departures from the equilibrium state decay exponentially
and correspond to quasi-normal modes of AdS BHs [97].

The use of numerical methods to model BH systems in the context of the gauge-
gravity duality has been pioneered by Chesler and Yaffe’s [52,53] simulations of
anisotropic sources with boost invariance as well as rotational and translational sym-
metry. By monitoring the energy density as well as the longitudinal and transverse pres-
sure components extracted from the asymptotically AdS bulk metric, they demonstrate
that the anisotropies decay on timescales inversely proportional to the local tempera-
ture at the onset of the hydrodynamic regime which translates to 0.5 fm/c assuming
a temperature of 350 MeV. The short thermalization timescales were confirmed by
Heller et al. for a variety of initial far-from-equilibrium configurations [90,91] and also
in linearized calculations [92]. In Ref. [54], Chesler and Yaffe relax their symmetry
assumptions and simulate two colliding shock waves with translational symmetry in
the transverse direction and observe isotropization about 0.35 fm/c after the waves
start overlapping. A more detailed description of their numerical infrastructure together
with a discussion of turbulent fluid flow in two spatial dimensions is given in [55].

A numerical code based on the GHG formulation has been developed by Bantilan et
al. [21]. By assuming an SO(3) symmetry, they reduce their computational domain to
2+1 dimensions, but otherwise maintain the structure of the GHG formulation as used
for generic spacetimes without symmetry. Their evolutions start with a concentrated
scalar field which promptly collapses to form a distorted BH. Through quasi-normal
ringdown, the BH rapidly settles down into a stationary configuration. Right from the
outset of their simulations, they observe that the energy momentum tensor evolves
consistently with a thermalized N = 4 SYM fluid, in agreement with the previously
observed short thermalization time scales. Their work furthermore discusses in detail
the choice of variables and gauge conditions required to provide numerically stable
simulations.
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In Refs. [98,99], Horowitz et al. use numerical simulations of BHs in AdS space-
times for the modeling of the conductivity of so-called cuprates or strange metals.
Expressed in frequency space, the conductivity of these materials has been known for
a long time to obey Drude’s law [65,66] at low frequencies whereas quantum effects
lead to a plateau at high frequencies. Experimental results have suggested a power-
law dependency ∼ ω−2/3 at intermediate frequencies which has been theoretically
confirmed in the AdS/CFT based study of Horowitz et al..

7 Fundamental properties of black holes

Black holes have for many decades proved invaluable tools to deepen our insight into
the theory of general relativity and also alternative theories of gravity that arise from
modifications of general relativity. The focus in this section is therefore not so much
on the role of BHs from the perspective of other areas of physics, but rather on general
properties of BHs, in particular on their stability properties and their formation from
initially regular matter fields. BHs reveal a much richer structure in higher-dimensional
and non-asymptotically flat spacetimes [69] and, as we shall see, it is for those types
of spacetimes where numerical relativity has generated particularly interesting results
in recent years.

One of the earliest and most influential discovery obtained through numerical rel-
ativity is the critical behaviour identified by Choptuik [56] in the collapse of spheri-
cally symmetric, massless scalar fields minimally coupled to Einstein gravity in four
dimensions. By studying the behaviour of one-parameter families of scalar fields char-
acterized by a measure p for the strength of the initial pulse, Choptuik found a critical
value p∗ above which a BH forms and below which the field eventually scatters off
to infinity. Furthermore, for values of p near the critical p∗, the evolutions exhibit
universal behaviour in the strong field limit: (i) if a BH forms, its mass scales as
(p − p∗)γ with a universal γ ≈ 0.37. (ii) For a universal value �t ≈ 3.4, the scalar
field profile at time t + �t is identical to that at time t up to a rescaling by a factor
e�t . Sorkin and Oren [149] generalized Choptuik’s study to higher dimensions up to
d = 11; the values of γ and �t are dimension dependent but retain their otherwise
universal character.

The corresponding setup in asymptotically AdS spacetime has been investigated
by Bizón and Rostworowski [29] and revealed a strikingly different pattern due to
the nature of the AdS outer boundary. As in Choptuik’s case, initially strong pulses
promptly collapse into a BH whereas below a critical value p∗, the field instead scatters
off to infinity. In contrast to the asymptotically flat case, however, the field reaches
spatial infinity in finite time, bounces back and collapses to a BH upon the second
implosion. By further reducing p, the field scatters back to infinity a second time, but
forms a BH upon the third implosion and so on. No matter how small p is chosen, a
BH eventually forms after some possibly large number of reflections from the outer
AdS boundary. The same behaviour was found by Buchel et al. [40] and, for the
case of higher-dimensional spacetimes, by Jałmużna et al. [100]. These simulations
reveal a transfer of energy within the pulse to shorter wavelengths and, thus, to an
increasingly higher concentration of energy density. Asymptotically AdS spacetimes,
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however, have also been found to admit many stable configurations as for example
boson stars or time-periodic solutions [41,62,114].

The stability of fast rotating Myers-Perry BHs has been investigated by Shibata and
Yoshino [147,148]. Here the perturbation is given in the form of a bar-mode superposed
on the rotating BH. The simulations demonstrate that above a spin parameter of 0.87
(0.74, 0.73, 0.77) for d = 5 (6, 7, 8) spacetime dimensions, the perturbed BH sheds
angular momentum through the emission of GWs and settles down into a stationary
state with a rotation rate below the critical value.

Lehner and Pretorius [107] evolved infinite black strings in d = 5 dimensions.
These strings are known to be subject to the Gregory–Laflamme instability [79,80].
The numerical results demonstrate a cascade of a segmentation of the string into nearly
spherical BHs connected by ever thinner string elements which reach zero width in
finite asymptotic time. This observation indicates a violation of Penrose’s cosmic
censorship conjecture in five dimensions as a naked singularity may be formed in finite
time. Cosmic censorship has also been investigated in four dimensional, asymptotically
de Sitter spacetimes by Zilhão et al. [170]. BHs in de Sitter are characterized by two
parameters, the BH mass M and the cosmological expansion rate H . For sufficiently
large M , these spacetimes represent a naked singularity. The question addressed in
the numerical study is whether the collision of two “large” BHs from small initial
separation can lead to a merger and, thus, the formation of a single BH with mass M
above the threshold for a naked singularity. The answer obtained is no; either a naked
singularity is already present in the initial data, or the cosmological expansion will
prevent the BHs from merging into a potentially censorship-violating single BH.

8 Conclusions

Numerical relativity has been a highly productive field of research in recent years.
Especially following the breakthroughs of the year 2005, many exciting results have
been obtained from the numerical modeling of BHs in the non-linear strong field
regime of general relativity. With the exception of the big bang itself, dynamical
systems containing BHs probably generate the most energetic events in our universe.
For example, a binary system of two non-spinning stellar-mass BHs in quasi-circular
inspiral converts about 3 % of its rest mass into gravitational radiation over a time
interval of the order of a millisecond during the last orbit, merger and ringdown.
That roughly corresponds to the energy released by the sun over its entire lifetime of
the order of 1010 years. Anisotropic GW emission can generate recoil velocities of
thousands of km/s, enough to eject BHs from their most massive host galaxies. High-
energy collisions of BHs are capable of converting about half of the center-of-mass
energy into radiation.

Arguably the most surprising development of the past decade, however, is the
wide range of physics where BHs have started playing an important if not central
role. As mentioned in the introduction, BHs started being recognized as important
astrophysical objects in the 1960s. It is highly likely that they will appear as one of the
most important sources of GWs whose observations are expected to provide us with
a qualitatively new view of the universe within the present decade. In high-energy
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physics, BHs enable us to experimentally test physics beyond the standard model of
particle physics. And through the gauge-gravity duality, BHs even provide a tool for
the modeling of heavy-ion collisions, the electric conductivity of matter or turbulence
phenomena. At the same time, BHs do not stop surprising us with their behaviour
and about 100 years after Einstein’s discovery of the theory, the community still gains
new, and sometimes surprising, insights into general relativity.

In spite of the invaluable access to studying strong-field dynamics that has been
opened up by numerical relativity, it has been a common theme throughout this review
that a comprehensive understanding of the multitude of BH phenomena is obtained
through a close interplay between numerical and analytic techniques. The generation of
GW template banks clearly requires the combination of numerical relativity with post-
Newtonian and related methods. Perturbation theory and point-particle calculations
often allow us to gain an intuitive understanding of the processes or to extrapolate
results to regions of the parameter space where purely computational methods are
prohibitively costly. Last but not least, the diagnostic tools employed in the analysis
of numerical simulations are almost universally based on analytic calculations or
approximations.

We conclude this review with a brief list of some of the most important outstanding
tasks to be completed by the numerical relativity community. In GW physics, the
generation of complete waveform catalogues represents a most urgent goal to optimize
the analysis of observational GW data once these become available. Closely related
to this topic is an improved understanding of the type of electromagnetic counterparts
we should expect from astrophysical sources of GWs. High-energy collisions of BHs
are now well understood in four spacetime dimensions. Extension of these results to
higher-dimensional spacetimes is vital to support the search for signatures of TeV
gravity in the data taken from collision experiments. The range of applications of the
gauge-gravity duality has probably merely been scratched so far. In contrast to the
other fields discussed, there does not yet exist a generic computational framework
suitable for the modeling of essentially arbitrary BH systems in asymptotically AdS
spacetimes. Our understanding of the stability of BHs has progressed enormously over
the years, but there remain many BH solutions, especially in higher dimensions, whose
stability properties remain unknown. The formation of naked singularities in the time
evolution of black strings indicates that cosmic censorship may not hold in arbitrary
spacetime dimensions. More studies of a wider class of BHs will help improving our
understanding of the role of censorship. The reader is encouraged to remain on the
watch for new developments in these areas. Judging by the past few years (s)he may
not have to wait for too long.
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