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Abstract I review progress in the last few years in constructing and analyzing many
new classes of black holes that are possible in spacetimes of dimension larger than
four.
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1 Introduction

Had I been invited to give this talk at GR16 in July 2001—the first GR meeting
that I attended—it would have been a rather different one. The subtitle “Approximate
methods” would not have been there—as only exact solutions were known at the
time—and my slides would have included just a description of the higher-dimensional
generalization of the Kerr solution obtained by Myers and Perry (MP) fifteen years
earlier. I would have finished “that’s it, thank you!”, much earlier than receiving any
signal from my chairman.
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Twelve years later the situation has changed dramatically. In this period we have
uncovered large numbers of qualitatively new solutions, most of them known only
through approximate constructions (with virtually no hope of finding almost any of
them in closed analytic form), and with good evidence that these are just the proverbial
tip of the iceberg. Nowadays we know of: black holes whose horizon topology is
not spherical, but rather in the shape of a ring, S1 × S2, or of other products of
spheres; rotating multi-black hole solutions; horizons of spherical topology but which
are ‘rippled’; ‘helical’ horizons, which are much less rigid (much less symmetric)
than are the more conventional ones (like the MP family). All these, and more, are
novelties that were hardly suspected at the time of GR16, in spite of the fact that
higher-dimensional black holes had been en vogue for many years, particularly after
the developments in string theory in the 1980’s and 1990’s.

In the following I will present a somewhat impressionistic overview of the progress
achieved until July 2013. More detailed analyses, including technical descriptions of
the solutions and methods, can be found in the Living Reviews in Relativity article
[1] and in the book [2]. In an overview as brief as this one it would be out of place to
try to credit all the developments made, and the new solutions found, in a field grown
so large as this one by now. Thus I refer the interested reader to those monographs for
bibliographical details.

2 Preliminaries

2.1 Why higher D?

My own main motivation for studying General Relativity in D > 4 is that by doing so
I expect to gain a better understanding of the theory. This is a strategy that is common
in theoretical physics: vary the parameters in a theory, even away from the values
that seem physically realizable, in order to see how the theory behaves, what features
remain unchanged and which new qualitative behaviors appear, whether the theory
simplifies in some limits etc. While this motivation may not satisfy those who would
like to quickly see whether all these new features are realized in Nature—and ditch
the effort if they are not—there is ample historical encouragement for those who want
to proceed notwithstanding such objections.

Still, for those who do not find this motivation strong enough, it is possible to argue
that String Theory remains our best hope for a unified theory of all interactions, and it
does include naturally both gravity and additional dimensions. And even in case that
String Theory failed to be this ultimate theory (or the extra dimensions were too small
to allow a classical treatment of higher-dimensional gravity), we would still retain one
of its most revolutionary spin-offs: the AdS/CFT correspondence, which has taught us
to regard GR as a tool for studying strongly-coupled quantum field theories. Quantum
systems in, say, realistic dimensions D = 2, 3, 4 can be described and solved using
GR in a higher-dimensional spacetime.

I should also mention that much of the initial impetus for the study of higher-
dimensional GR came from models (mostly of brane-world type) with Large Extra
Dimensions and quantum gravity at the TeV scale. Needless to say, this motivation is
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dwindling in the face of data from the LHC, so it is just as well that many of us ceased
long ago to name (and think of) this as our primary motivation in this subject.

To keep the subject within bounds, I will mostly concentrate on asymptotically flat
vacuum black hole solutions, which solve the equations Rμν = 0 in higher dimensions.
Occasionally I will also discuss solutions with extended horizons, such as black strings
and branes (which strictly are not asymptotically flat), and Anti-deSitter black holes
which solve Rμν = −|�|gμν .

2.2 Black holes galore in D > 4: a very brief history

As I mentioned, the early history of hi-D black holes is rather short: in 1963, Tangherlini
found the natural higher-dimensional generalization of the Schwarzschild solution, and
in 1986 Myers and Perry, with a lot more effort, did the same for the Kerr solution.

Given the four-dimensional precedents, it might have been thought that these solu-
tions exhausted all the possibilities for stationary, asymptotically flat vacuum black
holes. In the early 2000s we learned that this is far from being the case. At that time a
number of qualitatively new solutions were discovered, notably black rings and inho-
mogeneous black strings, which made clear that very many new classes of black holes
and new phenomena (including in AdS) were possible and ripe for discovery. In the
last decade we have seen the realization of many of these hopes.

3 Exact solutions and methods

Before delving into the approximate methods which have become the main source
of recent progress, it is worth recalling how far we have been able to get using exact
techniques. It has seemed natural to try to extend to D ≥ 4 those methods that have
been successful in four dimensions, in particular those that allow to systematically
obtain the Kerr solution.

In this vein, it is natural to try to generalize the Kerr-Schild ansatz

gμν = ημν + 2H(x)kμkν , |k|2 = 0 (1)

which effects a kind of linearization of the system. This approach was in fact success-
fully used by Myers and Perry in their derivation of a family of black hole solutions
in any dimension D ≥ 4 and with rotation on all possible planes. However, the ansatz
has failed to give any other black hole solutions.

Another approach involves inverse-scattering methods, which reduce the task of
solving the set of non-linear Einstein equations to an associated linear problem and
often boil it down to an algebraic procedure. They have been very well developed
in four dimensions in different versions, and the one that has been most fruitfully
extended to higher dimensions is the Belinski–Zakharov method. When applied in
five dimensions this has yielded many new solutions, including doubly spinning black
rings, black Saturns, and multi-ring solutions. However, for the purpose of finding
asymptotically flat solutions its utility is reduced to D = 5, owing to the large amount
of abelian symmetries that it requires.
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The idea to restrict to algebraically special solutions was also important in the
discovery of the Kerr solution, and thus it is natural to try to extend it to higher
dimensions. The higher-dimensional analogue of the Petrov classification has been
well developed, but unfortunately it seems to be less powerful than in four dimensions,
and this approach has not yielded (yet?) any new black holes.

While it is probably too soon to abandon the search for new exact black hole
solutions and new methods to construct them, most of the progress in recent years,
and in particular the strongest evidence that there are many more black holes than
those found so far in exact form, as well as the means to study them, has come from
the development and application of approximation techniques.

4 Approximate solutions and methods: a classification

A rough but useful way to characterize them is as follows:

Analytic methods. These are typically based on a perturbative expansion. The most
developed one is the ‘blackfold approach’, which uses ideas from effective field the-
ories.

Semi-analytic methods. Again these are based on perturbative expansions, in par-
ticular linearized perturbations of exactly known solutions. These yield eigenvalue
problems for linear differential equations, which typically require numerical solu-
tion. The numerical methods needed can often be implemented through commercial
software (such as Mathematica) and falls under what I call ‘soft’ numerics.

Numerical methods. This is the domain of numerical GR proper, with specifically
developed codes: ‘hard’ numerics. They attempt to solve in a non-perturbative way
the full non-linear PDEs from the Einstein equations. This is a notoriously difficult
probelm, but if the aim is to find stationary solutions, the difficulties of time evolution
are absent and one is solving a typically simpler elliptic problem. A number of tech-
niques have been developed and applied in recent times: spectral methods, Newton
method, Ricci flow techniques etc. Given my lack of expertise in any of them, I will
confine myself to a brief description of highlights in this area.

5 Numerical methods (‘hard’ numerics)

5.1 New solutions

Highlights in the application of these techniques to solve the vacuum equations are
the construction of

– inhomogeneous black strings,
– black holes localized in Kaluza–Klein circles,
– a black ring in D = 6.
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Recently there has been a surge of interest in finding certain classes of solutions
in AdS, motivated by the attempt to understand aspects of the CFT dual of Hawking
radiation. A first step in this direction was the construction of a black hole localized
at the AdS boundary. More recently, there have been ‘black droplet’ solutions where
the black hole localized in the boundary is in the presence of a black brane in the
bulk—the dual description is as black hole in the presence of a thermal bath, from
which it remains thermally isolated—and ‘black funnels’, in which the black brane in
the bulk is continuously connected to the horizon at the boundary—in which case the
boundary dual view is as a black hole in thermal contact with a surrounding thermal
bath, possibly with heat flow between the two systems.

Other interesting numerical work in AdS has been devoted to the construction of
‘hairy’ black holes. Some of these provide a holographic description of a supercon-
ductor, and have attracted a huge deal of attention in recent years.

5.2 Pros and cons

Pros: Numerical methods naturally take over when the approximations involved in
analytic methods break down. In contrast to the latter, they do no need a small parameter
to expand in. Very often, they are the only method available. Moreover, they are also
very powerful when it comes to performing a stability analysis of a solution.

Cons: Numerical techniques have little heuristic value for discovering qualitatively
new solutions. One needs to have a very good idea of what solution to look for: it is
impractical, if not a downright waste of time, to ‘shoot in the dark’. So they usually
follow an analytic lead. Another drawback is that they may miss unstable, but still
interesting, families of solutions.

6 Effective theory methods (blackfolds)

6.1 Method and new solutions

The so-called ‘blackfold approach’ is based on the idea that black p-branes may have
their worldvolume curved into the shape of some submanifold in spacetime.

A black brane solution in vacuum is very easily found as

ds2(black brane) = ds2(Schwarzschild) + dx2
p . (2)

When p = 1 these are called black strings. For general p their horizons have the
geometry of a sphere (from the Schwarzschild part of the metric) times R

p. Similar
extend objects arising from solutions of non-linear equations are familiar in other
areas of physics, e.g., solitons (like monopoles) or Abelian Higgs strings. It is known
that their dynamics for deformations of a wavelength much larger than the object’s
thickness can be efficiently captured by effective theories, such as the Nambu–Goto
theory of strings. Actually, effective theories for the dynamics of black objects are well
known: the motion of a black hole can be adequately described using a point-particle
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theory when the acceleration length-scale or the curvature radius of the background in
which it moves, call them R, are much larger than the horizon size r0. One can indeed
prove, by performing an expansion of the Einstein equations in the small parameter
r0/R, that the trajectory of the black hole is governed, to leading order, by the equations

maμ = 0 (3)

and
dm

dτ
= 0 (4)

where m is the mass of the black hole, aμ its acceleration, and τ the proper time along
its trajectory. The first equation is of course the geodesic equation, while the second
one, which is rarely mentioned, expresses the conservation of mass (energy) along the
trajectory.

The idea is to develop a similar effective theory, not for small black holes, but for
thin black branes, with thickness r0 much smaller than the typical curvature radius or
wavelength of deformation away from the flat, static black brane. Instead of the black
hole mass m, the black brane can be assigned a stress-energy tensor Tab, with indices
along its worldvolume. The Einstein equations for deformations of the black brane
can be expanded in r0/R � 1 and one obtains, to leading order, the equations

T ab Kab
μ = 0 (5)

and
DaT ab = 0 . (6)

In the first one, Kab
μ is the extrinsic curvature tensor of the brane worldvolume. This

equation, first derived by Carter (though not for black branes), is a generalization for
an extended object of the equation of geodesic motion—indeed it reduces to it when
p = 0.

The second equation contains the worldvolume derivative Da and it expresses the
conservation of the stress-energy tensor. As such, it can be viewed as describing a
theory of hydrodynamics on the worldvolume of the brane. This aspect of black brane
dynamics connects directly with developments in recent years in the context of the
‘fluid/gravity correspondence’, initially an offshoot of the AdS/CFT correspondence
but now part of a larger framework of fluid-dynamical approaches to the effective
dynamics of black objects.

The blackfold approach is based on a perturbative expansion of the Einstein equa-
tions, for small r0/R. At the technical level, the equations are solved via a matched
asymptotic expansion: one solves them first in a ‘near zone’, involving distances
r � R, then on a ‘far zone’, where r � r0, and then the two solutions are matched
on a common ‘matching zone’ where r0 � r � R. In this manner the method allows
to construct explicitly the metric of the solution in a perturbative way.

The simplest example of this technique is the construction of black rings in any
D ≥ 5. One starts from a black string, with horizon R × SD−3, and bends it into a
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circle. In order to satisfy the Eq. (5) one finds that the circular black string must rotate
along the direction of the circle, at a specific speed. Physically, this correspond to the
rotational centrifugal force necessary to balance the tendency of the circular string to
collapse under its onw tension. The equation is actually very easy to solve, being a
very simple algebraic equation, and the properties of the resulting black ring, which
are also straightforward to obtain, match perfectly with the results that one obtains in
D = 5 by expanding the known exact black ring to first order in r0/R, where now R
is the radius of the ring circle.

Further applications have yielded solutions for which no previous example was
known. For instance, it has been found that black strings can take the shape not only of
circles but also of any spatial isometry ζ of the background. In a higher-dimensional
spacetime this isometry can be along two independent rotation angles,

ζ = ∂φ1 + ∂φ2 (7)

and this results into a helical black ring. The construction can be made in any D ≥ 5,
and the solutions are such that the horizon has only one rotational symmetry, among
the �(D − 1)/2� that are possible in D spacetime dimensions. This is the minimum
symmetry that the horizon can have, according to higher-dimensional rigidity theo-
rems.

The blackfold Eqs. (5), (6), can also be reduced to simple algebraic equations for
configurations that generalize the above construction of circular black rings to the
bending of black p-branes. For instance, one can easily find that starting from a black
3-brane with horizon R

3 × SD−5, the R
3 of the worldvolume can be bent into a round

S3 to form a black hole with horizon S3 × SD−5. Balance of the brane requires that the
S3 rotates at a particular velocity along the two possible rotation planes that it admits.
The construction is easily generalized to obtain solutions with horizons involving
any product of odd-spheres (times the ‘small’ sphere of the black brane in directions
transverse to the worldvolume),

H =
∏

pa∈odd

S pa × Sn+1 (8)

with n = D − p − 3.

6.2 Pros and cons

Pros: These methods have a large heuristic value. They conform to physical intuition,
which can give a very good idea of what kind of solutions may or not be possible. In
this manner they have easily yielded large classes of qualitatively new solutions. As
mentioned, the method is very physically motivated, and treats black holes in much the
same footing as many other objects such as monopoles, strings or branes. In addition,
it is often very simple to solve the equations analytically: in many non-trivial instances
they reduce to algebraic equations, in others to ODEs which can be readily solved with
e.g., NDSolve in Mathematica. Further cases involve simple PDEs, but at present
these have not been studied in any detail.
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Cons: The main limitation comes from the perturbative nature of the method: config-
urations where the parameter r0/R is of order one fall beyond its range of applicability.
This includes ‘fat’ black rings and blackfolds. The limitation is important insofar as
it does not allow to study the interesting regimes where bifurcations and mergers
in solution space occur. Also, as mentioned above, the solution of the equations for
configurations that are not highly symmetric (e.g., ellipsoidal worldvolumes instead
of round spheres) cannot be found fully analytically and in these cases, where dif-
ferential equations must be solved numerically, the method should be described as
‘semi-analytic’ (very ‘soft’ numerics).

7 Perturbation methods (zero modes)

7.1 Method and new solutions

A zero mode is a zero-frequency linear perturbation of a known stationary solution. The
zero-frequency property means that the perturbation is invariant under the stationary
Killing action. In a static black hole solution, a zero mode is a static perturbation. In a
rotating black hole, a zero mode is a perturbation that co-rotates with the black hole.

Zero modes allow to construct new solutions since they lead to bifurcations in
solution space. One instance is the zero mode perturbation of black strings (the zero
mode of the Gregory-Laflamme instability) which indicates a bifurcation into a branch
of inhomogeneous black strings. This has also been applied to rotating black holes. It
has been proven that there is no zero mode for the four-dimensional (non-extremal)
Kerr solution, and no zero modes have been found for the five-dimensional Myers-
Perry solutions. However, many zero modes are expected, and several have been
already found, for the Myers-Perry black holes in D ≥ 6.

Zero modes are typically associated to the onset of instabilities. The reason is
simple: a stable perturbation with real frequency ω2 > 0 which becomes an unstable
perturbation with imaginary frequency ω2 < 0 will, by continuity, pass through a
static perturbation with ω2 = 0.

Zero modes are found by solving linear perturbation equations. One can often
make some headway analytically. Ideally, one finds a decoupled master ODE for the
perturbations (which depends on a radial coordinate r ); more often, and less ideally,
what one obtains is a set of coupled linear PDEs in radial and angular coordinates (r, θ).
These equations are then solved numerically in a computer using ‘soft’ numerical
techniques. The solution of the linear PDEs requires rather less ‘soft’ techniques than
simply using NDSolve.

The main new solutions that have been found with these methods are deformed
rotating black holes, which are axisymmetric deformations of Myers-Perry black holes
which can be thought of as having ‘pinched’ horizons. Such pinched black holes have
been obtained, with a single rotation, in D = 6 to 11. They have also been solved for
two (out of three possible) rotations in D = 7. In D = 9, it has been found that black
holes with all possible spins turned on, all with equal values—this makes the solution
have cohomogeneity one, which means that the perturbations will be ODEs in a radial
variable—admit a 70-parameter (!) family of deformations (in contrast, none of these
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deformations has been found in D = 5, 7 with equal spins). This is a strikingly large
family of solutions, but even larger families are naturally expected in higher odd D.

7.2 Pros and cons

Pros: The method naturally deals, by definition, with bifurcations in solution space,
which are important phenomena associated with phase transitions and instabilities.
Compared to full non-linear numerical approaches, this method is simpler and allows
greater control over the numerical solution. It can also be useful as providing an entry
point to ‘hard’ numerical approaches, which are needed if one wants to explore larger
(instead of only linearized) deformations which may lead into topology-changing
points in solution space.

Cons: A main disadvantage of the approach is that it only goes infinitesimally away
from known solutions. This implies that the new solutions have the same horizon
topology as the undeformed ones. Furthermore, it is usually difficult to determine
in which direction (in solution space) the new branch is heading. Also, as with all
approaches in which numerical solution is involved, one loses the large generality of
analytical results. For instance, one cannot find solutions that are valid for arbitrary D
but must instead proceed painstakingly case by case.

8 A new method: the large-D expansion

When a GR problem can be formulated for arbitrary values of D, it seems natural
to consider what simplifications one can get by expanding around the limit where D
grows infinitely large, i.e., an expansion in 1/D. Recently it has been shown to lead
to drastic simplifications, allowing to solve in analytic form problems that previously
required numerical solution.

Within the context of this talk, the technique may naturally be applied to the con-
struction of new black hole solutions, but this has not been done yet.

9 Putting it all together: phase diagrams in D = 5 and D ≥ 6

As an illustration of the progress that has resulted from the combination of the
approaches described above, I will now describe the understanding we have gained of
the phase diagram of singly-spinning black holes in D = 5 and D ≥ 6. At present,
it seems likely that the most important qualitative propreties of these phase diagrams
have been identified. Let emphasize that at the time of GR16 none of this was even
hinted at.

In order to set the stage let me first describe the phase diagram in D = 4. In
vacuum gravity we can always set the total mass to M = 1. The phase diagram can
then be taken to represent the horizon area of the black hole as a function of its angular
momentum J . In four dimensions the only solutions are the family of Kerr black holes,
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Fig. 1 Phase diagram of
four-dimensional black holes: it
contains only the Kerr solution

Fig. 2 Phase diagram of five-dimensional singly-spinning black holes. All these solutions are known in
exact form

with spins in the range J ≤ M2, terminating at the extremal limit J = M2, which has
a regular horizon (Fig. 1).

9.1 Phase diagram in D = 5

Besides the Myers–Perry black hole and the black ring, the inverse-scattering method
allows to construct in an exact manner other solutions with a single rotation parameter.
This has been done explicitly for the black Saturn and black di-ring, but no obstruction
of principle appears for extending the construction to solutions with arbitrarily many
black rings. It seems quite possible, although a rigorous mathematical proof is still
lacking, that these exhaust all the stationary black holes in D = 5 with a single rotation.

Let us metion that when the two possible rotations are turned on (the phase diagram
would plot the horizon area of allowed solutions as a function of (J1, J2)), the inverse
scattering method allows to construct solutions that preserve two unbroken spatial
U (1) isometries. However, as discussed above, we have also identified the existence
of helical black rings which preserve only one U (1). These can also be incorporated
into the picture. It is tempting to propose that there are no other families of solutions
than all these ones (Fig. 2).
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Fig. 3 Phase diagram of D ≥ 6 singly-spinning black holes. Only the MP black holes are known in exact
form

9.2 Phase diagram in D = 6

If the diagram in D = 5 already shows a much richer complexity than in D = 4, things
get still more interesting in D ≥ 6. The curve of MP black holes extends to arbitrarily
large values of J , for fixed mass M = 1—this is their ‘ultraspinning’ regime. Next
come into the picture thin black rings, which have been constructed in the blackfold
approach, and zero-mode perturbations that produce a branching-off, from the MP
curve, of pinched black holes. It is natural to expect that the branch of black rings will
continue until it merges, in a topology-changing point, with the branch of ‘centrally-
pinched’ black holes. A hard-numerical construction of black rings in D = 6, although
it has not been continued until this merger point, appears to be consistent with this
possibility. The singular geometry at the topology-changing transition is understood,
as it involves critical self-similar behavior.

It is now natural and simple to incorporate, following a similar pattern, branches
of black Saturns and multi-rings (which at large J can be readily constructed as
blackfolds) which connect with branches of pinched black holes, with one or several
pinches. The whole picture provides a simple and coherent way of putting together
all the currently available information, even if many portions of the diagram have not
been constructed explicitly and therefore are quantitatively uncertain (Fig. 3).

10 Where do we stand now?

10.1 D = 5

It seems quite possible that in D = 5 we are close to having a complete characterization
of all stationary, asymptotically flat vacuum black holes: we know what are their
main features, qualitatively and often quantitaively, and how the different branches of
solutions relate to each other and connect between themselves. We have
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– MP black holes (exact)
– Planar black rings (exact)
– Helical black rings (approximate)
– Combinations of the above into black Saturns, multi-rings etc.

It does not appear too far-fetched that a complete classification will be achieved
soon, and the main open problems are (i) a more detailed description (at least quali-
tatively) of how helical black rings connect to other phases, and (ii) determining the
stability of black rings. It is known that ‘fat’ black rings are unstable, and also suf-
ficiently thin black rings are unstable (to a different kind of instability). But it is not
known yet whether a window of instability exists in between these two extremes.

10.2 D ≥ 6

For solutions with a single spin in D ≥ 6, we seem to have identified the general
patterns of the phase diagram. The one qualitative aspect that remains to be determined
is whether the branchings and mergers occur as first-order or second-order phase
transitions.

Much less is known for black holes with several spins. Some overall patterns are
emerging: many new large-J phases have been uncovered as blackfold constructions,
and zero-mode analysis has led to new multi-parameter families of solutions. However,
it is very clear that many more phases are still not understood or even identified at all.
There is ample room for progress in this direction.
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