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Abstract Lovelock theory is the natural extension of general relativity to higher
dimensions. It can be also thought of as a toy model for ghost-free higher curvature
corrections in gravitational theories. It admits a family of AdS vacua, which provides
an appealing arena to explore different holographic aspects in a broader setup within
the context of the AdS/CFT correspondence. We will elaborate on these features and
review previous work concerning the constraints that Lovelock theory entails on the
CFT parameters when imposing conditions like unitarity, positivity of the energy or
causality.
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1 Introduction

Lovelock theories are the natural extension of the general relativity theory of grav-
ity given by the Einstein-Hilbert action to higher dimensions and higher curvature
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interactions. The equations of motion do not involve terms with more than two deriv-
atives of the metric, avoiding the appearance of ghosts [1–3].

Much work has been done on the main properties of Lovelock gravity due to their
interest as models where our knowledge of gravity can be tested and extended. For
example, the vacua structure, the existence and properties of black holes such as their
mass, entropy and thermodynamics, the gravitational phase transitions, the cosmolog-
ical implications, etc. have been the object of an important amount of literature during
the last years.

Nevertheless, the main motivation for this review article comes from the AdS/CFT
correspondence, famously conjectured by Maldacena [4] some 15 years ago. This
is nowadays well-stablished as a duality between quantum gravity theories in AdS
space-times and conformal field theories living at the boundary. It is in that sense that
the correspondence is dubbed customarily as the holographic duality. Originally for-
mulated for 5-dimensional AdS and 4-dimensional CFT, lots of evidence accumulated
over the years pointing towards its validity in higher and lower dimensions.

Lovelock theories have a rich structure of AdS vacua, which should be in correspon-
dence with a similarly rich structure of higher dimensional CFTs. It is worth recalling
at this point, however, that little is known1 about these higher dimensional CFTs. Not
even their existence is clear. It has been argued that, in the supersymmetric case, there
can be non trivial unitary CFTs in six dimensions, whose duals are seven dimensional
gravity theories. Lovelock theories provide a useful framework to unravel some of
the properties of higher dimensional CFTs, and also to test our understanding of the
holographic duality when higher curvature terms come into play from the gravity side.

The subject is vast and it is far from our aim to cover it all. At those points where
we consider that our presentation reduces to a bird’s eye view, we will suggest further
material where the interested reader can find more detailed explanations.

The article is organized as follows: we present the main features of Lovelock gravity
using the first order formalism in Sect. 2. In Sect. 3 we review how constraints on the
CFT parameters are obtainted by holographically computing the two-point and three-
point functions of the stress-energy tensor. The constraints come from unitarity and
positivity of the energy. Section 4 is devoted to the analysis of possible causality
violations by considering the scattering of gravitons against shock waves propagating
in a Lovelock AdS background. The results are in agreement with those of Sect. 3 and
also with the ones obtained by a similar calculation performed in the perturbed black
hole background dual to a thermal field theory.

In Sect. 5 we present the conclusions, add some final comments, review recent
developments in the subject and give some possible directions for future work.

2 Lovelock theory

Some four decades ago, Lovelock [1] derived a formal expression for the most general,
symmetric and conserved tensor which is quasi-linear in the second derivatives of

1 Parallel to this is the fact that Lovelock gravity might not be a consistent low energy truncation of any
point in the moduli space of a putative UV complete (such as, for instance, M-) theory. In that respect, the
relevance of these vacua is not a priori guaranteed.
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the metric without any higher derivatives in arbitrary space-time dimensionality. They
provide an interesting playground to explore the effect of higher curvature terms in the
framework of the AdS/CFT correspondence. Very recent reviews on general aspects
of this theory include [5,6].

2.1 Preliminaries

For the sake of making progress in the study of Lovelock theory, it is convenient
to use differential forms and the exterior algebra (see, for instance, [7–9]). Instead
of the metric and affine connection, we will be referring to orthonormal frames (or
vielbein) and spin connection (or connection 1-form) [10]. This formalism will make
our expressions much more compact and also the manipulations much easier. The
vielbein is a non-coordinate basis which provides an orthonormal basis for the tangent
space at each point on the manifold,

gμν dxμ ⊗ dxν = ηab ea ⊗ eb, (1)

where ηab is the d-dimensional Minkowski metric with (−1, 1, . . . , 1) signature.
The Latin indices {a, b, . . .} are flat or tangent space indices, while the Greek ones
{μ, ν, . . .} are curved or spacetime indices. In some cases we will also distinguish
spacelike {i, j, . . .} from timelike ones. The vielbein are d 1-forms,

ea = ea
μ dxμ, (2)

that we may use in order to rewrite the metric as

gμν = ηab ea
μ eb

ν . (3)

We also need to introduce the metric compatible (antisymmetric) connection 1-form
ωa

b that is necessary in order to deal with tensor valued differential forms. In addition
to the usual exterior derivative, d, we define the covariant exterior derivative, D, that
reduces to the former when applied to a scalar valued form. For a general (p, q)-tensor
valued form

DV
a1...ap
b1...bq

:= dV
a1...ap
b1...bq

+
p∑

i=1

ωai
c ∧ V

a1...c...ap
b1...bq

−
q∑

j=1

ωd
b j

∧ V
a1...ap
b1...d...bq

. (4)

We can in this way define the torsion and curvature 2-forms as derivatives of, respec-
tively, the vielbein and the spin connection

T a := Dea, (5)

Rab := dωab + ωa
c ∧ ωcb = 1

2
Ra

bμν dxμ ∧ dxν, (6)

known as the Cartan structure equations. The covariant derivative of Cartan’s equations
give the Bianchi identities
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DT a = Ra
b ∧ eb, DRab = 0. (7)

We will consider a sector of Lovelock theory where the torsion vanishes. This is not
the most general situation, but it will suffice the purpose of this article. In the absence
of torsion, the spin connection is not independent from the metric and coincides with
the Levi-Civita connection,

ωa
b = ea

μeνb�
μ
νρ dxρ. (8)

In GR the torsion tensor is constrained to vanish. When this constraint is not imposed,
we have the Einstein-Cartan theories. These are very important when considering
spinor fields as these generally source the spin connection.

For later use, it is convenient to introduce some further notation:

Ra1...a2n := Ra1a2 ∧ · · · ∧ Ra2n−1a2n , (9)

ea1...an := ea1 ∧ · · · ∧ ean . (10)

We will also use the antisymmetric tensor εa1...ad when writing down and manipulating
the Lovelock lagrangian and the derived equations of motion. It is antisymmetric on
any pair of indices with ε123...d = +1. Some times, in order to deal with more compact
expressions, we will write scalars constructed with the antisymmetric tensor, such as

ε[ψ] = εa1...adψ
a1...ad . (11)

2.2 The Lovelock action and its Euler-Lagrange equations

The action of Lovelock theory is given by

I = 1

16πG N (d − 3)!
K∑

k=0

ck

d − 2k

∫
Lk, (12)

G N being the Newton constant in d spacetime dimensions. {ck} is a set of couplings
with length dimensions L2(k−1), L being a length scale related to the cosmological
constant, while K is a positive integer,

K ≤
[

d − 1

2

]
, (13)

labeling the highest non-vanishing coefficient, i.e., ck>K = 0.Lk is the exterior prod-
uct of k curvature 2-forms with the required number of vielbein, ea , to construct a
d-form,

Lk = ε
[

Rked−2k
]

= εa1...ad Ra1...a2k ∧ ea2k+1...ad . (14)
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The zeroth and first term in (12) correspond, respectively, to the cosmological term
and the Einstein-Hilbert action. It is fairly easy to see that c0 = L−2 and c1 = 1
correspond to the usual normalization of these terms, the cosmological constant having
the customary negative value 2Λ̂ = −(d−1)(d−2)/L2. Either a positive (c0 = −L−2)
or a vanishing (c0 = 0) cosmological constants can be easily incorporated as well.
The first non-trivial Lovelock term,

L2 = R2 − 4RμνRμν + Rμνρσ Rμνρσ , (15)

contributes just for dimensions larger than four [11], and corresponds to the Lanczos-
Gauss-Bonnet (LGB) coupling c2 = λL2. The Kaluza-Klein reduction of LGB the-
ory and its corresponding cosmological scenarios have been first considered in [12].
We will also discuss below the case of cubic Lovelock theory, whose contribution
reads

L3 = R3+3R Rμναβ Rαβμν−12R RμνRμν+24Rμναβ RαμRβν+16RμνRναR α
μ

+ 24Rμναβ RαβνρR ρ
μ + 8RμναρRαβνσ Rρσμβ + 2Rαβρσ Rμναβ Rρσμν. (16)

and the corresponding coupling is μ = 3c3/L4. This latter expression is cumbersome
enough to shed light on the reasons why it is much more convenient to work with
expressions like (14) rather than the usual tensorial formalism.

In first order formalism, we shall consider the vielbein and the spin connection
as independent variables. We then have two equations of motion, one for each field.
Varying the action with respect to the spin connection 1-form results in

δωLk = k ε
[

D(δω)Rk−1ed−2k
]

= k dε
[
δωRk−1ed−2k

]
− k(d − 2k) ε

[
δωT Rk−1ed−2k−1

]
, (17)

where we have used that δωRab = D(δωab), integration by parts (we use the technol-
ogy of exterior algebra and treat exterior covariant derivatives as normal derivatives
inside the brackets), and the Bianchi identity DRab = 0. The first term in the above
variation is a total derivative and does not contribute to the equations of motion whereas
the second is proportional to the torsion. We may safely restrict to the torsionless sec-
tor, allowing us to compare our results with those coming from the tensorial formalism
based on the metric.

Even though the first term in (17) is irrelevant for the matter of discussing solutions
to the Lovelock equations, it contributes to the variation of the action in such a way that
we need to include boundary terms analogous to that of Gibbons and Hawking [13] for
General Relativity. These terms precisely cancel the previous boundary contributions
so that the Lovelock action defines a well posed variational problem. In the same way
as the Lovelock terms are the (dimensionally continued) Euler densities for manifolds
in 2k dimensions, the corresponding boundary terms appear in the generalization of
the Gauss-Bonnet theorem to manifolds with boundaries [14]
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Qk = k

1∫

0

dξ ε
[
θ Fk−1

ξ ed−2k
]
, (18)

θab is the second fundamental form associated to the extrinsic curvature, and

Fab
ξ := Rab + (ξ2 − 1) θa

e ∧ θeb. (19)

These terms play also a central rôle in deriving junction conditions, such as the Israel
conditions in General Relativity [15], for these gravity theories [16]. These matching
equations have been exploited extensively in [17,18] for the sake of finding distrib-
utional metrics, in the absence of matter, that allow to describe new types of phase
transitions between different branches of Lovelock theory.

The second equation of motion is obtained by varying the action with respect to
the vielbein. It can be casted into the form

Ea := εaa1...ad−1 cK Fa1a2
(1) ∧ · · · ∧ Fa2K−1a2K

(K ) ∧ ea2K+1...ad−1 = 0, (20)

where Fab
(i) := Rab − Λi ea ∧ eb, Λi being a function of the Lovelock couplings.

This expression involves just the curvature 2-form and no extra covariant derivatives,
making explicit the two derivative character of the Lovelock equations of motion.
Also, for the critical dimension d = 2k, the kth term contribution to the equations of
motion vanishes. In our approach this is simply due to the absence of vielbein fields
in the corresponding action term, thus yielding zero upon variation. More generally,
the integral of that term becomes a topological invariant, the Euler number for that
particular dimension. In dimensions lower than the critical one the corresponding
Lovelock term exactly vanishes and we are led to the restriction (13).

2.3 Constant curvature vacuum solutions

It is transparent from (20) that, in principle, this theory admits K constant curvature
vacuum solutions,

Fab
(i) = Rab −Λi ea ∧ eb = 0. (21)

Indeed, inserting Rab = Λ ea ∧ eb in (20), one finds that the K different effective
cosmological constants are the (real) solutions of the K th order characteristic poly-
nomial

Υ [Λ] :=
K∑

k=0

ck Λ
k = cK

K∏

i=1

(Λ−Λi ) = 0, (22)

each one corresponding to a different vacuum, positive, negative or zero for dS, AdS
and flat spacetimes. The effective cosmological constants correspond to the (inverse
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squared of the) possible radii of these (A)dS spaces and should not be confused with the
bare cosmological constant, Λ̂ appearing in the action. The theory will have degenerate
behavior whenever two or more effective cosmological constants coincide. This is
captured by the discriminant,

Δ =
K∏

i< j

(Λi −Λ j )
2, (23)

that vanishes in a certain locus of the parameter space given by the coupling constants
of Lovelock theory where some special features arise. The discriminant can be written
as well in terms of the first derivative of the Lovelock polynomial, Υ , as

Δ = 1

cK
K

K∏

i=1

|Υ ′[Λi ]|. (24)

As we move forward it will become clear the preeminent rôle played by this polynomial
in the most diverse situations. Another property of any degenerate vacuum is the
absence of linearized gravitational degrees of freedom about it. The equations of
motion for a metric perturbation around a given vacuum,Λ1, are easily obtained from
the perturbation of the curvature

Rab = Λ1eab + δg Rab, (25)

yielding, at linear level,

Ea = Υ ′[Λ1] εaa1...ad−1δg Ra1a2 ∧ ea3...ad−1; (26)

thus, it is exactly zero as long as the first derivative of Υ vanishes for a degenerate
vacua,

Υ ′[Λ1] = cK

∏

i �=1

(Λ1 −Λi ) = 0. (27)

Moreover, it is easy to verify that the equations of motion around a non-degenerate
vacuum are exactly those of the Einstein-Hilbert gravity, multiplied by a global factor
proportional to Υ ′[Λ1]. The propagator of the graviton corresponding to the vacuum
Λ1 is then proportional to Υ ′[Λ1], in such a way that when Υ ′[Λ1] < 0, it has the
opposite sign with respect to the Einstein-Hilbert case and, thus, the graviton becomes
a ghost. This generalizes the observation first done by Boulware and Deser [19] in
the context of LGB gravity. Thus, a given vacuum of Lovelock gravity, Λ�, must
satisfy

Υ ′[Λ�] > 0, (28)

in order to host gravitons propagating with the right sign of the kinetic term.
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2.4 Shock wave solutions

We are going to use shock wave backgrounds of the Lovelock theory for holographic
applications. These are very interesting solutions with a particular structure that make
them exact solutions on any gravity theory. In fact, they are not corrected when higher
curvature corrections are included and were shown to be exact solutions of string
theory [20]. A shock wave propagating on AdS along the radial direction has the form

ds2
AdS,sw = ds2

AdS + f (u)�(x, z) du2, (29)

where we have defined light-cone coordinates u = t + xd−1 and v = t − xd−1, x
is the d − 3 vector whose components are xa, a = 2, . . . , d − 2, and f (u) is an
arbitrary distribution with support in u = 0, which we will identify later as a Dirac
delta function, f (u) = δ(u), for simplicity. ds2

AdS is the AdS metric in Poincaré
coordinates, which is a solution of the Einstein equations with cosmological constant
Λ�,

ds2
AdS = − 1

Λ�z2

(
−dudv + dx2 + dz2

)
. (30)

The equation of motion for the shock wave profile is

2(d − 3)� + (d − 6)z ∂z� − z2(∇2
x� + ∂2

z�) = 0. (31)

This equation admits a few solutions, depending upon the assumptions made regarding
the coordinate dependence of � , whose rôle will be discussed in what follows:

�1(z) = �0 zd−3, �2(z) = �0

z2 , (32)

�3(x, z) = �0 zd−3

(
z2 + (x− x0)2

)d−2 . (33)

More concretely, solutions �1(z) and �3(x, z) will be relevant for our discussions
below, while �2(z) is just a coordinate redefinition [21].

3 The AdS/CFT correspondence

We will not attempt to review in detail such a vast subject in the present article. In turn,
let us make a highly pragmatical construction limiting our presentation just to those
features that we will need. Since we are going to work in the realm of Lovelock theory,
whose UV completion is unknown, we will adopt a rough version of the AdS/CFT
correspondence assuming that:

(Quantum) gravity in AdS is dual to a CFT living at the boundary.
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The interested reader may find convenient to dig into the classic review [22]. For
applications of the AdS/CFT correspondence to strongly coupled phenomena in QCD-
like theories, see [23,24].

3.1 Correlation functions

The CFT dynamics is entirely given by the correlation functions of its gauge invariant
local operators. The dynamical information of the AdS/CFT correspondence can then
be embodied in the relation between the generating functional for CFT correlators and
the string theory/quantum gravity in AdS partition function with appropriate boundary
conditions [25,26]. In the case of a scalar field, φ(z, x), for instance, we have

〈
exp

⎛

⎝i
∫

�

dxμφ0(x)O(x)
⎞

⎠
〉

CFT

= ZQG in AdS [φ(0, x) = φ0(x)] , (34)

where the asymptotic value (or boundary condition) of the scalar field in AdS acts
as a source for the dual scalar operator O(x). Taking into account the holographic
statement establishing that the degrees of freedom of the CFT are confined to the
boundary, we can only define local gauge invariant observables like O(x) precisely at
z = 0.

The hamiltonian is realized in the CFT as the dilatation operator, in such a way
that the energy in AdS corresponds to the conformal dimension in the dual CFT, these
being related as

m2 = Δ(Δ− d). (35)

The same can be also generalized to operators with spin. In the CFT side the spectrum
will always contain many operators with different spins and conformal dimensions.
One of them is universal in the sense that it is present for any CFT and has some very
specific properties. It is the stress-energy tensor and it is sourced in the dual picture
by the boundary value of the graviton field. We shall restrict our discussion to purely
gravitational theories which then amounts to the analysis of correlators involving the
stress-energy tensor. In that case, we can compute the generating function as

〈
exp

(∫
dx ηab(x) Tab(x)

)〉

CFT
= ZQG in AdS [gab(0, x) = ηab(x)] , (36)

where ZQG in AdS is the partition function of quantum gravity in AdS spacetime, the
same that we use to discuss thermodynamic properties of black holes, integrated over
all metrics gμν = gμν(z, x) satisfying the boundary condition gab(0, x) = ηab(x).
In the saddle point approximation, this partition function can be computed as just the
classical contribution,

〈
exp

( ∫
dx ηab(x) Tab(x)

)〉

CFT
≈ exp (−Ion−shell[ηab(x)]) , (37)
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i.e., the on-shell action for the (least action) classical solution with the given bound-
ary conditions. From this expression, correlators of the stress-energy tensor can be
obtained by performing functional derivatives of (37) with respect to the boundary
metric. This, in turn, is simply given by considering gravitational fluctuations around
an asymptotically AdS configuration of the theory. The bulk metric acts as a source
for the stress-energy tensor in the boundary (and viceversa).

3.2 CFT unitarity and 2-point functions

The leading singularity of the 2-point function of a CFT in (d − 1) dimensions,
when canonical normalization has been adopted for the fundamental fields, is fully
characterized by a single number, CT , known as the central charge [27]

〈Tab(x) Tcd(0)〉 = CT

x2(d−1)
Iab,cd(x), (38)

where the index structure is given by

Iab,cd(x) = 1

2

(
Iac(x) Ibd(x)+ Iad(x) Ibc(x)− 1

d − 1
ηab ηcd

)
,

with

Iab(x) = ηab − 2
xa xb

x2 .

For instance, CT is proportional in a four dimensional CFT to the standard central
charge c that multiplies the (Weyl)2 term in the trace anomaly, CT = 40 c/π4. Fol-
lowing the prescription presented above, the central charge has been computed holo-
graphically in [28] for LGB in various dimensions and in [29] for Lovelock theory.
We shall expand this computation in the following.

Since we are interested in a two-point function, the action has to be computed to
second order in the metric perturbation. It can be shown that, when the background
metric is an AdS solution of the Lovelock action with cosmological constant, say
Λ1, then its second variation is proportional to that of the Einstein-Hilbert action, the
proportionality being given by the derivative of the characteristic polynomial,

δ2I = Υ ′[Λ1] δ2IE H . (39)

The proof goes as follows. In the first order formalism, the variation of the Lovelock
action can be written as δI = ∫ Ea δea , where δea is the variation of the vielbein one-
form. Variations with respect to the spin connection vanish since they are proportional
to the torsion. The Lovelock equations of motion (20) are Ea = 0. For the second
variation we have

δ2I =
∫

Ea δ
2ea + ∂Ea

∂eb
δeb ∧ δea, (40)
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where the first term vanishes when evaluated on-shell, Rab = Λ1ea ∧ eb. The only
non-vanishing contributions of the second term, in turn, come from the derivative
acting on the Fab

(1) factor,

δ2I =
K∏

k �=1

(Λ1 −Λk)

∫
εaa1...ad−1

∂Fa1a2
(1)

∂eb
∧ ea3...ad−1δeb ∧ δea . (41)

The pre-factor is easily seen to be Υ ′[Λ1], while the remaining integral is just the
second variation of the Einstein-Hilbert action, leading to (39). The holographic cal-
culation of the central charge of the CFT dual to a Lovelock gravitational theory is
then completely analogous to that of the Einstein-Hilbert case, provided the boundary
terms and counterterms are properly taken into account [14,30]. Let us briefly review
this calculation, following [31]. For that purpose, consider the perturbation

gμν = g0
μν + hμν, (42)

where the background metric g0
μν is the AdS metric in d dimensions,

ds2 = g0
μν dxμdxν = dz2 + dx2

z2 = dz2 + ηab dxadxb

z2 , (43)

where we have considered, for simplicity, Λ1 = −1; restoring Λ1 factors at any step
is straightforward on dimensional grounds. The boundary at z = 0 is flat, with metric
gab(0, x) = ηab. The background metric satisfies

R0
μν = −(d − 1) g0

μν, (44)

where R0
μν is the background Ricci tensor in the expansion Rμν = R0

μν + R1
μν +

R2
μν + · · · The complete gravity action can be expanded in powers of hμν . Up to total

derivative contributions, which are cancelled by the boundary terms, the quadratic part
is

I2 = 1

4
Υ ′[Λ1]

∫
dz dx

√
g0

[
Dμh Dμh − 2Dμh Dνhμν

+ 2DμhαβDαhμβ − DμhαβDμhαβ
]
, (45)

where h is the trace of the perturbation. Using the equations of motion, the action
becomes a total derivative which can be reduced to an integral over the boundary.
Terms without derivatives in hμν are cancelled by the action counterterm proportional
to the boundary volume. With the appropriate choice of gauge in which h00 = h0a = 0,
the action can be finally written as

I2 = 1

4
Υ ′[Λ1]

∫
dx z2−d h̄ab∂z h̄ab, (46)
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where h̄ab is the traceless part of the perturbation. The generating functional for stress-
energy tensor correlation functions is then the gravity action evaluated on-shell. This
implies solving the Dirichlet problem for hμν(z, x) consisting on the Einstein equation
at linear order

R1
μν = −(d − 1) hμν, (47)

with the boundary conditions:

z2hab(0, x) = hab(x) hza(0, x) = hzz(0, x) = 0. (48)

The solution can be written as:

hμν(z, x) =
∫

dy Kμν,ab(z, x, y) hab(y), (49)

in terms of the bulk to boundary Green’s function

Kμν,ab(z, x, y) = κd
zd−3

(
z2 + |x − y|2)d−1 Iμν,ab(x − y) hab(y). (50)

Here κd is a normalization constant ensuring that the propagator becomes a δ function
at z = 0,

κd = d

d − 2

�(d − 1)

π
d−1

2 �( d−1
2 )

. (51)

Inserting this result into the quadratic action, we obtain

I2 = d(d − 1)

4(d − 2)

�(d − 1)

π
d−1

2 �( d−1
2 )

Υ ′[Λ1]
∫

dx dy
hab(x) Iab,cd(x − y) hcd(y)

|x − y|2(d−1)
, (52)

from where we read the central charge. Restoring factors ofΛ1 on dimensional grounds
this yields

CT = d

2(d − 2)

�(d)

π
d−1

2 �( d−1
2 )

Υ ′[Λ1]
(−Λ1)

d−2
2

. (53)

Then, holography teaches us that the requirement that Boulware-Deser instabilities
(gravitons propagating with kinetic terms of the wrong sign) are absent in Lovelock
gravity, Υ ′[Λ1] > 0, is equivalent to the positivity of the central charge; i.e., to the
condition of unitarity of the corresponding dual CFT.
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3.3 Three-point function and conformal collider physics

The form of the 3-point function of the stress-tensor in a (d−1)-dimensional conformal
field theory is highly constrained. It was shown in [27,32] that it can always be written
in the form

〈Tab(x) Tcd(y) Tef (z)〉 = AI(1)ab,cd,e f + B I(2)ab,cd,e f + C I(3)ab,cd,e f

|x − y|d−1 |y − z|d−1 |z − x|d−1 , (54)

where the form of the tensor structures I(i)ab,cd,e f will be irrelevant for us here. Energy
conservation also implies a relation between the central charge CT appearing in the
2-point function, and the parameters A,B, C, namely

CT = π
d−1

2

�
[ d−1

2

]
(d − 2)(d + 1)A − 2B − 4d C

(d − 1)(d + 1)
. (55)

Since we have already computed CT in the previous section, we are left with two
independent parameters to be calculated.

A convenient parameterization of the 3-point function of the stress-tensor was
introduced in [21], where a gedanken collision experiment is considered in an arbi-
trary CFTd−1. One wants to measure the total energy flux per unit angle deposited in
calorimeters distributed around the collision region,

E(n) = lim
r→∞ rd−3

∞∫

−∞
dt ni T 0

i (t, r n), (56)

the unit vector n pointing towards the actual direction of measure. The expectation
value of the energy on a state created by a given local gauge invariant operator O is
given by

〈E(n)〉O = 〈0|O†E(n)O|0〉
〈0|O†O|0〉 . (57)

Thus, if O = εi j Ti j , 〈E(n)〉O will be given in terms of 2- and 3-point correlators of
Tμν , and rotational symmetry constraints it to be of the form

〈E(n)〉O = E

Ωd−3

[
1 + t2

(
ni n jε

∗
ikε jk

ε∗ikεik
− 1

d − 2

)

+ t4

( |ni n jεi j |2
ε∗ikεik

− 2

d(d − 2)

)]
. (58)

E is the total energy of the insertion andΩd−3 the volume of a unit (d −3)-sphere. We
have used the fact that numerator and denominator are quadratic in the polarization
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tensor, fixing the numerical coefficients inside the brackets so that the integration of
〈E(n)〉O over the (d − 3)-sphere gives the total energy. The energy flux is almost
completely fixed by symmetry up to the coefficients t2 and t4, and since it is a quotient
of 2- and 3-point functions of stress-energy tensor components, these coefficients
should be writable in terms of the three parameters A,B and C. This was done in [28]
yielding

t2 = 2d

d − 1

(d − 3)(d + 1)dA + 3(d − 1)2B − 4(d − 1)(2d − 1)C
(d − 2)(d + 1)A − 2B − 4dC ,

t4 = − d

d − 1

(
(d + 1)(2(d − 1)2 − 3(d − 1)− 3)A

(d − 2)(d + 1)A − 2B − 4dC

+2(d − 1)2(d + 1)B − 4(d − 1)d(d + 1)C
(d − 2)(d + 1)A − 2B − 4dC

)
. (59)

Notice that (58) contains minus signs and, furthermore, the coefficients t2 and t4 are
not necessarily positive. Thus, the above formulas seem compatible with an energy
flux that is not manifestly positive definite.

3.4 Constraints from positivity of the energy

The positivity of the energy flux for any direction n and polarization εi j seems to be a
physically reasonable constraint on a well-defined CFT. Indeed, it holds in all known
examples, and an almost complete proof of positivity can be attained [21,33] (see also
[34] for a more recent discussion). It leads to constraints on the parameters t2 and
t4, depending upon the splitting of εi j into tensor, vector and scalar components with
respect to rotations in the plane perpendicular to n,

tensor : 1 − 1

d − 2
t2 − 2

d(d − 2)
t4 ≥ 0, (60)

vector:

(
1 − 1

d − 2
t2 − 2

d(d − 2)
t4

)
+ 1

2
t2 ≥ 0, (61)

scalar:

(
1 − 1

d − 2
t2 − 2

d(d − 2)
t4

)
+ d − 3

d − 2
(t2 + t4) ≥ 0. (62)

These constraints restrict the possible values of t2 and t4 for any CFT, in arbitrary
dimensions, to lie inside a triangle whose sides are given by (60)–(62); see Fig. 1.
Notice that this severe restriction does not require any a priori knowledge about the
CFT, such as if it is a Lagrangian theory, what are the relevant degrees of freedom, etc.
Nevertheless, each of the constraints is saturated in a free theory with, respectively, no
antisymmetric tensor fields, no fermions or no scalars [21]. Looking at the triangle, it is
straightforward to see that the helicity one contribution is not restrictive for t4 <

d
d−1 .

In particular, this is the case for t4 = 0.

123



Lovelock theory and the AdS/CFT correspondence Page 15 of 27 1637

Fig. 1 Constraints (60)–(62) restrict the values of t2 and t4 to the interior of a triangle with vertices in
(− 2(d−3)d

d2−5d+4
, d

d−1 ), (0,
d(d−2)

2 ) and (d,−d); it is depicted, for definiteness, in the d = 7 case

The scalar, vector and tensor constraints coming from the positivity of energy can
also be written, using (59), in terms of the parameters A,B and C, leading to the
following expressions:

(d − 3)(d + 1)A + 2(d − 1)B − 4(d − 1)C
(d − 2)(d + 1)A − 2B − 4dC ≤ 0,

(d − 3)(d + 1)A + (3d − 5)B − 8(d − 1)C
(d − 2)(d + 1)A − 2B − 4dC ≥ 0,

B − 2C
(d − 2)(d + 1)A − 2B − 4dC ≤ 0. (63)

If the CFTd−1 is supersymmetric, t4 vanishes. Evidence for this claim has been given
in CFT4 [21] and CFT6 [35]. On the other hand, even though there is no proof in
the literature showing that Lovelock theories admit a supersymmetric extension, it
turns out that the holographic computation suggests that a CFTd−1 with a weakly
curved gravitational dual whose dynamics is governed by Lovelock theory will have
a null value of t4 [36,37]. To the best of our knowledge, a supersymmetric extension
of Lovelock theory has only been accomplished in the case of LGB theory in five
dimensions [38]. Inserting t4 = 0 in (58), we get

〈E(n)〉 = E

Ωd−3

[
1 + t2

(
ni n jε

∗
ikε jk

ε∗ikεik
− 1

d − 2

)]
. (64)

Demanding positivity on the energy flux for any direction n and polarization εi j , leads
to a series of constraints on t2. For the tensor, vector and scalar channels, we obtain,
respectively,
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t2 ≤ d − 2, t2 ≥ −2(d − 2)

d − 4
, t2 ≥ −d − 2

d − 4
. (65)

As argued above, the vector channel constraint becomes irrelevant. In any Lovelock
gravity dual to a CFTd−1, therefore, t2 has to take values within the window

− d − 2

d − 4
≤ t2 ≤ d − 2, (66)

For instance, any N = 1 supersymmetric CFT4 has |t2| ≤ 3, with

t2 = 6
c − a

c
⇒ 1

2
≤ a

c
≤ 3

2
. (67)

where a and c are the parameters entering the trace anomaly formula, the bound being
saturated for free theories [21].

3.5 Holographic calculation of t2 and t4

For conformal field theories with a weakly curved gravitational dual, it is possible
to compute t2 and t4 holographically [29]. The calculation proceeds by considering
the vacuum AdS solution perturbed by a shock wave, which corresponds holographi-
cally to a T−− insertion. By adding a transverse metric fluctuation, one reads off the
interaction vertex from the action, and from that one obtains t2 and t4. Shock wave
backgrounds in Lovelock theory were considered in [33,39], where it was found that
in the presence of the shock wave there is room for causality violation in the dual
field theory. The proviso that causality must hold in physically sensible quantum field
theories places bounds on the Lovelock gravitational couplings which precisely match
those portrayed in (60)–(62).

Let us consider, along the lines of [39], a helicity two perturbation φ(u, v, z) in the
shock wave background (29),

ds̃2
AdS,sw = ds2

AdS,sw − 2ε

Λ�z2 φ(u, v, z) dx2 dx3. (68)

This amounts to choosing just one non-vanishing component of the polarization tensor,
ε23 �= 0. Leading contributions to the equations of motion, in the high momentum
limit, come from the exterior derivative of the perturbation in the spin connection. The
relevant equation of motion is δE3 ∧ e3 = 0, which, after some lengthy algebra, can
be written as [37]

∂u∂vφ −Λ�z
2 f (u)�

(
1 − Λ� Υ

′′[Λ�]
Υ ′[Λ�]

T2

(d − 3)(d − 4)

)
∂2
v φ = 0, (69)

where

T2 = z2(∂2
2� + ∂2

3�)− 2z∂z� − 4�

�
. (70)
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This is nothing but the same T2 appearing in [28]. There is an overall factor Υ ′[Λ�]
multiplying (69), as the reader may have expected from our earlier discussion regarding
the unitarity properties of gravitational perturbations. For the shock wave profile, we
shall consider a solution of the form (33). Such a profile has been argued in [21] to be
the dual field configuration to E(n) provided

xi
0 = ni

1 + nd−2 , and f (u) = δ(u).

We shall only focus on those terms proportional to ∂2
v φ in (69). The 3-point function

follows from evaluating the effective action for the field φ on-shell, on a particular
solution which depends on all coordinates, including x2 and x3 [28]. The cubic inter-
action vertex of φ with the shock wave appearing in the action will be essentially the
one in the equation of motion determined above. Up to an overall factor, the cubic
vertex is then

I(3) ∼ CT

∫
dz dx

√−g φ ∂2
v φ �

(
1 − Λ� Υ

′′[Λ�]
Υ ′[Λ�]

T2

(d − 3)(d − 4)

)
. (71)

Indeed, following [28], the relevant graviton profile is

φ(z, u = 0, v,x) ∼ e−i Ev δd−3(x) δ(z − 1) , (72)

so that we need to impose x = 0 and z = 1 yielding

T2 = 2(d − 1)(d − 2)

(
n2

2 + n2
3

2
− 1

d − 2

)
, (73)

and we therefore read off

t2 = −2(d − 1)(d − 2)

(d − 3)(d − 4)

Λ�Υ
′′[Λ�]

Υ ′[Λ�] , t4 = 0. (74)

As announced above, the holographic value of t4 vanishes in Lovelock theory. Com-
bining (66) and (74), in turn, we obtain [36,37]

− d − 2

d − 4
≤ −2(d − 1)(d − 2)

(d − 3)(d − 4)

Λ� Υ
′′[Λ�]

Υ ′[Λ�] ≤ d − 2. (75)

If specialized to the case of LGB gravity, Eq. (74) reproduces the results obtained
in [28,39–41]. For the general case, it is exactly the same as conjectured in [36,37].
Using these results altogether, including the holographic expression for CT , we find
formulas for the usual 3-point function parameters A,B, C, in terms of the Lovelock
couplings:
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A = − (d − 1)3

(d − 2)3
�[d]
πd−1

1

(−Λ�)d/2
(

2dΛ�Υ ′′[Λ�]
(d − 4)2

+ Υ ′[Λ�]
)
,

B = − (d − 1)

(d − 2)3
�[d]
πd−1

1

(−Λ�)d/2
(
(d − 1)d

(
d2 − 4d + 6

)
Λ�Υ

′′[Λ�]
(d − 4)2

+
(

d3 − 4d2 + 5d − 1
)
Υ ′[Λ�]

)
,

C = − (d − 1)2

2(d − 2)3
�[d]
πd−1

1

(−Λ�)d/2
((

d3 − 3d2 + 3d − 4
)
Λ�Υ

′′[Λ�]
(d − 4)2

+1

2
(2(d − 3)d + 3) Υ ′[Λ�]

)
.

In the coming section, we will show that the region of Lovelock parameters given by
(75) exactly matches the conditions we must impose to avoid causality violation.

4 Causality violation in Lovelock theory

4.1 Black hole perturbations

Constraints coming from positivity of the energy will be shown to agree with those
coming from imposing causality at the boundary theory due to the bulk gravity back-
ground. One way of checking this is by looking at perturbations of Lovelock black
holes dual to thermal states of finite temperature CFTs. A detailed study of maximally
symmetric black holes in Lovelock theory2 has been carried out in [54]. The interested
reader shall find all relevant formulas in that reference.

Having the holographic picture in mind, it is interesting to scrutinize the possibility,
for these backgrounds, of having trajectories that start from the boundary of AdS
and come back to it. These can be interpreted as bulk disturbances created by local
operators in the boundary CFT, and we expect micro-causality violation in this theory
if there exists a bouncing graviton traveling faster than light from the point of view
of the boundary theory. This phenomenon may happen due to the fact that, in higher
curvature gravity, gravitons do not propagate according to their background metric
but, instead, feel an effective metric related to their equations of motion [39,55,56].
In the large momentum limit, localized wave packets moving along null geodesics of
this effective geometry satisfy radial equations of the form (r = L2/z)

(
dr

ds̃

)2

= α2 − c2
h(r), α ≡ ω

q
, (76)

2 Many important features of the static spherically symmetric solutions of Lovelock gravities were already
understood in the late eighties [42–46], greatly contributing to the acceptance of these theories as physi-
cally relevant. Subsequent work exploring in detail the case of degenerate Lovelock theory, i.e., when the
gravitational couplings are such that there is a unique (A)dS vacuum, have been pursued in [47,48]; see
also [49–51]. The reader may also want to consult [52,53] for a nice recent report on the subject.
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equivalent to those of a particle of energy α2 moving in a potential given by c2
h(r),

which corresponds to the velocity of high momentum gravitons of helicity h = 0, 1, 2
in the different radial slices. These potentials always go to one at the boundary, and
they approach zero at the black hole horizon. In most cases, the potential is monotonic
and, thereby, the graviton inevitably falls into the black hole. Whenever there is a
maximum in c2

h(r), in turn, geodesics starting at the boundary can be seen to find their
way back to it, with turning point α2 = c2

h(rturn). For a null bouncing geodesic starting
and ending at the boundary, as the energy α approaches the value of the speed at the
maximum, α → c2,max (i.e., rturn → rmax), we have

Δxd−1

Δt
→ ch,max > 1. (77)

These geodesics spend an arbitrarily long time near the maximum, traveling with an
average speed which is bigger than one. Interpreting this as originating from local
operators in the boundary CFT, the hypothetical dual field theory will not be causal if
there exists a bouncing geodesic obeying (77). In order to avert causality violation, we
must demand these effective potentials to be always smaller than one [55,56]. Given
that, in particular, at the boundary we have c2

h = 1, we must demand ∂r c2
h ≥ 0, as

r → ∞. This leads to the following constraints:

Tensor: Υ ′[Λ�] + 2(d − 1)

(d − 3)(d − 4)
Λ�Υ

′′[Λ�] ≥ 0,

Vector: Υ ′[Λ�] − (d − 1)

(d − 3)
Λ�Υ

′′[Λ�] ≥ 0,

Scalar: Υ ′[Λ�] − 2(d − 1)

(d − 3)
Λ�Υ

′′[Λ�] ≥ 0. (78)

for the three channels discussed above. These can be rewritten in terms of the dual
CFT parameters, using the expressions for t2, t4 in (74). Strikingly enough, the result is
exactly (60)–(62) with t4 = 0; that is, (65). In the seven dimensional case, the allowed
window (66) reads −5/3 ≤ t2 ≤ 5. By means of (74) this can be translated into two
curves that delimit the region of the space of Lovelock couplings compatible with
causality; see Fig. 2. These are, of course, the tensor and scalar channel inequalities
displayed in (78). In this way, the constraints posed by causality fully match those
arising from the requirement of positivity of the energy in the dual conformal field
theory.

4.2 Scattering of gravitons and shock waves in AdS

The previous computations are carried on a black hole background. As such, they are
adequate in the context of thermal CFTs. As pointed out in [33], causality violation
should not be associated to a thermal feature, thereby one would expect to be able
to perform a similar computation in a zero temperature background. An adequate
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Fig. 2 The allowed window (66) in seven dimensions becomes, after plugging in the holographic expres-
sions for t2 and t4, the shadowed (pink) region with the shape of an eagle head. The gravitational couplings
of Lovelock theory are constrained to belong to that region, in the AdS/CFT framework (color figure online)

background to perform a computation that is independent of the temperature is given
by a pp-wave. In particular, it is easier to consider the simplest case, provided by shock
waves [33], since they are not subjected to higher derivative corrections [57]. As such,
AdS shock waves are exact solutions in Lovelock theory (in string theory as well).

We will study the scattering of a graviton with an AdS shock wave in Lovelock
theory. This computation, originally carried out by Hofman [33] in the case of LGB
gravity in 5d (see also [58]), and later extended to arbitrary higher dimensional space-
time [39], can also be generalized to the case of any Lovelock theory [37]. This process
is, in a sense, the gravity dual of the energy 1-point function in the CFT [21]. We will
see, once again, that causality violation poses a constraint on the allowed values of t2.
For forbidden values of this parameter, a graviton that is emitted from the boundary
would come back and land outside its own light cone. The splitting of the graviton
into different helicities will fully agree with the various polarization of the operator
O = εi j Ti j in (58), for reasons that should be clear at this point of our discussion.

For definiteness, we present the computation in the helicity two channel. This
amounts to the line element already given in (68). The solution we are going to consider
for the shock wave propagating on AdS is of the type displayed in the left expression in
(32), which, as discussed in [33], can be obtained from the black hole background by
boosting the solution while keeping its energy constant. The normalization constant
�0 is proportional to the energy density and, as such, must be positive if the original
black hole solution had a positive mass.

We will compute the time delay, Δv, due to the collision of our perturbation with
the shock wave, in order to analyze the occurrence (or not) of causality violation from
the boundary point of view. For that it will be important to make certain that the delay
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due to free propagation in AdS is negligible compared to the shock wave contribution.
We will then need to consider the large momentum regime for our perturbation, in
accordance with the analogous computation performed in the Lovelock black hole
background. In this limit, the free propagation of a localized wave packet can be well
approximated by geodesic motion in AdS that then yields

Δvfree = 2

√
Pu

Pv
z�, (79)

where z� is the radial position of the collision point. We neglected the graviton motion
in the transverse directions, thereby we see that we need Pv � Pu (that also implies
Pv � Pz). We only keep contributions of the sort ∂2

v φ and ∂u∂vφ in the equations of
motion, as shown earlier in (69). The latter, even if subdominant, has to be kept to
provide the dynamics of the graviton outside the locus of the shock wave.

Inserting �(x, z) = �0 zd−3 in (69), we get

∂u∂vφ −�0Λ� f (u) zd−1 N2 ∂
2
v φ = 0, (80)

where N2 can be written in terms of t2 defined in (74),

N2 = 1 − 1

d − 2
t2. (81)

The computation for the other two helicities is harder, but the result is alike, with N2
replaced by Nh , and

N1 = 1 + d − 4

2(d − 2)
t2, N0 = 1 + d − 4

d − 2
t2 . (82)

Taking the shock wave profile to be a delta function, f (u) = δ(u), the equation of
motion reduces to the usual wave equation ∂u∂vφ = 0 outside the locus u = 0. Then,
we can consider a wave packet moving with definite momentum on both sides of the
shock wave. We can find a matching condition just by integrating the corresponding
equation of motion along the discontinuity,

φ> = φ< ei Pv �0 Λ�zd−1 Nh , (83)

where φ> and φ< are the values of the perturbation at both sides of the discontinuity,
and we used Pv = −i∂v . We can find the shift in the momentum in the z-direction
acting with Pz = −i∂z ,

P>z = P<z + (d − 1)Pv �0Λ�z
d−2 Nh . (84)

If we consider a particle going inside AdS, P<z > 0. The momentum in the radial
direction will change sign—the perturbation coming back to the boundary after the
collision—provided
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Fig. 3 The line u = 0
corresponds to the shock wave
while the line v = const .
corresponds to the graviton.
After the collision, if Δv < 0,
the particle lands outside its
light-cone

Pv �0Λ�z
d−2 Nh < 0, (85)

for sufficiently large �0 > 0 (since the black hole originating the shock wave had
positive mass).

Now, both Pv andΛ� are negative, the former simply due to the fact that Pv = − 1
2 Pu

(and Pu = P0 + Pd−1 must be positive for the energy to be so). Therefore, when

Nh < 0, (86)

for all three helicities, the graviton will make its way back to the boundary and, as
we can thoroughly read from (83), it comes back shifted in the v-direction a negative
amount (see Fig. 3)

Δv = −�0Λ�z
d−1 Nh . (87)

The graviton lands, at the boundary, outside its own light-cone. This is an explicit
break up of causality. We conclude that the theory violates causality unless Nh ≥ 0
for the three helicity channels, which amounts exactly to the same constraints found
in the black hole case and, as well, to those arising from positivity of the energy in the
dual CFT, displayed in (65).

5 Final comments and conclusions

As we have seen throughout these pages, Lovelock theories of gravity appear as a very
useful playground in order to analyze several aspects of the gauge/gravity duality. The
precise status of these theories is at present unclear, as they do not generally appear
in the low energy action of string theory, at least not with finite coefficients, and
their ultraviolet completion is unknown. Although this is true, Lovelock gravities are
two derivative theories, the most natural extension of General Relativity in higher
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dimensions, and there is no a priori reason why these cannot appear as classical limits
of a quantum theory of gravity, thus subject to the holographic principle.

From the CFT point of view, moreover, the inclusion of these higher curvature
terms allows for the description of more general field theories, a notable example
being strongly coupled CFTs with different central charges, a �= c, in four dimensions
[59] at leading order in the large N limit. Besides, the analysis of the would be CFT
duals of Lovelock gravities has lead to some very interesting and unsuspected insights.
One that has been extensively reviewed in this article is the relation between causality
and positivity of the energy. Our analysis indicates that the violation of the positivity
constraints leads to the appearance of superluminal modes propagating in the field
theory. Using purely field theory techniques it has been shown that the same constraints
are needed to avoid the presence of ghosts at finite temperature [60].

Many efforts have been devoted in the last few years to the analysis of some of
the preeminent features of Lovelock theory such as its black hole solutions, their
thermodynamics and phase transitions, their would be instabilities and the generic
existence of more than one maximally symmetric solution or vacuum. Even though it
seems to us that the last word has not been said, the results obtained so far indicate
that there is no obvious pathology that invalidates the consideration of these theories
once and for all, at least for some (finite) region of the parameter space that includes
the Einstein-Hilbert case. Some authors have pointed to some instabilities that quite
generically appear in these theories as being a sign of their sickness. Much on the
contrary, these instabilities have been found to play a central rôle in the dynamics of
the theory. For instance, they generically prevent the formation of naked singularities
thus being instrumental in the cosmic censorship hypothesis coming into being in this
context [61].

In the present article we have focused our discussion in a few examples where
Lovelock theory has been shown to yield interesting holographic connections between
the gravitational and the field theory dynamics, connections that would otherwise be
impossible to uncover in the simpler setup of General Relativity. Many more examples
exist, though, of the convenience of this extended framework for the discussion of
the most diverse issues. One such example concerns the existence of an analog of
Zamolodchikov’s c-theorem [62] in higher dimensions, namely for 4d CFTs. Even
though some previous indications existed [63], the existence of a would be monotonic
quantity and how this would be related to the central charges of the theory in four
dimensions, a and c, was not properly established. Under a holographic RG flow, the
existence of a monotonic quantity related to the central charge a has been pointed out
in [64], much earlier than the actual field theoretic proof of the so-called a-theorem
was found [65]. No monotonicity property is known for the other central charge, c. The
use of higher curvature theories is essential here as otherwise it would be impossible
to identify which is the central charge with the monotonic property, given that a and
c have the same value if gravity is governed by the Einstein-Hilbert action.

Another important issue that is receiving a lot of attention lately is that of entangle-
ment entropy. The Ryu–Takayanagi proposal [66] for the holographic computation of
this important quantity amounts to the determination of a minimal surface enclosing
the region of interest at the boundary, the entanglement entropy being simply pro-
portional to the area of such surface. This conjecture has recently been accounted
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for in [67]. The naïve generalization of this prescription to higher curvature gravities
would be that the entropy is given by the Wald formula, but this has been argued to be
wrong [68]. A more educated guess would be to consider the Iyer–Wald formula [69],
that reduces to the modified proposal in [68] for Lovelock gravity [70].3 The checks
performed in order to find the discrepancies involve certain specific contributions to
the entanglement entropy that are completely governed by the conformal anomaly.
Depending on the shape of the region of interest, those contributions have to be pro-
portional to a different combination of the central charges of the theory. The Wald
proposal, instead, yields the same combination of central charges independently of
the shape. In the case of Einstein-Hilbert gravity we have just one independent combi-
nation of the central charges, and this is the reason behind the fact that the simplified
area prescription works.

Another obvious field where higher curvature gravity theories have shown their
value and utility is that of the fluid/gravity correspondence (see, for instance, [74]
for a review of one possible approach). In this framework, similarly to the CFT case,
Lovelock gravities allow for the description of relativistc fluid duals with more general
transport coefficients than those resulting from the Einstein-Hilbert action. The most
celebrated example is that of the shear viscosity to entropy density ratio, η/s (see [75]
for a recent review, and references therein). In the context of higher curvature gravity
theories, this specific transport coefficient has been considered in many papers (see
[76–79] for some relevant examples).4

Higher curvature theories, Lovelock in particular, have been used to disprove the
longstanding KSS viscosity bound conjecture [81]. The value of the shear viscosity to
entropy density in general Lovelock theories has been established in [82], where it was
proven that the only Lovelock coefficient affecting the actual value of η/s is the LGB
one; any positive value of λ translating into a violation of the viscosity bound. The
causality/positivity constraints discussed in the core of this paper have been argued to
impose a new bound for any Lovelock theory in any number of space-time dimensions,
even though also stability constraints have to be considered to avoid negative values
of η in general [29]. In spite of the fact that higher order Lovelock terms do not enter
the holographic formula of the shear viscosity, they do change the actual value of the
bound. A way of lifting the causality constraints on η/s has been proposed in [77], but
stability still implies the existence of a finite bound. It is worth mentioning at this point
that higher curvature corrections that are not of the Lovelock type are also relevant in
this discussion as, for instance, in the case of quasi topological gravity where t4 �= 0
and the bound can be slightly lowered [83]. In this respect, the Lovelock setup shall
be viewed as an exploratory playground where computations are under better control
due to the second order nature of its equations of motion.

Another possible connection between Lovelock theory and the fluid/gravity corre-
spondence may have to do with the realization in [84] that the existence of a positive
divergence entropy current in an arbitrary curved background and the Onsager prin-

3 This latter expression was earlier found by Jacobson and Myers in the Hamiltonian approach to black hole
entropy [71], and justified a short time ago in [72], following the lines of reasoning of [67]. The connection
with the Iyer-Wald formula was further explored very recently in [73].
4 A different and interesting approach has been pursued in [80].
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ciple put severe constraints in the terms appearing at first order in the hydrodynamics
derivative expansion. It is natural to wonder whether similar constraints appear in
gravity, restricting the space of allowed higher derivative corrections to Einstein’s
equations [85]. This may be particularly relevant for those cases in which the entropy
production vanishes in Einstein gravity, and one might have to go to the next correction
to realize which is the sign of the divergence of the entropy current.

Surely many more applications of Lovelock theory in the framework of the
AdS/CFT correspondence were left into the ink pot. It is a lively subject in which
we expect to see further progress happening soon.
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