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Abstract We investigate the massive graviton stability of the BTZ black hole obtained
from three dimensional massive gravities which are classified into the parity-even
and parity-odd gravity theories. In the parity-even gravity theory, we perform the
s-mode stability analysis by using the BTZ black string perturbations, which gives
two Schrödinger equations with frequency-dependent potentials. The s-mode stability
is consistent with the generalized Breitenlohner-Freedman bound for spin-2 field. It
seems that for the parity-odd massive gravity theory, the BTZ black hole is stable
when the imaginary part of quasinormal frequencies of massive graviton is negative.
However, this condition is not consistent with the s-mode stability based on the second-
order equation obtained after squaring the first-order equation. Finally, we explore the
black hole stability connection between the parity-odd and parity-even massive gravity
theories.

Keywords Massive gravity theory in three dimensions · Stability on BTZ
black hole · Parity-odd gravity

1 Introduction

If a black hole solution is known, it is very important to carry out the stability analy-
sis of the black hole. At the early stage of studying the Schwarzschild black hole, a
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conventional method to determine the stability is to solve the linearized Einstein equa-
tion by choosing even-and odd-parity perturbations under the Regge–Wheeler gauge
for graviton, which leads to two Schrödinger equations: Regge–Wheeler equation [1]
and Zerilli equation [2]. One may conclude that the Schwarzschild black hole is stable
because their potentials are positive definite for the whole region outside the black
hole, implying that there is no exponentially growing modes [3,4]. Equivalently, the
stability of a black hole depends on the sign of the imaginary part ωI of their quasinor-
mal frequencies ω = ωR + iωI when considering the time dependence of e−iωt [5].
If ωI is negative, the black hole is stable. The real part ωR has no bearing on stability
properties. Furthermore, the unstable condition of a black hole was suggested to be
ωR = 0 and ωI ≥ 0 [6].

On the other hand, the stability analysis of the Schwarzschild black hole obtained
from higher derivative gravity is not an easy task because it contains the second-
order equation for a massive graviton. A conventional stability method designed for
a graviton with two degrees of freedom (2 DOF) is not suitable for studying the
massive graviton (5 DOF) [7] which is propagating on the black hole and de Sitter
spacetimes [8]. However, if one considers a lower dimensional massive gravity, the
situation is not so complicated. Reminding that the three dimensional Einstein gravity
is a gauge theory, any propagating spin-2 mode belongs to massive graviton which can
be obtained from three-dimensional massive gravity theories. Further, these theories
are classified into parity-even and parity-odd theories.

Recently, it was shown that the BTZ black hole [9,10] is stable for all μ (Chern-
Simons coupling constant) against the massive spin-2 perturbations in the topologi-
cally massive gravity (TMG [11], parity-odd theory) by demanding boundedness of
the perturbation at the horizon [12]. On the other hand, it was suggested that the
BTZ black hole is stable for m2 > 1/2�2 in new massive gravity (NMG, parity-
even theory) [13] by computing quasinormal frequencies and performing the s-mode
analysis [14].

Because of different parity, one uses different stability analysis for the BTZ black
hole. Solving the first-order differential tensor equation algebraically together with
the boundary conditions, we obtain all quasinormal frequencies of massive gravi-
ton for parity-odd theories [15]: TMG and generalized massive gravity (GMG) [16].
If ωI < 0, the black hole seems to be stable against the massive graviton
perturbation.

Given the parity-odd first order linearized equation, one obtains its second-
order linearized equation after squaring it, which belongs to the parity-even the-
ory, giving the ambiguity on sign of the mass. Because of this ambiguity, some-
one prefers solving the first-order equation directly [15], instead of the second-
order equation. Off-critical point, the parity-even gravity theory usually provides
the second-order linearized equation after choosing the transverse-traceless gauge.
It is known that “solving directly the second-order massive equation” is a formi-
dable task for the BTZ black hole spacetimes. Fortunately, after choosing the
BTZ black string perturbation for massive graviton [17], the s-mode analysis may
be performed using two Schrödinger equations with frequency-dependent poten-
tials [14].
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In this work, we study the massive graviton stability of the BTZ black hole obtained
from three-dimensional1 massive gravities which are classified into the parity-odd
theories (TMG, GMG) and parity-even gravity theories (NMG, six-derivative gravity
(SDG) [19]). For the second-order Schrödinger equation with an effective potential,
we analyze the massive graviton stability by checking if the potential is positive for
the whole range outside an event horizon. However, we should extend the stability
condition (2.26) for asymptotically flat spacetimes to (2.29) for asymptotically AdS
spacetimes. In this case, the stability condition of s-mode is given by the generalized
Breitenlohner-Freedman bound for spin-2 field. On the other hand, for a first-order
massive graviton equation, we perform the stability analysis by using the quasinormal
frequencies (ω = ωR+iωI). IfωI is negative when considering the time dependence of
e−iωt [5], the black hole is stable. Finally, we explore the black hole stability connection
between the parity-odd and parity-even (s-mode) massive gravity theories.

2 Parity-even massive gravities

In this work, we consider the (non-rotating) BTZ black hole solution [9] which is a
solution to all massive gravity theories. Its line element is given by

ds2
BTZ = ḡμνdxμdxν

= −
(

−M + r2

�2

)
dt2 +

(
−M + r2

�2

)−1

dr2 + r2dφ2, (2.1)

where M is the ADM mass given to be M = r2+/�2 with the horizon radius r+ and
AdS3 curvature radius �. Throughout the paper, the overbar denotes the background
metric (2.1) for the BTZ black hole. The Ricci scalar, Ricci tensor, Riemann tensor
can be written in terms of the background metric (2.1) as follows:

R̄ = 6�, R̄μν = 2�ḡμν, R̄μνρσ = �(ḡμρ ḡνσ − ḡμσ ḡνρ), (2.2)

where � = −1/�2. Also we adopt a notation of (−,+,+) and unit of 2κ2 = 1. For
the perturbation around the BTZ black hole

gμν = ḡμν + hμν, (2.3)

1 It is well-known that the Einstein gravity in three dimensions has no propagating degrees of freedom
(DOF). This is clearly shown by counting a massless graviton hμν : D(D − 3)/2. One has zero DOF for
D = 3. For a massive graviton, it is changed into (D − 2)(D + 1)/2 which gives 2 DOF for D = 3. Thus,
massive generalizations of the Einstein gravity [13,18], allow propagating degrees of freedom. The three
dimensional massive gravity is regarded as a toy model of perturbative quantum gravity, since we expect
to have less severe short-distance behavior than four dimensional gravity with non-renormalizability. We
note that if a black hole solution in three dimensional massive gravity is found, a first issue is to examine
its classical stability properties as will be performed in the present paper.
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the linearized Ricci tensor and Ricci scalar are given by

δRμν(h) = 1

2

(
∇̄μ∇̄ρhρν + ∇̄ν∇̄ρhρμ − ∇̄2hμν − ∇̄μ∇̄νh

)
+ 3�hμν −�ḡμνh,

(2.4)

δR(h) = ∇̄α∇̄βhαβ − ∇̄2h − 2�h. (2.5)

Let us first introduce a three-dimensional massive gravity proposed by Fierz and
Pauli (FP) [7] whose action is given by

SFP = Sbl(h)− M2
FP

4

∫
d3x

√−g
(

hμνhμν − h2
)
, (2.6)

where M2
FP is a mass parameter and Sbl(h) is the bilinear form of the Einstein-Hilbert

action with a cosmological constant �. It is well known that the linearized Einstein
equation can be written as [8]

(
∇̄2 − 2�− M2

FP

)
hFP
μν = 0, (2.7)

which is considered as a simplest equation for a massive graviton with 2 DOF on the
BTZ black hole spacetimes. In deriving this equation, we have used the consistency
condition of the linearized Bianchi identity

∇̄μhμν = 0, hμμ = 0, (2.8)

which is considered as the transverse-traceless (TT) gauge.2

Now we consider the parity-even six-derivative gravity (SDG) [19], whose action
is given by

SSDG =
∫

d3x
√−g

[
σ R − 2λS + αR2 + βRμνRμν + a1∇μR∇μR

+a2∇ρRμν∇ρRμν
]
, (2.9)

where σ = 0,±1 is a dimensionless parameter, λS is a cosmological parameter with
mass dimension 2. Here parameters α(β) have mass dimension −2 and a1(a2) have
−4. We remark that when choosing a1 = a2 = 0, σ = 1, and 8α+3β = 0, the action
(2.9) reduces to the NMG action [13] as

SNMG =
∫

d3x
√−g

[
R − 2λS − 1

m2

(
RμνRμν − 3

8
R2

)]
, (2.10)

where m2 is a mass parameter with dimension 2.

2 We note that the action SFP (2.6) has no diffeomorphism invariance, while the TT gauge condition is
imposed only when considering diffeomorphism invariant actions of SSDG, STMG, and SGMG.
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Varying the action (2.9) with respect to gμν leads to the equation

σ
(

Rμν − 1

2
gμνR

)
+ λSgμν + Eμν + Hμν = 0 (2.11)

with

Eμν =β
[
− 1

2
gμνRρσ Rρσ+2Rμρνσ Rρσ+∇γ∇γ Rμν+ 1

2
gμν∇γ∇γ R−∇μ∇νR

]

+α
[
2RGμν+2gμν∇γ∇γ R−2∇μ∇νR

]
, (2.12)

Hμν =a1

[
∇μR∇νR−2Rμν∇2 R− 1

2
gμν∇ρR∇ρR−2(gμν∇2−∇μ∇ν∇2)R

]

a2

[
∇μRρσ∇νRρσ− 1

2
gμν∇γ Rρσ∇γ Rρσ−∇2 Rμν − gμν∇ρ∇σ∇2 Rρσ

+2∇ρ∇(μ∇2 Rν)ρ+2∇ρRρσ∇(μRσν)+2Rρσ∇ρ∇(μRσν)−2Rσ(μ∇2 Rσν)

−2∇ρRσ(μ∇ν)Rρσ−2Rσ(μ∇ρ∇ν)Rσρ
]
. (2.13)

We note that the BTZ black hole solution (2.1) to Eq. (2.11) is allowed only when
choosing λS = σ� − 2(3α + β)�2. Taking into account the perturbation (2.3) and
plugging the TT gauge (2.8) into Eq. (2.11), we obtain the sixth-order differential
perturbation equation, which can be factored into three pieces3:

[
∇̄2 − 2�

][
∇̄2 − 2�− M2+

][
∇̄2 − 2�− M2−

]
hμν = 0. (2.14)

Here the mass parameters M2± denote

M2± = β

2a2
−�± 1

2a2

√
10a2

2�
2 − 6a2β�+ 4a2σ + β2. (2.15)

In Eq. (2.14), we read off two massive equations

[
∇̄2 − 2�− M2+

]
hM+
μν = 0,

[
∇̄2 − 2�− M2−

]
hM−
μν = 0 (2.16)

off-critical points (M2+ �= M2−). They describe 4 DOF for two massive gravitons.
Also, we note that for the NMG (2.10), the linearized equation is given by

[
∇̄2 − 2�− M2

NMG

]
hNMG
μν = 0, M2

NMG = m2 − 1

2�2 (2.17)

3 In order to eliminate scalar graviton, we require three conditions as [19]

a1 = −3a2/8, α = �a2/8 − 3β/8, −σ/2 + 3�2a2/4 −�β/4 �= 0.
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off critical point (m2 �= 1/2�2) and off-decoupling limit4 (m2 �= 0), which describes
2 DOF for a massive graviton in three dimensional spacetimes.

2.1 s-mode stability analysis

We are now in a position to perform the stability analysis of massive gravitons sat-
isfying Eqs. (2.7), (2.16), and (2.17). We propose that they are propagating on the
BTZ black hole background (2.1). For this purpose, inspired by the BTZ black string
perturbations [17], we consider the following two distinct (orthogonal) perturbations
ansatz [14]: the type I has two off-diagonal components h0 and h1

hI
μν =

⎛
⎝ 0 0 h0(r)

0 0 h1(r)
h0(r) h1(r) 0

⎞
⎠ e−iωt eikφ , (2.18)

while for the type II, the metric tensor takes the form with four components
H0, H1, H2, and H3 as

hI I
μν =

⎛
⎝ H0(r) H1(r) 0

H1(r) H2(r) 0
0 0 H3(r)

⎞
⎠ e−iωt eikφ . (2.19)

In this work, we focus on s-mode (k = 0) case for simplicity. Importantly, Eqs. (2.7),
(2.17), and (2.16) can be combined into a single massive equation

(
∇̄2 − 2�− M2

i

)
hMi
μν = 0, (2.20)

where M2
i (i = 1, 2, 3, 4) is given by

M2
1 = M2

FP, M2
2 = M2

NMG, M2
3 = M2+, M2

4 = M2−. (2.21)

For type I, plugging (2.18) into (2.20) and eliminating h1(r) from (t, φ) and (r, φ)
components of (2.20) lead to the Schrödinger equation as

d2�i

dr∗2 +
[
ω2 − V I

�i

]
�i = 0, (2.22)

where r∗ is the tortoise coordinate defined by the relation of dr∗ = �2dr/(r2 − r2+).
Here, a new field �i is defined by �i = h0/

√
r{M2

i (r
2 − r2+)/�2 − ω2}, and V I

�i
is

the ω-dependent potential given by

4 In the decoupling limit of m2 → 0, however, NMG action (2.10) reduces to massless NMG [20] where
the fourth order equation appears, instead of the second order equation.
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V I
�i
(ω, r) = r2 − r2+

�2

[
M2

i + 15

4�2 − 3r2+
4�2r2 + 3M4

i r2(r2 − r2+)
�6

{
M2

i (r
2 − r2+)/�2 − ω2

}2

+ 2M2
i (2r2+ − 3r2)

�4
{

M2
i (r

2 − r2+)/�2 − ω2
}
]
. (2.23)

We show that for M2
i ≥ 0, all potentials V I

�i
are always positive definite for the whole

range of r+ ≤ r ≤ ∞. This may imply that for M2
i ≥ 0, the BTZ black hole is stable

against type I perturbation.
On the other hand, in type II case, substituting (2.19) into (2.20) and after some

manipulations, (t, φ) component of (2.20) can be written as the other Schrödinger
equation:

d2�i

dr∗2 + [ω2 − V II
�i
(ω, r)]�i = 0, (2.24)

where �i = H1

√
r(r2 − r2+)2/

√
M2

i (r
2+ − r2)�2 + (2r2+ − r2)+ ω2�4 and the ω-

dependent potential V II
�i

is given by

V II
�i
(ω, r)= r2−r2+

�2

[
M2

i + 7

4�2 − 3r2+
4�2r2 + 3r2(M2

i +1/�2)2(r2−r2+)
�6

{
M2

i (r
2+−r2)/�2+(2r2+−r2)/�4+ω2

}2

+ 4(M2
i +1/�2)(r2−r2+)

�4
{

M2
i (r

2+−r2)/�2+(2r2+−r2)/�4+ω2
}
]
. (2.25)

We note that for M2
i ≥ 0, all potential V II

�i
is always positive definite for the whole

range of r+ ≤ r ≤ ∞, which states that the BTZ black hole is stable against type-II
perturbation.

Hence, if one applies type I and II perturbations to the parity-even massive gravities,
the stability conditions of the BTZ black hole seem to be

M2
FP ≥ 0, m2 ≥ 1

2�2 , M2± ≥ 0 (2.26)

in FP, NMG, and SDG, respectively. However, these conditions are suitable for asymp-
totically flat spacetimes. We remind the reader that our spacetime is asymptotically
anti de Sitter spacetimes. Therefore, we have to point out what is the stability condi-
tion of a massive graviton propagating on the AdS3 spacetimes. To see this explicitly,
let us consider asymptotically AdS3 spacetimes, which corresponds to a large r limit
(r∗ → 0) in Eq. (2.1). In this limit, the potentials (2.23) and (2.25) take the same form
when expressing them in terms of a tortoise coordinate r∗

V I
�i
, V II

�i
∼ ξ

r∗2 , (2.27)

123



2500 T. Moon, Y. S. Myung

where

ξ = �2
(

M2
i + 3

4�2

)
. (2.28)

As r∗ approaches 0, Eqs. (2.22) and (2.24) become one-dimensional Schrödinger
equation with an inverse square potential of the strength ξ and the energy E = ω2. It
is known [21,22] that in this case, if ξ satisfies the condition,

ξ ≥ −1

4
⇒ M2

i ≥ − 1

�2 , (2.29)

the energy spectrum is always continuous and positive. It is worth noting that the stabil-
ity condition (2.29) is consistent with the regularized condition at r∗ = 0. Importantly,
the stability condition (2.29) is exactly the same with the Breitenlohner-Freedman (BF)
bound [23] for a massive spin-2 field in AdS3 spacetimes [24,25]

[
∇2
(AdS) − 2�− M2

(AdS)

]
hμν = 0 ⇒ M2

(AdS) ≥ M2
BF = − 1

�2 . (2.30)

Hence, we should extend the stability condition (2.26) for asymptotically flat space-
times to the stability condition (2.29) for asymptotically AdS spacetimes.

Finally, we dictates the stability condition of the BTZ black hole

M2
FP ≥ − 1

�2 , m2 ≥ − 1

2�2 , and M2± ≥ − 1

�2 (2.31)

off-critical points (m2 �= 1/2�2, M2± �= 0) and off-decoupling limit (m2 �= 0), when
using the s-mode analysis for the parity-even massive gravity theories.

3 Parity-odd massive gravities

A parity-odd massive gravity in three dimensions was first introduced by Deser, Jackiw,
and Templeton [18]. The TMG action includes a gravitational Chern-Simons term,
which reveals parity-violation or ‘odd’ parity. In this section, we introduce two parity-
odd massive gravities of TMG and GMG, and investigate the stability analysis of the
BTZ black hole in those gravities.

3.1 TMG

The action of TMG with a negative cosmological constant is given by [18]

STMG =
∫

d3x
√−g

[
R − 2�+ 1

2μ
ελμν�

ρ
λσ

(
∂μ�

σ
ρν + 2

3
�σμτ�

τ
νρ

)]
, (3.1)
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where μ is a parameter with mass dimension 1. The Einstein equation takes the form

Rμν − 1

2
gμνR +�gμν + 1

μ
Cμν = 0, (3.2)

where the Cotton tensor Cμν is defined by

Cμν ≡ ε αβμ ∇α
(

Rβν − 1

4
gβνR

)
. (3.3)

Introducing the perturbation (2.1) and applying the TT gauge condition (2.8) to the
linearized equation of (3.2), we arrive at

[
∇̄2 − 2�

][
hμν + 1

μ
ε αβμ ∇̄αhβν

]
= 0. (3.4)

From (3.4), we read off the first-order differential equation for a massive graviton

ε αβμ ∇̄αhβν + μhμν = 0. (3.5)

One can easily check that squaring it [equivalently, by applying the first-order operator
ε
ρμ
σ ∇̄ρ − μδ

μ
σ to (3.5)] leads to the second-order equation

[
∇̄2 − 2�− M2

TMG

]
hσν = 0 (3.6)

with M2
TMG = μ2 − 1/�2. Using the bound given by the stable condition (2.31), we

have

M2
TMG ≥ − 1

�2 → μ2 ≥ 0 → |μ| ≥ 0 (3.7)

which is consistent with that obtained in [12], indicating that the BTZ black hole is
stable for all μ against the massive spin-2 perturbation in TMG by demanding bound-
edness of the perturbation at the horizon. The latter condition eliminates modes which
are growing in time and obeying the generalized boundary conditions at asymptotic
infinity. At this stage, we emphasize that the authors in [12] have used not the first-order
Eq. (3.5) itself but a second-order hypergeometric equation obtained by transforming
two first-order equations when analyzing the stability of the BTZ black hole.
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3.2 GMG

We consider the GMG action which consists of NMG and gravitational Chern-Simons
term as [13,26]

SGMG =
∫

d3x
√−g

[
σ R − 2λG + 1

m2

(
RμνRμν − 3

8
R2

)

+ 1

2μ
ελμν�

ρ
λσ

(
∂μ�

σ
ρν + 2

3
�σμτ�

τ
νρ

)]
,

(3.8)

where λG is a cosmological parameter with mass dimension 2. From the GMG action,
one derives the Einstein equation

σGμν + λG gμν + 1

2m2 Kμν + 1

μ
Cμν = 0, (3.9)

where Cμν is given by Eq. (3.3) and Kμν takes the form

Kμν = 2∇2 Rμν − 1

2
∇μ∇νR − 1

2
∇2 Rgμν

+ 4Rμρνσ Rρσ − 3

2
R Rμν − Rρσ Rρσ gμν + 3

8
R2gμν. (3.10)

It is pointed out that the BTZ black hole solution (2.1) is allowed only for λG =
�2/4m2 + σ�. Using (2.3) and the TT gauge condition (2.8), the linearized equation
of (3.9) can be written as

[
∇̄2 − 2�

] [
∇̄2hμν + m2

μ
ε αβμ ∇̄αhβν +

(
σm2 − 5

2
�

)
hμν

]
= 0. (3.11)

Considering the above equation, we read off the second-order equation of the massive
graviton

∇̄2hμν + m2

μ
ε αβμ ∇̄αhβν +

(
σm2 − 5

2
�

)
hμν = 0 (3.12)

which is further factorized into
[
δβμ + 1

m+
ε ρβμ ∇̄ρ

] [
δ
γ
β + 1

m−
ε
σγ
β ∇̄σ

]
hγ ν = 0. (3.13)

Here m± take the forms

m± = m2

2μ
±

√
m4

4μ2 − σm2 − �

2
. (3.14)
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This implies that two massive gravitons with mass m± are described by two first-order
equations, respectively,

ε αβμ ∇̄αhβν + m+hμν = 0, ε αβμ ∇̄αhβν + m−hμν = 0. (3.15)

As squaring their first-order equations, acting two operations [ε ρμσ ∇̄ρ − m+δμσ ] and
[ε ρμσ ∇̄ρ − m−δμσ ] on (3.15) leads to two second-order equations

[
∇̄2 − 2�− M2

GMG+
]
hσν = 0,

[
∇̄2 − 2�− M2

GMG−
]
hσν = 0, (3.16)

where

M2
GMG± = m2± − 1

�2 . (3.17)

Using the bound given by the stable condition (2.31), we have the mass bound

M2
GMG± ≥ − 1

�2 → m2± ≥ 0. (3.18)

Consequently, the s-mode stability condition after squaring their first-order equa-
tions is given by

m2
i ≥ 0, (3.19)

where
m2

1 = μ2(TMG), m2
2 = m2+(GMG), m2

3 = m2−(GMG). (3.20)

3.3 Quasinormal mode analysis

We note that (3.5) and (3.15) belong to the first-order equation and they are parity-odd,
while (3.6) and (3.16) are the second-order equation and are parity-even. Furthermore,
(3.6) and (3.16) have ambiguities on the sign of mass. Hence, it would be better to use
(3.5) and (3.15) than (3.6) and (3.16) when considering an another stability analysis
for the parity-odd theories.

In this section, we redo the stability analysis of the massive graviton for TMG
and GMG by computing quasinormal frequencies. For this purpose, we note that the
type I and II perturbations are suitable for the second-order differential Eqs. (3.6) and
(3.16), while these are inappropriate for applying to the first-order Eqs. (3.5) and (3.15)
directly. As will be shown in Appendix, applying type I and II to (3.5) and (3.15) leads
to all null perturbations due to the parity-oddness of their equations.

Therefore, we perform the stability analysis with solving (3.5) and (3.15) to find
quasinormal frequencies by following the approach developed in [15]. We first note
that (3.5) and (3.15) can be written as a single first-order equation

ε αβμ ∇̄αhβν + mi hμν = 0, (3.21)
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where mi denote μ and m±. For our purpose, we consider a BTZ black hole metric
with M = 1 and � = 1(r+ = 1) given in global coordinates

ds2
gc = ḡμνdxμdxν = − sinh2 ρdt2 + cosh2 ρdφ2 + dρ2, (3.22)

which is obtained by replacing r by r = cosh ρ in (2.1). In what follows we use
light-cone coordinates with u = t + φ and v = t − φ as

ds2
lc = ḡμνdxμdxν = 1

4
du2 + 1

4
dv2 − 1

2
cosh 2ρdudv + dρ2. (3.23)

The metric (3.23) admits isometry group of SL(2,R)×SL(2,R), which allows us two
sets of the Killing vector fields, L0,±1 and L̄0,±1 given as

L0 = −∂u,

L−1 = e−u
(

−cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v − 1

2
∂ρ

)
,

L1 = eu
(

−cosh 2ρ

sinh 2ρ
∂u − 1

sinh 2ρ
∂v + 1

2
∂ρ

) (3.24)

and L̄0,±1 are defined by operation of u ↔ v in (3.24). Three vector fields L0,±1
satisfy the SL(2,R) algebra

[L0, L±1] = ∓L±1, [L1, L−1] = 2L0. (3.25)

Taking the perturbation ansatz in terms of (u, v, ρ)

hμν = e−iωt−ikφψμν(ρ) = e−i p+u−i p−vψμν(ρ), p± = 1

2
(ω ± k), (3.26)

the s-mode (k = 0) solutions to the first-order Eq. (3.21) are given by right(r )/left(l)
moving modes:

hr
μν=e−2hr tψμν=e−2hr t (sinh ρ)−2hr

⎛
⎜⎝

1 0 2
sinh 2ρ

0 0 0
2

sinh 2ρ 0 4
sinh2 2ρ

⎞
⎟⎠ , hr =−1

2
(mi +1)

(3.27)

for p− = −ihr and

hl
μν = e−2hl tψμν = e−2hl t (sinh ρ)−2hl

⎛
⎜⎝

0 0 0
0 1 2

sinh 2ρ
0 2

sinh 2ρ
4

sinh2 2ρ

⎞
⎟⎠ , hl = 1

2
(mi − 1)

(3.28)
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for p+ = −ihl . Note that the solution (3.27) satisfies the chiral highest weight con-
dition of L̄1hμν = 0 and (3.28) satisfies the anti-chiral highest weight condition
of L1hμν = 0 which are equivalent to the transversality condition of ∇̄μhμν = 0.
However, requiring both conditions leads to null modes. Considering relations p± =
ωr/ l/2, the corresponding quasinormal frequencies, whose quasinormal modes sat-
isfy the boundary conditions: ingoing modes at the horizon and Dirichlet boundary
condition at infinity, can be written as

ωr = −2ihr = 2i
(mi

2
+ 1

2

)
, (3.29)

ωl = −2ihl = 2i
(

− mi

2
+ 1

2

)
. (3.30)

The complete tower of right- and left-moving quasinormal modes is generated by
acting L−1 L̄−1 on hr/ l

μν n times as

h(n), r/ l
μν =

(
L−1 L̄−1

)n
hr/ l
μν , (3.31)

which leads to their quasinormal frequencies with overtone number n

ωr
n = −2i(hr + n), (3.32)

ωl
n = −2i(hl + n). (3.33)

Since the stability condition is determined by two basic quasinormal frequencies with
ω

r/ l
I < 0 for ωr/ l = ω

r/ l
R + iωr/ l

I , it is given by

|mi | > 1/�, (3.34)

where the AdS3 curvature radius � is restored for convenience. It seems, however, that
there is some discrepancy between (3.34) and (3.19).

4 Discussions

In this work, we have established the stability of the massive graviton around BTZ
black hole in massive gravity theories which are classified into the parity-even gravity
theories (NMG, SDG) and the parity-odd theories (TMG, GMG). For the parity-even
massive gravities, the stability conditions employed by the s-mode analysis are exactly
the same with the BF-bound, which corresponds to M2

i ≥ −1/�2 (2.29). For the parity-
even gravity theories, the s-mode analysis and the BF-bound based on the second-order
massive equation are consistent with the Birmingham–Mokhtari–Sachs result requir-
ing the boundedness of perturbation at the horizon where a second-order hypergeo-
metric equation was used. These are given by the condition of m2

i ≥ 0 (|mi | ≥ 0).
We stress that the stability analysis performed by the quasinormal frequencies

gave a condition of |mi | > 1/�, being different from |mi | ≥ 0. We may interpret
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it by mentioning that the connection between potential and quasinormal frequencies
condition is guaranteed if the second-order equation is used as Schrödinger equation [5,
6,27]. We here have obtained the quasinormal frequencies by using the first-order
equation. Hence, the condition of |mi | > 1/� based on quasinormal modes does
not comprise the stability condition |mi | ≥ 0 obtained by solving the second-order
equation. In this case, the unstable quasinormal modes exist for 0 ≤ |mi | ≤ 1/�. It
is, however, pointed out that these unstable modes may be truncated by requiring the
boundedness at the horizon when considering the generalized boundary conditions
at asymptotic infinity [12]. Hence, it suggests that the stability condition might be
extended to comprise

|mi | ≥ 0. (4.1)

Finally, we would like to mention that the stability of a black hole in four-
dimensional massive gravity is determined by the Gregory-Laflamme instability of
a five-dimensional black string. It turned out that the small Schwarzschild black hole
in the dRGT massive gravity [28] and fourth-order gravity [29] is unstable against the
metric and Ricci tensor perturbations. In the present work, the stability was mainly
determined by the asymptotes of black hole spacetimes. Hence, it suggests for a future
direction that the stability of the massive graviton around a BTZ black hole would be
revisited by using the (in)stability of four-dimensional black string.

Acknowledgments This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MEST) (No.2012-R1A1A2A10040499).

5 Appendix: Inappropriateness of type I and II for parity-odd theory

We first substitute type I perturbation (2.18) into the TMG Eq. (3.5). It turns out
that (t, φ) and (r, φ) components of (3.5) yield just μh0(r) = 0 and μh1(r) = 0,
which implies that type I perturbation becomes null unless μ = 0. Similarly, for
type II perturbation (2.19), the components (t, t), (r, r), (φ, r), and (φ, φ) of (3.5) are
given by

μH0(r) = 0, μH2(r) = 0, μH1(r) = 0, μH3(r) = 0,

which leads to all null components for the type II perturbation of H0 = H1 = H2 =
H3 = 0 unless μ = 0.

For GMG, applying type I perturbation (2.18)–(3.12), we find that the corresponding
solution to (t, r) and (r, r) components of Eq. (3.12) is given by h0(r) = h1(r) = 0. In
type II case (2.19), we note that H0(r), H2(r), and H3(r) can be expressed in terms of
H1(r) by considering the traceless condition, (φ, t) component, and (φ, r) component
in (3.12), respectively:
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H0(r) = M − r2/�2

ωr

[
(M − 3r2/�2)H1(r)+ r(M − r2/�2)H ′

1(r)
]
,

H2(r) = 1

ω(M − r2/�2)

[
(M − r2/�2)H ′

1(r)− 2r H1(r)/�
2
]
,

H3(r) = −r(M − r2/�2)

ω
H1(r).

(5.1)

Substituting (5.1) into (t, r) and (t, φ) components of (3.12), we find H1(r) = 0. In
this case, it yields H0(r) = H2(r) = H3(r) = 0 when using (5.1) again. As a result
type II perturbation becomes null for parity-odd gravity theories.

This proves the inappropriateness of type I and II for parity-odd theory.
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