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Abstract In this paper, we study the properties of the charged black hole surrounded
by the quintessence. The solution space for the horizons for various values of the mass
M , charge Q, and the quintessence parameter α are studied in detail. Special focus
in given to the degenerate horizons: we obtain cold, ultracold and Nariai black holes
which has similar topologies as for the Reissner–Nordstrom-de Sitter black holes. We
also study the lukewarm black hole with the quintessence in this paper.
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1 Introduction

There are strong observational support for the fact that universe is undergoing accel-
erated expansion leading to the presence of dark energy [1–3]. It is one of the greatest
challenges in modern physics to seek solutions as to why and how this acceleration
occurs. Various dynamical models of dark energy have been considered in the literature
to explain the acceleration [4]. Most of these models involve a dynamical scalar field. In
this paper, we investigate black holes surrounded by quintessence matter. Quintessence
field is a scalar field coupled to gravity and is a candidate for dark energy. There are
many works that have focused on the quintessence model. An extended quintessence
model has been proposed by coupling the scalar field to the Ricci scalar in [5]. The
correspondence between the quintessence and the tachyon dark energy has been stud-
ied in [6]. Dynamics of the phantom energy interacting with quintessence models
are presented in [7]. Local measurements that can detect the quintessence field has
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been suggested in [8]. Kiselev [9] derived black hole solutions surrounded by the
quintessence matter in an interesting paper. In this paper, we will focus on studying
the properties of charged black holes surrounded by the quintessence.

The paper is organized as follows. In Sect. 2 we introduce the charged black hole
surrounded by the quintessence. In Sect. 3, we discuss the free quintessence model.
In Sect. 4, the Reissnner–Nordstrom black hole with and without the cosmological
constant is compared with the charged black hole with the quintessence. In Sect. 5
and 6, the solution space of the horizons are discussed. In Sect. 7, the charged Nariai
and the cold black holes are discussed. In Sect. 8, the ultra-cold black hole is presented.
In Sect. 9, the lukewarm black hole is given. Finally, in Sect. 10, the conclusions are
given.

2 Charged black hole surrounded by the quintessence

In this section, we will give an introduction to the charged black hole surrounded by
the quintessence, which was derived by Kiselev [9]. The geometry of the black hole
is given by the metric,

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2θdφ2) (1)

Here,

f (r) = 1 − 2M

r
+ Q2

r2 − α

r3wq+1 (2)

and M is the mass, Q is the charge, α a normalization factor and wq is the state
parameter of the quintessence matter. In this paper, the parameter wq has the range,

− 1 < wq < −1

3
(3)

The quintessence matter has the equation of state as,

pq = wqρq (4)

and,

ρq = −α
2

3wq

r3(1+wq )
(5)

pq is the pressure and ρq is the energy density of the matter. To cause acceleration,
the pressure pq has to be negative, and the matter energy density ρq is positive. Since
wq is negative, to obtain a positive pressure, the parameter α has to be positive. The
basis for the choices of the parameters and for details on the derivation of the metric,
reader is referred to the original paper of Kiselev [9].

For −1/3 ≤ wq < 1, the solutions are asymptotically flat. For the range, −1 <
wq < −1/3, the space-time is non-asymptotically flat.

There are few works that have focused on studying this black hole. Thermody-
namics and phase transitions has been studied in [11] for charged black holes for all
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possible values of wq . In [12], the authors studied the thermodynamics of only the
asymptotically flat solutions and observed second order phase transitions. Quasinor-
mal modes for a charged black hole surrounded by dark energy has been studied in
[13]. The null geodesics of the neutral black hole surrounded by the quintessence has
been studied by Fernando in [14]

When wq = −1, the function f (r) reduces to,

f (r) = 1 − 2M

r
+ Q2

r2 − αr2 (6)

which is the Reissner–Nordstrom-de Sitter black hole (one can replace α = �
3 where

� is the cosmological constant).
In the rest of the paper, we will choosewq = − 2

3 as the simplest, nontrivial charged
black hole surrounded by the quintessence to study. This assumption will lead to the
metric in consideration to be,

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2θdφ2) (7)

with,

f (r) = 1 − 2M

r
+ Q2

r2 − αr (8)

Hence, the black hole discussed in this paper is non-asymptotically flat and has a
curvature singularity at r = 0.

3 Free quintessence space-time with M = 0 and Q = 0

When the mass and charge are zero, the geometry of the metric in Eq. (7) simplifies
to the free-quintessence space-time given by,

ds2 = −(1 − αr)dt2 + dr2

(1 − αr)
+ r2(dθ2 + sin2θdφ2) (9)

Such a space-time has an outer horizon at rc = 1
α

. The space-time has a curvature
scalar R = 6α

r . Hence there is a singularity at r = 0. This space-time is very similar
to the de Sitter space-time which has the metric,

ds2 = −
(

1 − �r2

3

)
dt2 + dr2(

1 − �r2

3

) + r2(dθ2 + sin2θdφ2) (10)

with an outer horizon at rc =
√

3
�

, which is the cosmological horizon (Fig. 1).
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Fig. 1 The figure shows f (r) versus r for free quintessence and the de Sitter space-time. Here α = �
3 =

0.13

The space-time with the free quintessence has the Hawking temperature,

TH( f ree quin) = 1

4π

∣∣∣∣dgtt

dr

∣∣∣∣
r=rh

= α

4π
(11)

The de Sitter cosmology has the background temperature as,

TH(de Sitter) = 1

2π

√
�

3
(12)

A detailed comparison of the free-quintessence space-time and the de Sitter space-
time is presented in [9]. A description of the de-Sitter space-time can be found in the
book by Griffiths and Podolský [10].

4 Reissner–Nordstrom black hole with and without the cosmological constant

In order to fully understand and appreciate the properties of the charged black holes
with the quintessence, we will review properties of the Reissner–Nordstrom black hole
and the Reissner–Nordstrom-de Sitter black hole in this section.

The Reissner–Nordstrom black hole is given by the metric,

f (r) = 1 − 2M

r
+ Q2

r2 (13)

There are two horizons,

r+ = M −
√

M2 − Q2; r++ = M +
√

M2 − Q2 (14)
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Fig. 2 The figure shows f (r) versus r for charged black hole with the quintessence, Reissner–Nordstrom
black hole and and the Reissner–Nordstrom-de Sitter space-time. Here M = 0.5, Q = 0.4 and α = �

3 =
0.13

Black hole exists only when M ≥ Q. Hence the Qcritical = M . When Q = Qcritical ,
there is a degenerate horizon. When Q < Qcritical , there are two horizons. When
Q > Qcritical , there are no horizons and the solution becomes a naked singularity
(Fig. 2).

Since both the cosmological constant and the quintessence matter provide a mech-
anism for the acceleration of the universe, it is important to compare the charged black
hole in de-Sitter space and with the quintessence matter. The Reissner–Nordstrom-de
Sitter black hole has the metric,

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2θdφ2) (15)

with,

f (r) = 1 − 2M

r
+ Q2

r2 − �

3
r2 (16)

Reissner–Nordstrom-de Sitter black hole also has the possibility of having three
horizons for the appropriate values of M, Q and �: inner black hole horizon (r+),
outer black hole horizon(r++) and the cosmological horizon (rc). The quantum global
structure of the de Sitter space and the charged black holes in de Sitter space is discussed
in detail in [15]. The two horizons, r++ and rc, are not in thermal equilibrium. However,
there are two families of the Reissner–Nordstrom-de-Sitter black hole in which the
temperatures at the event horizon and the cosmological horizon are the same: charged
Nariai black hole and the lukewarm black hole. Charged Nariai black hole is a solution
where the cosmological horizon and the black hole horizon coincides. Even though
the horizons seem to coincide, the proper distance between them are non-zero. Also,
the temperature is non-zero and both horizons have the same temperature. A detailed
description of the thermodynamics of the Reissner–Nordstrom-de Sitter black hole is
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Fig. 3 The figure shows the graphs Temperature versus M for the charged black holes with the cosmological
constant, without the cosmological constant, and with the quintessence matter. Here, Q = 0.4 and α =
�
3 = 0.01

given in [16–18]. Instantons in the Reissner–Nordstrom-de Sitter space is discussed in
[19,20]. Generalized Nariai solutions for Yang-type monopoles are discussed in [21].
Charged Nariai black hole with a dilaton is discussed in [22].

The temperature of the Reissner–Nordstrom-de-Sitter black hole is given by,

TH = 1

4πr++

∣∣∣∣∣1 − Q2

r2++
− 3�r2++

∣∣∣∣∣ (17)

The temperature of a general charged black hole with the quintessence black hole
is given by,

TH = 1

4πr++

∣∣∣∣∣1 − Q2

r2++
− 2αr++

∣∣∣∣∣ (18)

From the graph in Fig. 3, it is clear that Reissner–Nordstrom-de Sitter black hole
is colder than the others.

5 The solution space for the horizons of the charged black hole with the
quintessence

The horizons for the black holes are obtained from the roots of the function f (r) = 0
given by,

αr3 − r2 + 2Mr − Q2 = 0 (19)
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which is a cubic equation. We use well known results on the roots of a cubic polynomial
here. The discriminant � for the cubic equation in Eq. (19) is given by,

� = 4(M2 − Q2)+ α(−32M3 + 36Q2 M)− 27α2 Q4 (20)

Note that when α = 0, the discriminant � = 4(M2 − Q2) which indicates the nature
of the roots of the Reissner–Nordstrom black hole. Depending on the sign of �, there
would be one horizon(degenerate case), two horizons or no horizons.

Now getting back to the case for α �= 0, we will analyze all the possibilities in the
following sections.

5.1 Structure of roots for fixed M

Now, one can study the behavior of � for fixed M and varying Q. One can solve
� = 0 for Qcritical in terms of M and α. Since � is function of Q2, it can be easily
solved to be

Q2
cri tical(1,2) =

2
(
−1 + 9αM ± √

1 − 18αM + 108α2 M2 − 216α3 M3
)

27α2 (21)

Q2
cri tical(1,2) is plotted in the Fig. 4. One can observe that Q2

cri tical1 > 0 for all values

of M while Q2
cri tical2 > 0 only for range of values of M .

In Figs. 5 and 6, the Qcritical is plotted with M . The function f (r) is plotted for
one particular value of M and the corresponding Qcritical . It is clear that the location
of the degenerate root differs for Qcritical1 and Qcritical2.

Now that we have understood � = 0 case well, one can study what type of roots
are given for f (r) = 0 for non-zero values of �. The graph Fig. 7 shows how �
changes with Q and the corresponding possibilities for the roots of f (r) = 0. The
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Fig. 4 The figure shows the graphs for Q2
cri tical(1,2) versus M . Here α = 0.2
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Fig. 5 The figure shows the Qcritical 1 versus M . The function f (r) is plotted for M = 0.7 and
Qcritical1 = 0.6025. Here α = 0.2
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Fig. 6 The figure shows the Qcritical2 versus M . The function f (r) is plotted for M = 0.7 and
Qcritical2 = 0.7746. Here α = 0.2

corresponding behavior for f (r) is also plotted underneath it. Each possibility gives
different scenarios for the horizons.

In the Fig. 8, the function f (r) is plotted for three values of Q with fixed M .

5.2 Structure of roots for fixed Q

Now, one can study the behavior of � for fixed Q and varying M . One can solve � = 0
for Mcritical in terms of Q and α. Since � is a cubic polynomial in M , there will be
three roots for Mcritical (given Q and α). The solution is quite lengthy and we will
avoid writing the expressions explicitly. The three solutions for Mcritical are plotted
in Fig. 9. The first and the second are realistic values since the other is negative.
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Fig. 7 The figure shows the � versus Q and the corresponding graphs f (r) versus r . Here Q = 1 and
α = 0.05
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Fig. 8 The figure shows the f (r) versus r for various values of Q

In Figs. 10 and 11, the Mcritical is plotted with Q. The function f (r) is plotted for
one particular value of Q and the corresponding Mcritical , It is clear that the location
of the degenerate root differs for Mcritical1 and Mcritical2.

Now that we have understood how � = 0 case well, one can study what type of
roots are given for f (r) = 0 for non-zero values of �. The graph in Fig. 12 shows
how � changes with M and the corresponding possibilities for the roots of f (r) = 0.
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Fig. 9 The figure shows the Mcritical versus Q. The three roots are given in the three graphs. Here,
α = 0.25
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Fig. 10 The figure shows the Mcritical 1 versus Q. The function f (r) is plotted for Q = 0.5 and
Mcritical1 = 0.5648. Here α = 0.25

The corresponding behavior for f (r) is also plotted underneath it. Each possibility
gives different scenarios for the horizons.

To summarize, for M = Mcritical , there will be a degenerate horizon where two
out of the three horizons will coincide. When M > Mcritical , there will be only one
horizon. When M < Mcritical , there will be three horizons, the Cauchy horizon (r+),
the event horizon(r++) and the cosmological horizon (rc). This is represented for one
particular case in Fig. 13.

5.3 Solution space

Summarizing all possibilities for horizons, one can draw the graph in Fig. 14 where
M is plotted against Q. When Q = 0, one get free-quintessence, Neutral-quintessence
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Fig. 11 The figure shows the Mcritical2 versus Q. The function f (r) is plotted for Q = 0.5 and
Mcritical2 = 0.4633. Here α = 0.25

and the Neutral–Nariai black hole. For other values of Q, when the points are inside the
boundaries, one have the general charged-quintessence black hole with three horizons.
On the boundaries, for M = Mcritical1 one obtain charged Nariai black hole with the
quintessence. The properties of such black holes will be described in detail in Sect. 7.
When M = Mcritical2, one obtain cold black holes with the quintessence. They are
described in detail in Sect. 7. When both boundaries meet, one obtain the ultra cold
black holes which have zero temperature. They are described in Sect. 8.

6 Number of horizons for the charged black hole with the quintessence

Depending on the values of M, Q and α, the function f (r) could have one, two or
three roots leading to different kind of black holes. Here, we will explicitly write down
the horizon radius for all three different scenarios.

6.1 The black hole with three horizons

When � > 0 there are three roots to the function f (r). The smallest root corresponds
to the black hole Cauchy horizon (r+), the second one corresponds to the black hole
event horizon (r++) and the largest root corresponds to the cosmological horizon (rc).
Then, the three horizons are given by,

rc = 2

√−p

3
cos

(
θ

3

)
+ 1

3α
(22)

r++ = 2

√−p

3
cos

(
θ

3
− 2π

3

)
+ 1

3α
(23)

r+ = 2

√−p

3
cos

(
θ

3
− π

3

)
+ 1

3α
(24)
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Fig. 12 The figure shows the � versus M and the corresponding graphs f (r) versus r . Here Q = 1 and
α = 0.05

Here the three functions p, q and θ are,

p = (6Mα − 1)

3α2 (25)

q = (−2 + 18αM − 27α2 Q2)

27α3 (26)

θ = cos−1

(
3q

2p

√
−3

p

)
(27)
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Fig. 13 The figure shows the graphs for f (r) versus r for fixed charge and varying mass. Here Q = 0.96
and α = 0.13
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Fig. 14 The figure shows M versus Q graph. Here, α = 0.1

Notice that for small α, the cosmological horizon rc ≈ 1
α

and M � 1
α

. For the
Reissner–Nordstrom-de-Sitter black hole, for special values of M, Q and the cosmo-
logical constant�, the possibility of three horizons exists [18]. The horizon at rc here
is similar to the cosmological horizon in the Reissner–Nordstrom-de-Sitter case.

6.2 Black hole with two horizons

In this case, there will be a double root and another simple root for the equation,
f (r) = 0 as,

r1 = r2 = (9αQ2 − 2M)

2(−1 + 6Mα)
(28)
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and,

r3 = (−1 + 8αM − 9α2 Q2)

α(−1 + 6Mα)
(29)

6.3 Black hole with one horizon

There are two possibilities to have only one horizon. One, is to have a triple root for
f (r) = 0. The other is to have one real root and two complex conjugate roots for
f (r) = 0.

6.3.1 Triple root

The triple real root given by,

r1 = r1 = r3 = 1

3α
(30)

6.3.2 Black hole with one horizon and non zero temperature

In this case, there are two separate scenarios.

Case 1: M < 1
6α , (p < 0)

η = −q

2

(
3

|p|
)(3/2)

(31)

Here, the real root is given by,

xreal = |η|
η

√
4|p|

3
cosh

(
1

3
cosh−1(|η|)

)
− 1

3α
(32)

Case 2: M > 1
6α (p > 0)

Here, the real root is given by,

xreal =
√

4|p|
3

sinh

(
1

3
sinh−1(|η|)

)
− 1

3α
(33)

Note that p and q are given by Eqs. (25) and (26).

7 Charged Nariai and cold black holes

According to the description in Sect. 5.2, when � = 0 and (−1 + 6Mα) �= 0, there
are double roots and a simple root for the equation f (r) = 0. If the double roots occur
at r = ρ, then,
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f (ρ) = 0; f ′(ρ) = 0 (34)

By combining those two, one can obtain the following expressions for the charge Q
and the mass M as,

M = ρ

2
(2 − 3αρ) (35)

Q2 = ρ2(1 − 2αρ) (36)

By substituting the above value of M and Q and factorizing the function f (r), it can
be rewritten as,

f (r) = (r − ρ)2 (1 − α(2ρ + r))

r2 (37)

There is another positive real root b for the function f (r) given by,

b = 1

α
− 2ρ (38)

which is derived from the function in Eq. (37). Now, one can write f (r),M, Q, and
α in terms of b and ρ as,

f (r)Nariai/cold(r) = −(r − b)(r − ρ)2

r2(b + 2ρ)
(39)

α = 1

(b + 2ρ)
; M = ρ(2b + ρ)

2(b + 2ρ)
; Q2 = bρ2

b + 2ρ
(40)

From the Sect. 5.2, the degenerate root ρ and the other simple root b can be written
explicitly in terms of M and Q as,

ρ = −2M + 9αQ2)

2(−1 + 6αM)
(41)

b = (−1 + 8αM − 9α2 Q2)

α(−1 + 6αM)
(42)

There are two possibilities for b: either it is outside the degenerate horizon ρ, or, it is
inside the degenerate horizon. Which horizon is bigger depends on the expression,

η = −2 + 18αM − 27α2 Q2 (43)

When η < 0 ⇒ ρ < b and when η > 0 ⇒ ρ > b
The Hawking temperature at the horizon b is,

TH (b) = (1 − ρ
b )

2

4π(b + 2ρ)
(44)
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Fig. 15 The figure shows the graphs for f (r) versus r for the cold black hole. Here Q = 1.04121 , M = 1
and α = 0.07

Since α = 1
b+2ρ ,

TH (b) = α

4π

(
1 − ρ

b

)2
(45)

Case 1 (b > ρ): Cold black hole

When b > ρ, the black hole is called the cold black hole and,

b > ρ ⇒ 0 < ρ <
1

3α
(46)

Also, the temperature at the black hole event horizon, ρ is zero (Fig. 15).
If b > ρ,⇒ 1 − ρ

b < 1 which leads to,

TH (b) <
α

4π
= TH ( f ree − quintessence) (47)

Hence the temperature of the cosmological horizon is smaller due to the presence of
the black hole compared to the free-quintessence case.

To understand the geometry near the degenerate horizon, we can choose a new
coordinate y such as [23]

r = ρ − εy (48)

The function f (r) can be expanded around r = ρ as,

f (r) ≈ f ′′(ρ)
2

(εy)2 (49)

Also, let a new time coordinate be defined as ψ = εt . With these transformations, the
metric is approximated to be,
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Fig. 16 The figure shows the graphs for f (r) versus r for the charged Nariai black hole. Here Q = 0.2 ,
M = 0.2 and α = 0.740741

ds2 = − f ′′(ρ)
2

y2dψ2 + 2

f ′′(ρ)
dy2

y2 + ρ2d�2 (50)

Note that f ′′(ρ) > 0 for the cold black hole. The above geometry represents Ad S2×S2

topology. The Ad S2 has the curvature f ′′(ρ)/2. The topology is the same for the cold
Reissner–Nordstrom-de Sitter black hole but with curvature � (Fig. 15).

Case 2 (b < ρ ): Charged Nariai black hole

b < ρ ⇒ 1

3α
< ρ <

1

2α
(51)

To find the geometry close to the degenerate horizon, one can approximate f (r)
(Fig. 16). by a parabola [10,24]

f (r) = f ′′(ρ)
2

(r − r1)(r − r2) (52)

Here, r1 and r2 represents a pair of close horizons, r++, rc. One can introduce new
coordinates as,

t = 2ψ

ε f ′′(ρ)
; r = ρ + εcosχ (53)

χ = 0 corresponds to r1 and χ = π corresponds to r2. Substituting these new
coordinates to the metric will yield,

ds2 = −2

f ′′(ρ)

(
−sin2χdψ2 + dχ2

)
+ ρ2d�2 (54)
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Note that f ′′(ρ) < 0 for the Nariai black hole. Now, the above geometry corresponds
to d S2 × S2. The curvature�e f f for d S2 is given by | f ′′(ρ)|/2. Reissner–Nordstrom-
de Sitter black hole also has the same topology near the degenerate horizon but with
the curvature, �.

8 Ultra-cold black holes

A special case occurs when b and ρ coincides leading to a triple root for f (r) = 0.
As discussed in Sect. (6.3.1), the triple real root is given by (Fig. 17),

r+ = r++ = rc = 1

3α
(55)

where,

M = 1

6α
; Q = 1

3
√

3α
(56)

In this case,

f (ρ) = 0; f ′(r)|ρ = 0 (57)

Hence the Hawking temperature, TH (ρ) = 0.
To understand the geometry near the horizon, a new coordinate is defined as y =

η
√

f ′′(ρ)/2. Since for the ultracold black hole f ′′(ρ) = 0, one can substitute the new
coordinate and take the limit f ′′(ρ) → 0 which leads to,

ds2 = −η2dψ2 + dη2 + ρ2d�2 (58)

0 2 4 6 8 10 12
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0.0

0.2

0.4

0.6

r

f
r

ρ

Fig. 17 The figure shows the graphs for f (r) versus r for the ultracold black hole. Here Q = 1.73205 ,
M = 1.5 and α = 0.1111
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The above geometry has the topology, R2 × S2. This is similar to the topology of the
ultracold Reissner–Nordstrom-de Sitter black hole near the degenerate horizon.

9 Lukewarm black holes with the quintessence

Lukewarm black hole is described as the charged-quintessence black hole solution
describing a black hole with the same temperature at an outer horizon (or event horizon)
a and the cosmological horizon b. Hence,

f (a) = f (b) = 0; f ′(a) = ± f ′(b) (59)

The minus sign is chosen due to the nature of the graph at a and b. The Eq. (59) can
be solved to obtain,

M = ab(a + b)

a2 + 3ab + b2 ; Q2 = a2b2

a2 + 3ab + b2 (60)

The function f (r) can be re-written in terms of a and b as,

f (r) =
(
1 − a

r

) (
1 − b

r

)
(ab − (a + b)r)

(a2 + 3ab + b2)
(61)

The third root corresponding to the inner horizon of the black hole is at (Fig. 18),

r+ = ab

(a + b)
(62)
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Fig. 18 The figure shows the graphs f (r) versus r for the lukewarm Reissner–Nordstrom black hole
surrounded by the quintessence. Here a = 3 and b = 7

123



2072 S. Fernando

Now, the temperature at a and b is,

T (a) = T (b) = 1

4π
| f ′(a)| = 1

4π

|b − a|
(a2 + 3ab + b2)

(63)

Lukewarm black holes for the Reissner–Nordstrom black holes are discussed in
[18]. Lukewarm black holes for the quadratic gravity is presented in [25].

10 Conclusions

We have investigated solution space for the charged black hole surrounded by the
quintessence. The mass M and the charge Q are varied to obtain various configurations
for the solutions for the horizon radii. Depending on the values of M, Q and α, it is
possible to have three or two horizons or a single horizon.

When the horizons coincide, interesting class of black hole space-times emerges.
When the Cauchy and the event horizons coincide, a cold black hole with a zero
temperature emerges. The topology of this space time near the horizon isAd S2 × S2.
When the cosmological and the event horizon coincide, charged Nariai type black hole
emerges. The topology at the near horizon is d S2 × S2. An ultra-cold black hole is a
result of all three horizons converging to one. Near the horizon, this black hole has
the topology R2 × S2. Another black hole named the lukewarm black hole emerge
when the temperature of the event horizon and the cosmological horizon are the same.
All these configurations are similar to what is studied in the Reissner–Nordstrom-de
Sitter black hole.

One can also study the topology of the Nariai, cold and ultracold black holes with the
quintessence with generalwq values (with −1 < wq < −1/3). If degenerate horizons

exists, they are at ρ̃ = Q2(wq−1)
2Mwq

. The topology of the Nariai, cold and ultracold black
holes will be the same as for the one with wq = −2/3 but with curvature of d S2 and
Ad S2 given by ±| f ′′(ρ̃)|/2.
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