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Abstract The Einstein–Maxwell equations with anisotropic pressures and electro-
magnetic field are studied with a polytropic equation of state. New exact solutions to
the field equations are generated in terms of elementary functions. Special cases of
the uncharged solutions of Feroze and Siddiqui (Gen Relativ Gravit 43:1025, 2011)
and Maharaj and Mafa Takisa (Gen Relativ Gravit 44:1419, 2012) are recovered. We
also obtain exact solutions for a neutral anisotropic gravitating body for a polytrope
from our general treatment. Graphical plots indicate that the energy density, tangential
pressure and anisotropy profiles are consistent with earlier treatments which suggest
relevance in describing relativistic compact stars.

Keywords Einstein–Maxwell equations · Polytropic equation of state ·
Relativistic stars

1 Introduction

In this paper we are concerned with anisotropic, charged fluids in general relativity
theory satisfying the Einstein–Maxwell system. The canonical approach to study such
a model is to specify initially the properties of matter in terms of equations of state.
Then the model may be simplified by imposing symmetries on the spacetime manifold
which eases the task of solving the field equations. The resulting family of solutions
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should be studied to confirm their physical relevance. For neutral gravitating spheres,
Delgaty and Lake [1] discuss the relevant physical requirements and they show that
only a restricted family of models satisfy the physical tests. In our approach we impose
the requirement that the spacetime is static and spherically symmetric, specify an
equation of state relating the radial pressure to the density, and choose forms for
one of the metrics variables and the electric field. This line of approach is different
from the canonical approach but has the advantage of simplifying the integration
process. It does produce exact solutions which may be useful examples for stellar
models.

The modeling of dense charged gravitating objects in strong gravitational fields
has generated much interest in recent times because of its relevance to relativistic
astrophysics. Gupta and Maurya [2–4], Kiess [5], Maurya and Gupta [6–8] and Pant
et al. [9] have generated specific charged models with desirable physical features.
These investigations require an exact solution of the Einstein–Maxwell system. The
presence of charge produces values for the redshift, luminosity and maximum mass
which are different from neutral matter. Applications of dense charged gravitating
spheres include describing quarks stars, spheres with strange equation of state, hybrid
protoneutron stars, bare quark stars and the accreting process onto a compact object
where the matter is likely to acquire large amounts of electric charge as pointed out by
Esculpi and Aloma [10], Sharma and Maharaj [11], Sharma and Mukherjee [12,13]
and Sharma et al. [14] amongst others.

A considerable number of exact solutions to the Einstein–Maxwell system has
been generated by Ivanov [15], Komathiraj and Maharaj [16,17] and Thirukkanesh
and Maharaj [18] by choosing a generalized form for one of the gravitational potentials.
The solutions are represented as an infinite series in closed form in general; polynomial
and algebraic functions are possible for particular parameter values and previously
known models are regained in the appropriate limit. However these models do not
satisfy a barotropic equation of state, relating the radial pressure to the energy density in
general. The importance of an equation of state in a stellar model has been emphasized
by Varela et al. [19] who provided a mechanism of dealing with anisotropic matter in
a general approach. Some solutions of the Einstein–Maxwell system found recently
do in fact satisfy an equation of state. The models of Thirukkanesh and Maharaj [20],
Mafa Takisa and Maharaj [21], Thirukkanesh and Ragel [22] possess a linear equation
of state for a charged anisotropic sphere. The solution of Hansraj and Maharaj [23]
satisfies a complicated nonlinear barotropic equation of state with isotropic pressures.
The models of Feroze and Siddiqui [24] and Maharaj and Mafa Takisa [25] satisfy a
quadratic equation of state which is important in brane world models and the study
of dark energy. Models with a polytropic equation of state are rare. Thirukkanesh and
Ragel [22,26] have recently obtained particular uncharged models by specifying the
polytropic index leading to masses and energy densities which are consistent with
observations.

In this paper we consider the general situation of anisotropic matter in the pres-
ence of an electromagnetic field satisfying a polytropic equation of state. Our objec-
tive is to find exact solutions to the Einstein–Maxwell system. We ensure that the
charge density is regular throughout the sphere and finite at the centre. The gravita-
tional potential selected has a functional form which has produced physically viable
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models in the past. An advantage of our approach is that we can automatically pro-
duce a new uncharged anisotropic model, with a polytropic equation of state, when
the charge vanishes. In Sect. 2, we express the Einstein–Maxwell system as an equiv-
alent set of differential equations using a transformation due to Durgapal and Bannerji
[27]. In Sect. 3, we motivate the choice of the gravitational potential and the electric
field intensity that allow us to integrate the field equations. The range of polytropic
indices is considered in Sect. 4. We obtain a family of exact solutions to the Einstein–
Maxwell system for particular polytropic indices in this section. Uncharged models
are also obtained. In Sect. 5, we discuss the physical features of the model and gen-
erate graphical plots for the matter quantities. We make some closing remarks in
Sect. 6.

2 Field equations

In standard coordinates the line element for a static spherically symmetric fluid in the
stellar interior has the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

We are considering an anisotropic fluid in the presence of electromagnetic field; the
energy momentum tensor is given by

Ti j = diag

[
−ρ − 1

2
E2, pr − 1

2
E2, pt + 1

2
E2, pt + 1

2
E2

]
, (2)

where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure
and E is the electric field intensity. The Einstein–Maxwell equations take the form

1

r2

[
r(1 − e−2λ)

]′ = ρ + 1

2
E2, (3a)

− 1

r2 (1 − e−2λ) + 2ν′

r
e−2λ = pr − 1

2
E2, (3b)

e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
= pt + 1

2
E2, (3c)

σ = 1

r2 e−λ(r2 E)′, (3d)

where primes represent differentiation with respect to r, and the quantity σ represents
the proper charge density.

The fundamental equations describing the underlying gravitating model for an
anisotropic charged spherically symmetric relativistic fluid are given by the system
(3). When the charge is absent then (3) is a system of three equations in five unknowns
(ν, λ, ρ, pr , pt ). An uncharged solution may be generated by specifying forms for
two unknowns or supplementing the system with two equations of state relating the
matter variables as point out by Barraco et al. [28]. In the presence of charge (3) is
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a system of four equations in six unknowns (ν, λ, ρ, pr , pt , E or σ ). Note that if we
choose a form of the electric field E then the system (3) becomes a system of three
equations in four unknowns. A charged solution may be found by specifying forms
for three unknowns or any combination of unknowns and equations of state relating
the matter variables. The equations of state should be chosen on physical grounds. We
note that the Eqs. (3) imply

p′
r = 2

r
(pt − pr ) − r(ρ + pr )ν

′ + E

r2

(
r2 E

)′
, (4)

which is the Bianchi identity representing hydrostatic equilibrium of the charged
anisotropic fluid. Equation (4) indicates that the anisotropy and charge influence the
gradient of the pressure. These quantities may drastically affect quantities of physical
importance such as surface tension as established by Sharma and Maharaj [29] in the
generalized Tolman-Oppenheimer Eq. (4). The specific forms of pt and E in particular
models studied will determine the nature of profiles of p′

r .
We assume a polytropic equation of state relating the radial pressure pr to the

energy density ρ given by

pr = κρΓ , (5)

where Γ = 1 + (1/η) and η is the polytropic index.
It is convenient to introduce a new independent coordinate x and introduce new

metric functions y and Z:

x = Cr2, Z(x) = e−2λ(r), A2 y2(x) = e2ν(r), (6)

where A and C are constants. Then the equations governing the gravitational behaviour
of a charged anisotropic sphere, with nonlinear polytropic equation of state, are given
by

ρ

C
= 1 − Z

x
− 2Ż − E2

2C
, (7a)

pr = κρ1+(1/η), (7b)

pt = pr + �, (7c)

�

C
= 4x Z

ÿ

y
+ Ż

[
1 + 2x

ẏ

y

]
+ 1 − Z

x
− E2

C
, (7d)

ẏ

y
= 1 − Z

4x Z
− E2

8C Z
+ κC1+(1/η)

4Z

[
1 − Z

x
− 2Ż − E2

2C

]1+(1/η)

, (7e)

σ 2

C
= 4Z

x

(
x Ė + E

)2
, (7f)

where � = pt − pr is called the measure of anisotropy. The analogue of the system (7),
with a linear equation of state, was pursued by Thirukkanesh and Maharaj [20]. The
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Einstein–Maxwell equations, with a quadratic equation of state, was studied by Feroze
and Siddiqui [24] and Maharaj and Mafa Takisa [25]. The system (7), representing
gravitating matter with a polytropic equation of state, is physically more relevant, and
the model is of importance in relativistic astrophysics. However the polytropic equation
of state is the most difficult to study because of the nonlinearity introduced through
the polytropic index η. The transformed form of the Einstein–Maxwell equations
simplifies the integration to produce exact solutions.

3 Integration

We solve the Einstein–Maxwell field equations by choosing specific forms for the
gravitational potential Z and the electric field intensity E which are physically rea-
sonable. The model depends on obtaining a solution to (7e). Equation (7e) becomes a
first order equation in the potential y which is integrable.

We make the choice

Z = 1 + bx

1 + ax
a �= b, b �= 0, (8)

where a and b are real constants. The quantity Z is regular at the stellar centre and
continuous in the interior because of the freedom provided by the parameters a and b.
It is important to realise that this choice for Z is physically reasonable and contains
special cases of known relativistic star models. The choice (8) was made by Maharaj
and Mafa Takisa [25] to generate stellar models that satisfy physical criteria for a
stellar source with a quadratic equation of state. Charged stellar models were also
found by John and Maharaj [30], Thirukkanesh and Maharaj [20], Komathiraj and
Maharaj [31] and Feroze and Siddiqui [24] with this form of Z . A detailed study of
the Einstein–Maxwell system, for isotropic matter distributions, was performed by
Thirukkanesh and Maharaj [18]. Neutral stellar models in general relativity have been
found for special cases of the potential Z . If we set a = 1, b = 1/2 then we generate
the Durgapal and Bannerji [27] neutron star model. When a = 7, b = −1 then we
generate the gravitational potential of Tikekar [32] for superdense stars. Thus the form
Z chosen is likely to produce physically reasonable models for charged anisotropic
spheres with a polytropic equation of state.

For the electric field we make the choice

E2

2C
= εx

(1 + ax)2 , (9)

which has desirable physical features in the stellar interior. It is finite at the centre
of the star and remains bounded and continuous in the interior; for large values of x
it approaches zero. A similar form of the electric field was studied by Hansraj and
Maharaj [23] which reduces to the uncharged Finch and Skea [33] model. Finch and
Skea stars satisfy all the requirements for physical acceptability. Therefore the choice
(9) is likely to produce charged anisotropic models with a polytropic equation of
state.
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By substituting (8) and (9) into (7e) we obtain the result

ẏ

y
= a − b

4(1 + bx)
− εx

4(1 + ax)(1 + bx)

+κC1+(1/η)(1 + ax)

4(1 + bx)

[
(a − b)(3 + ax) − εx

(1 + ax)2

]1+(1/η)

. (10)

This is a first order equation but the presence of the polytropic index η makes it difficult
to solve. The right hand side of (10) and its first derivative must be continuous to ensure
integrability; clearly this is possible for a wide range of the parameters a, b, ε and η.
We can integrate (10) in terms of elementary functions for particular values of η as
shown in the next section.

In summary the potential Z and the electric field E have been specified. Then the
charge density must have the form

σ 2

C2 = 2ε(1 + bx)(3 + 2ax)2

(1 + ax)5
. (11)

The energy density is given by

ρ

C
= (a − b)(3 + ax) − εx

(1 + ax)2 . (12)

On integrating (10) we can find the gravitational potential y. As Z and E are now
known quantities, we can find the measure of anisotropy � by simple substitution in
(7d). The tangential pressure pt then follows from (7c). Thus we must find an analytic
form for y to complete the integration.

4 Polytropic models

Newtonian polytropic models have been studied for over a hundred years. Early results
have been extensively described by Chandrasekhar [34]. Particular polytropic indices
have been shown to be consistent with neutron stars, main sequence stars, convective
stellar cores of red giants and brown dwarfs, and relativistic degenerate cores of white
dwarfs. When η = 5 then the polytrope has an infinite radius, and when the index
η → ∞ the isothermal sphere is generated. Polytropes have also been studied in
the context of general relativity. It is important to note that in Newtonian theory
polytropes with certain exponents correspond to adiabates. The physical interpretation
of the distribution in relativity is more difficult since the adiabates obey different
equations of state as indicated in treatment of Tooper [35]. Some numerical results
have been found by Tooper [36] who studied the structure of polytropic fluid spheres
for η = 1, 3/2, 5/2 and η = 3. Pandey et al. [37] presented an exhaustive study of
relativistic polytropes in the range 1/2 ≤ η ≤ 3. de Felice et al. [38] considered
the structure and energy of singular general relativistic polytropes in the range 0 ≤
η ≤ 4.5. Recently Thirukkanesh and Ragel [22,26] found uncharged exact solutions
with a polytropic equation of state for η = 1 and η = 2. Nilsson and Uggla [39]
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demonstrated numerically that general relativistic perfect fluid models have finite
radius for the polytropic index 0 ≤ η ≤ 3.339. Subsequently Heinzle et al. [40]
performed a comprehensive dynamical systems treatment for perfect fluids that are
asymptotically polytropic. The mass-radius ratio for anisotropic matter configurations
is bounded for a compact general relativistic object as given by Boehmer and Harko
[41] and Andreasson and Boehmer [42] for general matter distributions, and they are
consequently applicable for polytropes. In this paper we consider the polytropic index
ranging over the four cases η = 1/2, 2/3, 1, 2 for strong gravitational fields when
anisotropy and the electromagnetic field are present. The values of η chosen produce
finite models that correspond to physically acceptable matter distributions as shown
in the analyses of Pandey et al. [37] and Thirukkanesh and Ragel [22,26].

4.1 The case η = 1

When η = 1, the equation of state (5) becomes

pr = κρ2. (13)

On integrating (10) we get

y = B(1 + ax)k[1 + bx]l exp [F(x)] , (14)

where B is the constant of integration. The variable F(x), the constants k and l are
given by

F(x) = C2κ[2(2b − a)(1 + ax) + (b − a)]
2(b − a)2(1 + ax)2

−C2κε[4a(a − b) + ε]
8a2(a − b)(1 + ax)

− C2κε[2a(a2 − 2ε) + b(2ab − ε)]
4a2(a − b)2(1 + ax)

,

k = C2κ[2(a − b)]2
[

b2

(b − a)3 + b

(b − a)2 + 1

4

]

−2ε[(a − b)2 + C2κaε]
a

− 4C2κaε[1 + b(4 − 3b)],

l = (a − b)

4b
+ C2κ[2(a − b)]2

[
b2

(b − a)3 + b

(b − a)2 + 1

4

]

−2ε[(a − b)2 + C2κbε]
b

− 4C2κε[(a − b)(a − 3b)]. (15)

If we set A2 B2 = D and C = 1 then the line element has the form

ds2 = −D
(

1 + ar2
)2k

(1 + br2)2l exp[2F(r2)]dt2 + 1 + ar2

1 + br2 dr2

+r2(dθ2 + sin2 θdφ2), (16)

in this case.
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Therefore we have obtained a new charged anisotropic model corresponding to
the polytropic index η. Observe that it is possible to set ε = 0 in this solution so
that E = 0 and there is no charge. Thus our approach automatically generates an
uncharged model. The uncharged polytrope with η = 1 is given by the metric

ds2 = −D
(

1 + ar2
)2κ[2(a−b)]2

[
b2

(b−a)3
+ b

(b−a)2
+ 1

4

]

×
(

1 + br2
)2 (a−b)

4b +κ[2(a−b)]2
[

b2

(b−a)3
+ b

(b−a)2
+ 1

4

]

× exp

[
κ(2(2b − a)(1 + ax) + (b − a))

(b − a)2(1 + ax)2

]
dt2

+1 + ar2

1 + br2 dr2 + r2(dθ2 + sin2 θdφ2). (17)

Note that the metric (16), with ε = 0, is contained in the models of Feroze and Siddiqui
[24] and Maharaj and Mafa Takisa [25]. They considered the quadratic equation of
state pr = γρ2 + αρ + β. If we set γ = κ, α = 0, β = 0 and E = 0 then we find
that their solutions are equivalent to our uncharged metric (17).

4.2 The case η = 2

When η = 2, the equation of state (5) becomes

pr = κρ3/2. (18)

On integrating (10) we obtain

y = B
[1 + bx] (a−b)2+ε

4b(a−b)

[1 + ax] −ε
4a(a−b)

[√
2a(a − b) + ε − √

b
√

(3 + ax)(a − b) − εx√
2a(a − b) + ε + √

b
√

(3 + ax)(a − b) − εx

]m+w

× exp[G(x)], (19)

where B is the constant of integration. The variable G(x), the constants m and w are
given by

G(x) = − C3/2κ

2(1 + ax)
− C3κε

√
(3 + ax)(a − b) − εx

4a(a − b)(1 + ax)
,

m = C3/2κ[(a − b)(3b − a) + ε]3/2

2
√

b(a − b)
,

w = C3/2κ[2a2(a − b)(3a + 7b) − aε(3a + 5b)] − ε2(b − 3a)

4a3/2(a − b)
√

2a(a − b) + ε
.

(20)
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By setting A2 B2 = D and C = 1 the line element takes the form

ds2 = −D
(

1 + br2
) (a−b)2+2ε

2b(a−b)
(

1 + ar2
) ε

2a(a−b)
exp[2G(r2)]dt2

×
[√

2a(a − b) + ε − √
b
√

(3 + ar2)(a − b) − εr2

√
2a(a − b) + ε + √

b
√

(3 + ar2)(a − b) − εr2

]2(m+w)

+1 + ar2

1 + br2 dr2 + r2(dθ2 + sin2 θdφ2), (21)

for this case.
Setting ε = 0 implies E = 0 and we find the uncharged polytropic model with

η = 2. The corresponding line element is given by

ds2 = −D
(

1 + br2
) (a−b)2

2b(a−b)
exp

[ −κ

(1 + ar2)

]
dt2

×
[√

2a(a − b) − √
b
√

(3 + ar2)(a − b)√
2a(a − b) + √

b
√

(3 + ar2)(a − b)

] κ(3b−a)
√

(a−b)(3b−a)√
b

+ κ
√

a(3a+7b)√
2a(a−b)

+1 + ar2

1 + br2 dr2 + r2(dθ2 + sin2 θdφ2), (22)

which is a new solution to the Einstein–Maxwell equations with this polytropic index.

4.3 The case η = 2/3

When η = 2/3, the equation of state (5) is

pr = κρ5/2. (23)

On integrating (10) we find

y = B
[1 + bx] (a−b)2+ε

4b(a−b)

[1 + ax] −ε
4a(a−b)

[√
2a(a − b) + ε − √

b
√

(3 + ax)(a − b) − εx√
2a(a − b) + ε + √

b
√

(3 + ax)(a − b) − εx

]p+q

× exp[H(x)], (24)

where B is the constant of integration. The variable H(x), the constants p and q are
given by

H(x) = −C5/2κ(2a(a − b) + ε)2A
12a2(a − b)(1 + ax)3

−C5/2κ(2a(a − b) + ε)((a − b)(13a2 − 25ab) + ε(13a + 7b))A
48a2(a − b)2(1 + ax)3
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−C5/2κ[(a − b)(8a3(a2 − ε) + 4aε(ε − 1))]A
32a2(a − b)3(1 + ax)

−C5/2κ[−9a2b3 + 206a3b2(a − b3) + 70a2b2(b2 − ε)]A
32a2(a − b)3(1 + ax)

−C5/2κ[a3(3a6 − b3) − aε(8a2 − 7ε)A
32a2(a − b)3(1 + ax)

,

p = C5/2κ
√

b[(a − b)(3b − a) + ε]5/2

2(a − b)
,

q = C5/2κ[51a2b4ε + 30a3bε2 + 1468a5b3]
32a5/2(a − b)3

√
2a(a − b) + ε

+C5/2κ[(a + b)(498a4bε + 15a6s + 5abε3 − 5a8 − 15a4ε2)]
32a5/2(a − b)4

√
2a(a − b) + ε

+C5/2κε[−b(42b + 75a4) − ε2(2a + 5b) + 6b2(a3 − 3b3)]
16a1/2(a − b)4

√
2a(a − b) + ε

+C5/2κ[ε3(a3 + b3) + abε2(9b3 + 15a3) + 535b4(a5 + b5)]
32a5/2(a − b)4

√
2a(a − b) + ε

−C5/2κ[a4b5(353ab − 1354) + a5b(16b3 − 85a3)]
32a5/2(a − b)4

√
2a(a − b) + ε

,

where A = √
(3 + ax)(a − b) − εx . If we set A2 B2 = D and C = 1 then the line

element assumes the form

ds2 = −D
(

1 + br2
) (a−b)2+2ε

2b(a−b)
(

1 + ar2
) ε

2a(a−b)
exp[2H(r2)]dt2

×
[√

2a(a − b) + ε − √
b
√

(3 + ar2)(a − b) − εr2

√
2a(a − b) + ε + √

b
√

(3 + ar2)(a − b) − εr2

]2(p+q)

+1 + ar2

1 + br2 dr2 + r2(dθ2 + sin2 θdφ2), (25)

in this case.
If we set ε = 0 then E = 0, and we get the uncharged polytropic model with

η = 2/3. The uncharged line element has the form

ds2 = −D[1 + br2] (a−b)2

2b(a−b)

[√
2a(a − b) − √

b
√

(3 + ar2)(a − b)√
2a(a − b) + √

b
√

(3 + ar2)(a − b)

]2(p+q)

× exp[2H(r2)]dt2 + 1 + ar2

1 + br2 dr2 + r2(dθ2 + sin2 θdφ2), (26)

which is another new model for the index η = 2/3.
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4.4 The case η = 1/2

When η = 1/2, the equation of state (5) is

pr = κρ3. (27)

On integrating (10) we find

y = B(1 + ax)s[1 + bx]u exp [I (x)] , (28)

where B is the constant of integration. The variable I (x), the constants s, and u are
given by

I (x) = − C3κ(2a(a − b) + ε)3

16a3(a − b)(1 + ax)4 − C3κ((a − b)(a − 3b) − ε)3

4(a − b)4(1 + ax)

−C3κ(2a(a − b) + ε)2[(a − b)(a(3a − 5b) − 2ε) − aε]
12a3(a − b)2(1 + ax)3

−C3κ[6a4(a3 + 6bε) + 4a4b2(29a + 10b) + 3aε3]
8a3(a − b)2(1 + ax)2

−C3κbε[bη2 + 3a(ε(b2 + 3a2) + ab(b2 − a2))]
8a3(a − b)3(1 + ax)2

−C3κ[36a4b3(a3 − b3) + 12a2b2(ε(ab − 1) − a2b2)]
8a3(a − b)3(1 + ax)2

−C3κa2(3ε(3a − b2) + 14b4)

8a3(a − b)3(1 + ax)2 ,

s = −ε[(a2 − b2)2 − 4b(a2(a − b) + b2)]
4a(a − b)5

+C3κ[a2b2(a2 + b2)(136b2 + 11a2)]
4a(a − b)5

−C3κ[9ab5(3a2 − 19b2) + 3b2ε2(4a2 + 3b)]
4(a − b)5

+C3κ[3ab4ε(4a + 9b) + abε(a3b + ε2)]
4(a − b)5

−C3κa2b[a2 + 17ab2 − 22bε]
4(a − b)4

−C3κ[3a3bε(a2 + 1) + 40a3b3(a2 − ε)]
4(a − b)5

,

u = (a2 + b2)(4abε + 15a2b2) − ε(a4 + b4)

4b(a − b)5

+ (a3 − b3) − 6ab(a4 + b4 + ab(3 + ε))

4b(a − b)5
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+C3κ[12a3b3(a2 − b2) + b2ε(6ab − ε2)]
4b(a − b)4

+C3κ[27b3(1 + b3) + a3b2(a3 − 4b3)]
4b(a − b)4 ,

+C3κ[ab4(57a2 + 108b2) − 3b2ε2(1 + 3b) − 3ab3(21ab2 + 22bε)]
4b(a − b)4 ,

in this case. If we set A2 B2 = D and C = 1 then the line element is given by

ds2 = −D(1 + ar2)2s(1 + br2)2u exp[2I (r2)]dt2 + 1 + ar2

1 + br2 dr2

+r2(dθ2 + sin2 θdφ2), (29)

for this case.
Setting ε = 0 implies E = 0, and we generate the uncharged polytropic model

with η = 1/2. The corresponding line element is given by

ds2 = −D(1 + ar2)2s(1 + br2)2u exp[2I (r2)]dt2 + 1 + ar2

1 + br2 dr2

+r2(dθ2 + sin2 θdφ2), (30)

which is a new solution to the Einstein–Maxwell equations.

5 Physical analysis

In this section we indicate that the exact polytropic solutions found in Sect. 4 are
physically reasonable. The gravitational potential Z is regular at the centre and well
behaved in the interior. The potentials y presented for various cases in Sect. 4 are
given in terms of simple elementary functions. They are regular at the stellar centre
and continuous in the interior. The potentials Z and y reduce for particular values of
parameters to relativistic stellar models studied previously which have been shown to
possess desirable physical features. Clearly the choice of the electric field E in (9) is
physically acceptable as shown by Hansraj and Maharaj [23]. The choice of E leads
to forms of charge density σ in (11) and the energy density ρ in (12) given in terms of
rational functions. The quantities E, σ and ρ become decreasing functions for large
values of x .

We used the programming language Python to generate two sets of plots for the
radial pressure pr , the tangential pressure pt , and the anisotropy � for the polytropic
indices η = 1/2, 2/3, 1, 2. These represent profiles for charged anisotropic matter
with ε �= 0 for a = 5.5, b = 3.0, ε = 1, the boundary r = 4, C = 1 and κ

given by the causality condition dpr
dρ

≤ 1 for each case. In the first set of figures, we
have plotted pr , pt and � against the radial coordinate r : Fig. 1 represents the radial
pressure, Fig. 2 represents the tangential pressure, and Fig. 3 represents the anisotropy.
The radial pressure is a finite and decreasing function in Fig. 1. The tangential pressure
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Fig. 1 Radial pressure pr (r)

Fig. 2 Tangential pressure pt (r)

Fig. 3 Anisotropy �(r)
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Fig. 4 Radial pressure pr (ρ)

Fig. 5 Tangential pressure pt (ρ)

in Fig. 2 initially increases, reaches a maximum and then decreases. The anisotropy in
Fig. 3 also reaches a maximum in the interior and then decreases. These profiles are
similar to other studies. The high values of pt in central regions of a star is reasonable
as pointed out by Karmakar et al. [43] because of conservation of angular momentum
in quasi-equilibrium contraction of a compact body. The profile of � is similar to the
profiles generated in studies of strange stars with quark matter by Sharma and Maharaj
[11] and Tikekar and Jotania [44]. In the second set of figures, we have plotted pr , pt

and � against the density ρ: Fig. 4 represents radial pressure, Fig. 5 represents the
tangential pressure, and Fig. 6 represents the anisotropy. We have utilized the forms
for pr from Sect. 4 and the functions for pt and � listed in the Appendix. The radial
pressure pressure remains an increasing function in Fig. 4. The tangential pressure
pt increases to a maximum and then becomes a decreasing function in Fig. 5. This
feature is to be expected as we commented above about the expected higher values of
pt in the central regions. In the same way, in Fig. 6, the anisotropy reaches a maximum
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Fig. 6 Anisotropy �(ρ)

Fig. 7 Speed of sound dpr
dρ

(r)

in the interior and then decreases. Our profiles are similar to those given by Ray et
al. [45] who showed that the presence of electric charge has a significant effect on
the phenomenology of compact stars with intense gravitational fields. Observe that
the profiles of the radial pressure pr increases as a function of the energy in Fig. 4
for each polytropic index. The gradient is larger as the polytropic index increases;
the behaviour is consistent with the physical requirements of Pandey et al. [37]. We
observe the same behaviour for the profiles for pt and �. Finally in Fig. 7 we have
plotted the speed of sound dpr

dρ
. This quantity is always less than unity and the causality

is maintained which is a requirement for a physical object as indicated by Delgaty and
Lake [1].

6 Discussion

In this paper we have generated new exact solutions to the Einstein–Maxwell system
of equations with a polytropic equation of state. These solutions may be used to
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model compact objects which are anisotropic and charged. Note that the solutions
are expressed in terms of elementary functions which facilitate a physical study. A
graphical analysis shows that the gravitational potentials and matter variables are
regular at the centre and well behaved in the interior. It would be interesting to relate
these new solutions to particular astronomical objects such as SAX J1804.4–3658
as was done by Dey et al. [46–48], in the absence of charge, and Mafa Takisa and
Maharaj [21], in the presence of charge. Such a study will reinforce the astrophysical
significance of the models in this paper. We point out that our approach automatically
leads to new uncharged anisotropic solutions when the electric field E = 0.
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7 Appendix

In the appendix we list expressions for tangential pressure pt and the measure of
anisotropy � for each polytropic index considered in this paper. These quantities
assist in the generation of graphical plots in the physical analysis. These quantities are
given by
(a) For index η = 1:

pt = 4xC(1 + bx)

1 + ax

[
k(k − 1)a2

(1 + ax)2 + 2klab

(1 + ax)(1 + bx)
+ 2ka Ḟ(x)

1 + ax
+ b2l(l − 1)

(1 + bx)2

+2lbḞ(x)

1 + bx
+ F̈(x) + Ḟ(x)2

]
+ 2xC

[
ak

1 + ax
+ b

1 + bx
+ Ḟ(x)

]

+C(a − b)ax − 2εx

(1 + ax)2 + κC2
[
(a − b)(3 + ax) − εx

(1 + ax)2

]2

, (31a)

� = 4xC(1 + bx)

1 + ax

[
k(k − 1)a2

(1 + ax)2 + 2klab

(1 + ax)(1 + bx)
+ 2ka Ḟ(x)

1 + ax
+ b2l(l − 1)

(1 + bx)2

+2lbḞ(x)

1 + bx
+ F̈(x) + Ḟ(x)2

]
+ 2xC

[
ak

1 + ax
+ b

1 + bx
+ Ḟ(x)

]

+C(a − b)ax − 2εx

(1 + ax)2 . (31b)

(b) For index η = 2:

pt = 4xC(1 + bx)

1 + ax

[
d

dx

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (m + w)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)
+ ẏ2

y2

]
+ C(b − a)

(1 + ax)2
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×
[

1 + 2x

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (m + w)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)]

+ (a − b)(1 + ax) − 2εx

(1 + ax)2 + κC3/2
[
(a − b)(3 + ax) − εx

(1 + ax)2

]3/2

, (32a)

� = 4xC(1 + bx)

1 + ax

[
d

dx

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (m + w)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)
+ ẏ2

y2

]
+ C(b − a)

(1 + ax)2

×
[

1 + 2x

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (m + w)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)]
+ (a − b)(1 + ax) − 2εx

(1 + ax)2 , (32b)

where T = √
(3 + ax)(a − b) − εx .

(c) For index η = 2/3:

pt = 4xC(1 + bx)

1 + ax

[
d

dx

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (p + q)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)
+ ẏ2

y2

]
+ C(b − a)

(1 + ax)2

×
[

1 + 2x

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (p + q)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT (x))

)]

+ (a − b)(1 + ax) − 2εx

(1 + ax)2 + κC5/2
[
(a − b)(3 + ax) − εx

(1 + ax)2

]5/2

, (33a)

� = 4xC(1 + bx)

1 + ax

[
d

dx

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (p + q)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)
+ ẏ2

y2

]
+ C(b − a)

(1 + ax)2

×
[

1 + 2x

(
b((a − b)2 + ε)

4b(a − b)(1 + bx)
− aε

4a(a − b)(1 + ax)

− (p + q)
√

b(a(a − b)ε)

2T (
√

2a(a − b) + ε + √
bT )

)]
+ (a − b)(1 + ax) − 2εx

(1 + ax)2 . (33b)
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(d) For index η = 1/2:

pt = 4xC(1 + bx)

1 + ax

[
s(s − 1)a2

(1 + ax)2 + 2suab

(1 + ax)(1 + bx)
+ 2sa İ (x)

1 + ax
+ b2u(u − 1)

(1 + bx)2

+2ubİ (x)

1 + bx
+ Ï (x) + İ (x)2

]
+ 2xC

[
as

1 + ax
+ b

1 + bx
+ İ (x)

]

+C(a − b)ax − 2εx

(1 + ax)2 + κC2
[
(a − b)(3 + ax) − εx

(1 + ax)2

]3

, (34a)

� = 4xC(1 + bx)

1 + ax

[
s(s − 1)a2

(1 + ax)2 + 2suab

(1 + ax)(1 + bx)
+ 2sa İ (x)

1 + ax
+ b2l(u − 1)

(1 + bx)2

+2lb İ (x)

1 + bx
+ Ï (x) + İ (x)2

]
+ 2xC

[
as

1 + ax
+ b

1 + bx
+ İ (x)

]

+C(a − b)ax − 2εx

(1 + ax)2 . (34b)
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