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Abstract A class of cosmological solutions of higher dimensional Einstein field
equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the
source are considered with an anisotropic metric that includes the direct sum of a
3-dimensional (physical, flat) external space metric and an n-dimensional (compact,
flat) internal space metric. A simple kinematical constraint is postulated that correlates
the expansion rates of the external and internal spaces in terms of a real parameter λ.
A specific solution for which both the external and internal spaces expand at different
rates is given analytically for n = 3. Assuming that the internal dimensions were at
Planck length scales when the external space starts with a Big Bang (t = 0), they
expand only 1.49 times and stay at Planck length scales even in the present age of the
universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior
consistent with our current understanding of the observed universe. It would start in a
stiff fluid dominated phase and evolve through radiation dominated and pressureless
matter dominated phases, eventually going into a de Sitter phase at late times.

Keywords Kaluza–Klein cosmology · Late-time acceleration · Cosmological
equation of state

1 Introduction

There are neither a priori nor observational reasons for assuming that the universe
during its dynamical evolution has always been four dimensional. The unification of
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fundamental interactions of nature achieved in higher dimensions provides a strong
motivation to give a serious consideration to this possibility. The first attempt to unify
gravitation and electromagnetism by Kaluza and Klein was based on the idea that
the universe we live in is in fact five dimensional, but as the fifth dimension remains
small, it appears effectively four dimensional [1]. We know today that anomaly-free
superstring models of all fundamental interactions require a spacetime of ten dimen-
sions for consistency and the M-theory in which they are supposedly be embedded
lives in an eleven dimensional spacetime (see [2] and references therein). It is gen-
erally assumed that all but four of the spacetime dimensions are compactified on an
unobservable internal manifold, leaving an observable (1 + 3)-dimensional spacetime.
In the early 1980’s the dynamical reduction of internal dimensions to unobservable
scales with the physical, external dimensions expanding while the internal dimensions
contracting, has been considered for the first time in cosmology [3–5]. Much later cos-
mological models where the internal dimensions are static and remain at unobservable
scales while the external space keeps expanding were also investigated (see for exam-
ple, [6]). We would like to point out here that there is yet another possibility. Both
of the external and internal dimensions may start at comparable small scales, yet at
later stages of the evolution of the universe the scale of the internal dimensions could
not expand as fast as that of the external space does and still remains unobservable.
Independent of which possibility is applied, in a successful higher dimensional cos-
mological model, the universe should not only appear effectively four dimensional
today but one should also be able to describe its dynamical evolution consistently
with our present-day observed universe. The simplest model that fits the present-day
cosmological data is the �-cold dark matter (�CDM) model [7]. It is based on Ein-
stein’s four-dimensional theory of general relativity with a spatially flat, isotropic and
homogeneous Robertson–Walker metric. It explains the observed acceleration of the
universe by a simple introduction of a positive cosmological constant � that is mathe-
matically equivalent to a conventional vacuum energy with the equation of state (EoS)
parameter set equal to −1. However, this model does not come without any prob-
lems. It suffers from two conceptual problems concerning the cosmological constant,
known as the fine tuning and the coincidence problems [8,9]. The source that drives
the observed acceleration of the universe is still a mystery in the contemporary cosmol-
ogy and is usually discussed under the generic name of dark energy (DE). A positive
� is, today, the simplest candidate for DE besides some scalar field theoretic mod-
els of DE, namely the quintessence, k-essence and others [9,10]. On the other hand,
the dynamics of the observed universe may be studied in a model independent way
known as the kinematical approach [11]. The kinematical approaches to DE usually
favor w ∼ −1 as well as time-dependent EoS parameters rather than the constant EoS
parameter value −1 [11–14]. A time-dependent EoS parameter is obtained in general,
for instance, when the DE is represented by a scalar field. This is an ad hoc assumption
within four dimensional conventional general relativistic models. On the other hand,
the observed acceleration of the universe can also be related with the existence of extra
space dimensions instead of a DE field, as will be done here.

In this paper, as the theory of gravitation, we consider the extension of the conven-
tional four-dimensional Einstein’s gravity without � to higher dimensions by preserv-
ing its mathematical structure. One of the most important features of unified theories
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in general is that general relativity is naturally incorporated in these theories. Such the-
ories give modifications at very short distances/high energies, however, they approach
Einstein’s gravity for sufficiently large distances/low energies. Hence the use of higher
dimensional Einstein’s gravity can also be justified in the context of unified theories.

2 The model

We consider a minimal extension of the conventional (1 + 3)-dimensional Einstein’s
field equations to (1 + 3 + n)-dimensions:

Rμν − 1

2
Rgμν = −κTμν, (1)

where the indices μ and ν run through 0, 1, 2, . . . , 3 + n and gμν, Rμν and R are the
metric tensor, the Ricci tensor and the Ricci scalar, respectively, of a (1 + 3 + n)-
dimensional spacetime. Tμν is the energy-momentum tensor of matter fields in (1 +
3 + n)-dimensions and κ = 8πG where G is the (positive) gravitational constant that
is to be scaled consistently in (1 + 3 + n)-dimensions.

We consider a spatially homogenous but not necessarily isotropic (1 + 3 + n)-
dimensional synchronous spacetime metric that involves a maximally symmetric three
dimensional flat external (physical) space metric and a compact n dimensional flat
internal space metric:

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

+ s2(t)
(

dθ2
1 + · · · + dθ2

n

)
. (2)

a(t) is the scale factor of the external space that represents the space we observe today
while s(t) is the scale factor of the n = 1, 2, 3, . . . dimensional internal space that
cannot be observed directly and locally today.

We consider the energy-momentum tensor of a (1 + 3 + n)-dimensional homoge-
neous and isotropic ideal fluid:

T μ
ν = diag[−ρ, p, p, p, p, . . . , p], (3)

where ρ = ρ(t) and p = p(t) are the energy density and pressure of the fluid.
(1 + 3 + n)-dimensional Einstein’s field equations (1) for the spacetime described

by the metric (2) in the presence of a co-moving fluid represented by the energy-
momentum tensor (3) read:

3
ȧ2

a2 + 3n
ȧ

a

ṡ

s
+ 1

2
n(n − 1)

ṡ2

s2 = κρ, (4a)

ȧ2

a2 + 2
ä

a
+ n

s̈

s
+ 2n

ȧ

a

ṡ

s
+ 1

2
n(n − 1)

ṡ2

s2 = −κp, (4b)

3
ȧ2

a2 + 3
ä

a
+ (n − 1)

s̈

s
+ 3(n − 1)

ȧ

a

ṡ

s
+ 1

2
(n − 1)(n − 2)

ṡ2

s2 = −κp. (4c)
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This system consists of three differential Eqs. (4a)–(4c) that should be satisfied by four
unknown functions a, s, ρ, p and therefore is not fully determined. It is customary
at this point either to introduce an equation of state that characterizes the internal
properties of the fluid or alternatively to make a kinematical ansatz to fully determine
the system. However, even in four dimensional accelerating cosmological models the
choice of the DE fluid is ad hoc. In our case, we almost have no clue concerning
the nature of a possible higher dimensional fluid. Hence, we find it natural rather to
postulate an ansatz that correlates the kinematics between the external and internal
spaces to fully determine the system. In the field Eqs. (4a)–(4c), the external and
internal dimensions couple directly through the term

ȧ

a

ṡ

s
= f (t), (5)

which most generally will be a function of the cosmic time t . We note that f (t) is
determined by the kinematics of both the external and internal spaces and hence in
return one can correlate the kinematics of the internal and external spaces by specifying
a function for f (t) and can characterize the properties of the higher dimensional
cosmology. For an expanding external space ȧ

a > 0 and therefore the positive values
of f (t) correspond to an expanding internal space, while the negative values of f (t)
correspond to a contracting internal space. On the other hand, f (t) = 0 describes
the Kaluza–Klein reduction, i.e., one will obtain a cosmological solution in which the
internal space is static. In this work we are particularly interested in the possibility
of viable higher dimensional cosmological models in which both the external and
internal spaces are expanding so that f (t) > 0. In line with the above discussion, to
determine the field equations fully, we propose the simplest generalization of the case
f (t) = 0 for which

ȧ

a

ṡ

s
= λ

9
, (6)

where λ is a real constant. Since the fluid is isotropic we eliminate the pressure between
(4b)–(4c), and use the resulting equation together with (6) to solve for the scale func-
tions a and s. Then we substitute these in (4a) and (4b) to get ρ and p, respectively.
We were not able to get analytical expressions for arbitrary values of n. Therefore we
give explicit solutions below only for n = 3 (Numerical solutions might be studied
for other values of n):

a = a0t
1
3 and s = s0 for λ = 0, (7)

where a0 and s0 are constants of integration, and

a =
(

c1e
√

λ t − c2e−√
λ t

) 1
3

and s = c3

(
c1e

√
λ t + c2e−√

λ t
) 1

3
for λ �= 0, (8)

where c1, c2 and c3 are constants of integration. One may check that, depending on
the choice of the integration constants and λ, the scale factors exhibit five different
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types of behavior1:

(i) λ = 0: The external space expands as in the four dimensional universe that is
filled with a stiff fluid2, while the internal space is static.

(ii) λ > 0 and c1 �= 0 = c2: Both of the external and internal spaces expand
exponentially at the same rate.

(iii) λ > 0 and c1 = 0 �= c2: Both of the external and internal spaces contract
exponentially at the same rate.

(iv) λ > 0 and c1 �= 0 �= c2: The scale functions can be written in terms of hyperbolic
functions.

(v) λ < 0 and c1 �= 0 �= c2: The scale functions can be written in terms of sinusoidal
functions.

In what follows, we concentrate in particular on the case (iv) with the additional
condition c1c2 > 0. We will show that the external space exhibits a �CDM-type
behavior, while the internal space expands at a much slower rate than the external
space.

3 An effective four dimensional �CDM-type cosmology

3.1 Solution of the higher dimensional equations

It is easy to check that for c1c2 > 0 and λ > 0, the scale factor of the external

space is null a = 0 at t = 1
2
√

λ
ln

(
c2
c1

)
. Hence, for convenience, we may set the

singularity of the external space at t = 0 with the choice c1 = c2 without loss
of generality3. Choosing c1 = c2 in (8) and re-naming the integration constants,
we obtain the cosmological parameters of the external dimensions; the scale factor,
Hubble parameter and deceleration parameter, respectively, as follows:

a = a1sin h
1
3 (

√
λ t), (9a)

Ha = ȧ

a
=

√
λ

3
cot h(

√
λ t), (9b)

qa = − äa

ȧ2 = −1 + 3 sec h2(
√

λ t), (9c)

1 We would like to note that kinematics similar to that we obtained for the external space for λ �= 0 is also
noted by Capozziello et al. [17], although with a totally different reasoning in the context of conventional,
four dimensional relativistic cosmology.
2 Stiff fluid is the most promising EoS of matter at ultra-high densities for representing the very early
universe (see [15,16]) and is described with an EoS parameter p/ρ = 1, where ρ and p are the energy
density and pressure, respectively.
3 If c1c2 > 0, in the case c1 �= c2 the evolution of the Hubble and deceleration parameters turn out to be
exactly the same with the ones in the case c1 = c2, but shifted along the time axis.
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and of the internal dimensions, respectively, as follows:

s = s1cos h
1
3 (

√
λ t), (10a)

Hs = ṡ

s
=

√
λ

3
tan h(

√
λ t), (10b)

qs = − s̈s

ṡ2 = −1 − 3 cosec h2(
√

λ t), (10c)

where a1 and s1 are the new integration constants. The energy density, pressure and
EoS parameter of the higher dimensional fluid are given, respectively, as follows:

ρ = 4λ

3κ
cosec h2(2

√
λ t) + 5λ

3κ
, (11a)

p = 4λ

3κ
cosec h2(2

√
λ t) − 5λ

3κ
, (11b)

w = p

ρ
= 4 − 5 sin h2(2

√
λ t)

4 + 5 sin h2(2
√

λ t)
. (11c)

It may be seen from the expressions above that both of the external and internal
spaces expand for t > 0. However, at the instant t = 0, while the external space starts
expanding from zero size (a = 0) with an infinitely large expansion rate (Ha = ∞
and qa = 2); the internal space will be static (Hs = 0 and qs = ∞) remaining at a
non-zero size s = s1. Indeed, when the scale factors are Taylor expanded

a = a1λ
1
6 t

1
3 + a1

λ
7
6

18
t

7
3 + O

(
t

13
3

)
, (12a)

s = s1 + s1
λ

6
t2 + O(t4), (12b)

we see that a ∼ t
1
3 while s ∼ s1 as t ∼ 0; that is, in the very early times of the

expansion, the external space volume a3 grows almost linearly with time, while the
internal space volume s3 is almost constant (see Fig. 1). Furthermore one may check
that the expansion rate of the internal dimensions is always smaller than that of the
external dimensions during the entire history of the universe i.e., Ha > Hs , and they

approach each other in the infinite future, i.e., Ha →
√

λ
3 and Hs →

√
λ

3 as t → ∞ (see
Fig. 2). Hence, if the internal dimensions start to expand at an unobservable length
scale (for instance, at s1 ∼ lPlanck ∼ 10−35 m), they might not be able to expand
to observable length scales (say for instance, to ∼ 10−20 m which is the scale that
corresponds to the energy scale of TeV that is probed by the Large Hadron Collider
(LHC)) even today. In the mean time, the external dimensions will expand from its
initial singularity to its present-day observed length scale (1024 m). Both the external
and internal dimensions would have grown from their minimal values a = 0 and
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Fig. 1 The scale factors (meter) of the external (solid) and internal (dashed) dimensions versus cosmic
time t (Gyr). At t = 0, the external dimensions are null and internal dimensions are at Planck length scale

Fig. 2 The Hubble parameters of the external (solid) and internal (dashed) dimensions versus cosmic time
t (Gyr). The expansion rate of the external space is always higher than of the internal space

s = s1 at t = 0 to an equal size at time

teq = 1

2
√

λ
ln

(
a3

1 + s3
1

a3
1 − s3

1

)
. (13)

Therefore, if s1 ∼ l planck � a1 one can safely take teq ∼ 0. We may determine
how many times the sizes of the external and internal dimensions expanded since the
time teq when they were equal:

a(t)

a(teq)
= sin h

1
3 (

√
λ t)

sin h
1
3

(
1
2 ln

(
a3

1+s3
1

a3
1−s3

1

)) , (14a)

s(t)

s(teq)
= cos h

1
3 (

√
λ t)

cos h
1
3

(
1
2 ln

(
a3

1+s3
1

a3
1−s3

1

)) . (14b)
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The choice s1 � a1 implies a(t)
a(teq)

� s(t)
s(teq)

for all t � teq. It is also interesting to
note that how many times the size of the internal dimensions have grown compared to
their initial size may be determined just by the present-day value of the deceleration
parameter of the external dimensions. To show this, we simply isolate λ in qa(t) and
substitute it in s(t) above and obtain:

s

s1
=

(
3

qa + 1

) 1
6

(15)

which gives us the ratio s
s1

for any given value of qa . Hence one can easily calculate
how many times the size of the internal dimensions have grown since the beginning of
time to the present-day simply by measuring the present-day value of the deceleration
parameter of the observed universe. Using qa = −0.73 [18] for the present-day value
of the dimensionless deceleration parameter of the external space and setting t0 = 13.7
(Gyr) for the present age of the universe we obtain λ = 0.0187. We take the present size
of the visible universe as 1024 m and going backwards obtain the value a1 = 6.8×1023

m. If we now assume that the internal dimensions were at Planck length scales at time
t = 0, i.e., s1 = lPlanck ∼ 10−35 m, then the external and internal dimensions would
have reached the same size when teq = 2.32×10−176 (Gyr). The external dimensions
will expand a(13.7)

a(teq)
	 1059 times during the time interval 13.7 − teq (Gyr) while the

internal dimensions expand only s(13.7)
s(teq)

	 1.49 times! The same conclusion for the
internal dimensions may be reached simply by using qa = −0.73 in (15) so that
s
s1

	 1.49.
On the other hand, the internal dimensions expand from the lPlanck length scales at

the beginning to the LHC length scales (10−20 m) at t = 763 (Gyr), the proton size
(10−15 m) at t = 1015 (Gyr) and the meter length scales at t = 1773 (Gyr). In short,
according to our model, all the dimensions that were at Planck scales lPlanck at time
teq = 2.32×10−176 (Gyr) evolve in such a way that the external dimensions are today
at length scales 1024 m while the internal dimensions are still at Planck length scales
lPlanck (see Fig. 1).

Our model also predicts that the present value of the deceleration parameter of the
observed universe must be strictly higher than −1, i.e. qa > −1, otherwise we would
have observed the extra dimensions, since s

s1
→ ∞ as qa → −1.

Finally, the energy density and pressure of our higher dimensional ideal fluid will be
infinitely large at the beginning. They decrease monotonically and approach ρ ∼ 5λ

3κ

and p ∼ − 5λ
3κ

, respectively, for sufficiently large values of t . The EoS parameter of
the fluid, on the other hand, starts with w = 1 at t = 0 and approaches w ∼ −1
for sufficiently large t values. We won’t be dwelling on the properties of this higher
dimensional fluid further, however, its manifestations in the effective four dimensional
universe will be discussed below.

The above calculations show that, although the internal dimensions are also expand-
ing just as the (observable) external dimensions do, they remain far too small to allow
for local and direct detection today and in the near future. However, their presence
obviously has tremendous effect on our cosmological history. We have here a durable
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model of the effective four dimensional universe. But this is not yet enough. We should
further investigate whether this predicted effective four dimensional universe is consis-
tent with the present-day cosmological observations. We shall deal with this question
in the following subsection.

3.2 The effective four dimensional universe

In cosmology, we do not usually deal with direct measurements of the energy density
and pressure of the material/physical content of the universe. We collect data on the
kinematics of the observed universe instead, e.g., from the supernova Ia observations
[11–14,17,18] and on the geometry of the space from cosmic microwave background
by WMAP observations [20]. Furthermore, we assume that the space we live in is
(effectively) three dimensional. Then, what we do in general is to interpret the collected
information using a reliable theory, for instance the general relativity of Einstein,
to infer the properties of the material content of the universe. This is, naturally, the
approach of an observer who is unaware of internal dimensions. On the other hand, we
had been arguing all along that we may in fact be living in a higher dimensional space
which appears effectively three dimensional since the internal dimensions are today
so small that they evade direct and local detection. However, the internal dimensions
may still be controlling the dynamics of the external dimensions that we observe.
Hence, while we are interpreting the cosmological data within the framework of four
dimensional general relativity, the components related to the internal dimensions and
the higher dimensional fluid we introduced could manifest themselves as an effective
source in the 4-dimensional Einstein’s field equations. An observer who lives in four
dimensions would naturally use the 4-dimensional Einstein’s field equations:

R̃i j − 1

2
R̃g̃i j = −κ̃0T̃i j , (16)

where i and j run through 0, 1, 2, 3 and κ̃0 = 8π G̃0 with G̃0 being the value of
the four dimensional gravitational coupling that is observed with local experiments
today. R̃i j , R̃ and g̃i j are the Ricci tensor, Ricci scalar and the metric tensor of the
(1+3)-dimensional spacetime, respectively. T̃i j refers to the components of the four
dimensional effective energy-momentum tensor. In the 4-dimensional spatially flat
RW spacetime, effective Einstein field equations read:

3
ȧ2

a2 = κ̃0ρ̃, (17a)

ȧ2

a2 + 2
ä

a
= −κ̃0 p̃. (17b)

A comparison of these equations with the higher dimensional field equations given
before, leads to the following identifications:

ρ̃ = κ

κ̃0
ρ − λ

κ̃0
− 3ṡ2

κ̃0s2 , (18a)
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p̃ = κ

κ̃0
p + 3s̈

κ̃0s
+ 2λ

3κ̃0
+ 3ṡ2

κ̃0s2 . (18b)

One may now observe how the components of the higher dimensional distributions
manifest themselves in an effective energy-momentum source in the four dimensional
universe. Also note that although an observer cannot observe the internal dimensions
directly and locally, the internal dimensions contribute in an essential way to the
dynamics of the external dimensions. Substituting a into the four dimensional field
Eqs. (17a) and (17b), the observer would obtain the energy density, pressure and the
EoS parameter of the observed universe as follows:

ρ̃ = λ

3κ̃0
cosec h2(

√
λ t) + λ

3κ̃0
, (19a)

p̃ = λ

3κ̃0
cosec h2(

√
λ t) − λ

3κ̃0
, (19b)

w̃ = p̃

ρ̃
= 1 − sin h2(

√
λ t)

1 + sin h2(
√

λ t)
. (19c)

These are the properties of a 4-dimensional effective fluid that are inferred by an
observer who is interpreting the kinematics of the observed universe through the 4-
dimensional conventional general relativity, in which the gravitational coupling is
a constant κ̃0. However, in a higher dimensional universe, even when the internal
space remains at an unobservable size the gravitational field will be propagating in the
full higher dimensional space and hence the strength of the 4-dimensional effective
gravitational coupling κ̃ = 8π G̃ will be related to the higher dimensional gravitational
coupling constant through the proper volume of the internal space V int ∝ s3 as follows
[26,27]:

κ̃ = κ

V int . (20)

Accordingly, the dynamics of the internal space may manifest itself by giving rise to a
time variation of the 4-dimensional effective gravitational coupling. Let us now check
whether the time variation of κ̃ is consistent with the observational constraints and
whether it is possible for the observer to detect how κ̃ varies in time. Using (20) we
obtain

κ̃ = κ̃0
V int

0

Vint
= κ̃0

s3
0

s3 , (21)

which gives

˙̃κ
κ̃

= −3Hs = −√
λ tan h(

√
λt) (22)

for the time variation of κ̃ . We immediately notice that the time variation of the 4-
dimensional gravitational coupling is null at t = 0, decreases with the cosmic time t
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and approaches −√
λ as t → ∞. Using λ = 0.0187 (Gyr−2) we find that the time

variation of κ̃ is null at t = 0,∼ −10−25 year−1 at t ∼ 102 s (the time scale of
the primordial nucleosynthesis in the standard model for the history of the universe),
∼ −10−15 year−1 at t ∼ 105 year (the time scale of photon decoupling in the standard
model for the history of the universe), −1.3 × 10−10 year−1 at the present age of the
universe and goes to −1.4 × 10−10 year−1 as t → ∞. The time variation of κ̃ is
plotted in Fig. 3. We also calculated the average value of the time variation of κ̃ from
t = 0 to the present age of the universe 13.7 (Gyr):

1

13.7 × 109 year

t=13.7×109year∫

t=0

˙̃κ
κ̃

dt = −8.8 × 10−11 year−1. (23)

The majority of constraints on the time variation of κ̃ coming from the Solar sys-
tem, pulsar timing or stellar observations that is found in the literature favor a value
∼ ±10−11 year−1 in the vicinity of the present age of the universe [27]. Consid-
ering the random and the systematic errors involved in the determination of such
constraints, the time variation of κ̃ in our model is consistent with the above value.
The most severe constraints in the literature are set from primordial nucleosynthesis
and imply that when the primordial nucleosynthesis took place in the early universe it
was ∼ 10−12 year−1, which is also in line with our very small value ∼ −10−25 year−1

for the time scale of that epoch. On the other hand, considering the very small values
of these constraints, it will be natural for the observer to conceive the 4-dimensional
gravitational coupling as a constant. In the absence of any information of the pres-
ence of internal dimensions or the time variation of the 4-dimensional gravitational
coupling, an observer would conclude that the expansion of the observed universe is
governed by an unknown ”dark energy” source whose properties are given by (19a)–
(19c). Let us now suppose that the observer is able to resolve the time variation of κ̃

correctly from observations. In this case, using (16) and (21), one can define a new

Fig. 3 The time (year) variation of the 4-dimensional effective gravitational coupling ( ˙̃κ/κ̃ year−1) versus
cosmic time t (Gyr)
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4-dimensional effective energy-momentum tensor T̃ ′
i j for the 4-dimensional effective

fluid that is related to T̃i j as follows:

T̃ ′
i j = s3

s3
0

T̃i j . (24)

Hence

ρ̃′ = s3

s3
0

ρ̃, p̃′ = s3

s3
0

p̃ and w̃′ = p̃′

ρ̃′ = w̃ (25)

for the energy density, pressure and the EoS of the 4-dimensional effective fluid respec-
tively. We plot the evolution of the 4-dimensional effective and higher dimensional
energy densities in Fig. 4, pressures in Fig. 5 and EoS parameters in Fig. 6. It is worth
noting that in this case the 4-dimensional theory of gravitation is not conventional
general relativity anymore; it is a theory that yields the same mathematical form with

Fig. 4 The energy densities of the 4-dimensional effective fluids (solid for T̃i j and dashed-dotted for T̃ ′
i j )

and the higher dimensional fluid (dashed) versus cosmic time t (Gyr)

Fig. 5 The pressures of the 4-dimensional effective fluids (solid for T̃i j and dashed-dotted for T̃ ′
i j ) and the

higher dimensional fluid (dashed) versus cosmic time t (Gyr)
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A four-dimensional �CDM-type cosmological model 1223

Fig. 6 The equation of state parameters (EoS) of the four (solid) and higher (dashed) dimensional effective
fluids versus cosmic time t (Gyr). EoS parameter of the four dimensional effective fluid is − 1

3 at t = 8.38
(Gyr)

general relativity but involves a time dependent gravitational coupling. We note that
the EoS parameter of the 4-dimensional effective fluid remains the same. The energy
densities and pressures of these two energy-momentum tensors coincide today and
remain almost the same in the vicinity of the present age of the universe. On the other
hand, they differ slightly at earlier times of the universe and will differ considerably
in the far future. Note however that the universe also can no longer be taken as effec-
tively 4-dimensional in the far future since the internal dimensions grow considerably
in size. Hence, because both the internal dimensions and the time variation of the
4-dimensional gravitational coupling is out of the reach of the observer, it is a very
good approximation for the observer to interpret the expansion of the observed uni-
verse through the conventional 4-dimensional general relativity which describes the
local gravitational events (in the Solar system) successfully.

Now we can talk about the world as seen by an observer living in four dimensions.
The universe starts at t = 0 from a singularity with Ha = ∞ and infinitely large energy
density ρ̃ = ∞ (or ρ̃′ = ∞), that is, at the beginning there is a Big Bang. The universe
then evolves from decelerating expansion to accelerating expansion, passing through

different epochs where the effective fluid behaves differently; a ∼ t
1
3 and w̃ ∼ 1 (stiff

fluid dominated era) at very early times t ∼ 0 and through a sequence of epochs where

a ∼ t
1
2 and w̃ ∼ 1

3 (radiation dominated era), a ∼ t
2
3 and w̃ ∼ 0 (pressureless matter

dominated era), a ∼ t and w̃ ∼ − 1
3 (acceleration starts at t = 1

2
√

λ
ln (5 + 2

√
6)) and

reaches the present universe a ∼ t3.7 and w̃ ∼ −0.82. It eventually evolves to the de

Sitter universe, a ∼ e
√

λ
3 t and w̃ ∼ −1, at the very late times (however, note that the

universe is not effectively 4-dimensional at this epoch). One may form a judgement on
the evolution sequence of the effective four dimensional universe from the behavior
of the dimensionless deceleration parameter qa . We depict the qa versus cosmic time t
in Fig. 7 by using λ = 0.0187, which gives the value qa = −0.73 for the present-day
universe. Such an evolution sequence is consistent with the current understanding of
the universe, excluding the very far future of the universe.

As regards the present acceleration of the universe, the evolution of the deceleration
parameter with the cosmic redshift z = −1 + az=0

a (where az=0 is the present value of

123



1224 Ö. Akarsu, T. Dereli

Fig. 7 The deceleration parameters of the external (solid) and internal (dashed) dimensions versus cosmic
time t (Gyr). The external dimensions start accelerating at tt = 8.38 (Gyr), i.e., 5.32 (Gyr) ago from today

Fig. 8 The deceleration parameter of the external dimensions versus cosmic redshift z. It is plotted by
choosing qa = −0.73 at z = 0. The transition redshift to the accelerating expansion is zt = 0.31

the scale factor) is also important to check if our model is consistent with cosmological
observations:

qa(z) = −1 + 3
(1 + z)6

(1 + z)6 + a6
z=0

a6
1

. (26)

We depict the deceleration parameter of the external dimensions versus cosmic redshift
z by setting qz=0 = −0.73 in Fig. 8. One may observe that qa = 0 at z = zt = 0.31,
i.e., the accelerated expansion starts at zt = 0.31, which is in the range 0.3 � zt � 0.8
given in different observational studies [10–14,17–20].

As we are concerned with the recent transition from deceleration to acceleration,
it is also useful to take the third derivative of scale factor of the observed universe
into account. A convenient parameter is the dimensionless jerk parameter j that gives
opportunity to compare cosmological models with the �CDM model in which it is
constant j�C DM = 1 [10,11,21–24]. In our model, on the other hand, the jerk parameter
of the external space is dynamical:

123



A four-dimensional �CDM-type cosmological model 1225

ja =
...
a

aH3
a

= 1 + 9 sec h2(
√

λ t), (27)

which goes from 10 to 1 as the universe evolves. Using λ = 0.0187 we obtain for the
present value of the jerk parameter ja(13.7) = 1.81 which is also consistent with the
observational studies [11,23].

In short, using λ = 0.0187, the internal dimensions are today still at Planck length
scales hence the observed universe is today effectively four dimensional, it starts
accelerating at tt = 8.38 (Gyr), i.e., acceleration starts t0 − tt = 5.32 (Gyr) ago from
now, the transition redshift is zt = 0.31, today qa = −0.73 and ja = 1.81. Such a
picture of the universe is consistent with the observational studies.

4 Final remarks

It should be emphasized that our model doesn’t involve a cosmological constant �.
The dynamical evolution of the external (physical) and internal spaces are correlated
and controlled by a single real parameter λ [see Eq. (6)]. An observer living in the
3-dimensional external space sees an effective cosmic fluid with a specific time depen-
dent EoS parameter that drives the accelerated expansion of the universe and hence
the so-called cosmological constant problem doesn’t arise here.

We also note that both the actual higher dimensional fluid and our effective fluid in
four dimensions involve time dependent EoS parameters that start from w = 1 (stiff
fluid) at very early times and approach w = −1 (cosmological constant) at very late
times. This is exactly the type of behavior one would expect if a DE component in four
dimensional conventional general relativity without cosmological constant had been
introduced. A similar behavior is obtained, for instance, for a quintessence field φ with
a constant potential V (φ) = λ

3κ̃0
in four dimensional conventional general relativity

without cosmological constant [25].
We also would like to note that our effective four dimensional model induced from

higher dimensions gives a more complete picture of our current understanding of the
universe compared with the standard �CDM model. The �CDM model contains a
binary mixture of pressure-less matter (including CDM) and a positive cosmological
constant �. On the other hand, our four dimensional effective universe exhibits a
behavior expected of a four dimensional universe in the presence of a certain mixture
of stiff matter, radiation, pressure-less matter (including CDM) and a cosmological
constant. A stiff fluid is the most promising EoS of matter at ultra-high densities for
representing the very early universe (see [15,16]). As the universe evolves, the matter
content becomes less stiff and the universe evolves into the radiation dominated phase
as should be expected.

As a final remark, we gave analytical solutions in 1 + 3 + 3 dimensions. The number
of internal dimensions may provide another free parameter in the sense that more
precise predictions (albeit numerical) might be possible if we keep n ≥ 3 in our
coupled equations as a free parameter.
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