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Abstract Hawking radiation spectrum via fermions tunneling is investigated through
horizon radii of Plebański-Demiański family of black holes. To this end, we determine
the tunneling probabilities for outgoing and incoming charged fermion particles and
obtain their corresponding Hawking temperatures. The graphical behavior of Hawking
temperatures and horizon radii (cosmological and event horizons) is also studied. We
find consistent results with those already available in literature.
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1 Introduction

A visual representation of black hole (BH) illustrates that it dissipates energy via
radiation, hence compresses and finally dissolves. Classically, BHs are stable objects,
but due to emission of quantum particles (which create quantum fluctuations) these
become unstable. Hawking [1–3] suggested that BHs radiate thermally and transmit
energy/mass in the form of particles radiation known as Hawking radiation.

It has been interesting to explore quantum phenomenon of Hawking radiation from
BHs as a tunneling technique of emitting quantum particles. Two different proce-
dures are usually employed to compute particles action by determining its imaginary
component. Parikh and Wilczek [4,5] established the null geodesic approach by fol-
lowing the work of Kraus and Wilczek [6], while the second tunneling method is called
Hamilton-Jacobi ansatz. Later, Kerner and Mann [7] extended the calculations of the

M. Sharif (B) · W. Javed
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
e-mail: msharif.math@pu.edu.pk

W. Javed
e-mail: wajihajaved84@yahoo.com

123



1052 M. Sharif, W. Javed

tunneling process for the spin-1/2 particles emission by using the WKB approximation
to the Dirac equation and calculated tunneling probability for nonrotating BHs. Also,
fermions tunneling is applied to a general nonrotating BH and recovered the corre-
sponding Hawking temperature. The same authors [8] also investigated the Hawking
temperature through Kerr–Newman BH.

Dias and Lemos [9,10] analyzed pair of accelerated BHs in de Sitter and anti-de Sit-
ter backgrounds. Chen et al. [11] investigated Hawking radiation spectrum via spin-1/2
particles tunneling from rotating BHs in de Sitter space and recovered their correspond-
ing Hawking temperatures. Recently, the tunneling probabilities from accelerating and
rotating BHs have been investigated for different particles [12–14]. Also, the thermo-
dynamical properties of accelerating and rotating BHs with Newman-Unti-Tamburino
(NUT) parameter have been studied [15].

The effect of magnetic monopole (induced by NUT parameter) hypothesis in gen-
eral relativity was put forward by Dirac. He suggested the innovative existence of mag-
netic monopole that was neglected due to the failure to detect such object. Recently,
the new developments in relativistic quantum field theory has shed light on it. Cotăescu
and Visinescu [16] investigated the Dirac field in Taub-NUT background. Kerner and
Mann [17] obtained the temperature of Taub-NUT-anti-de Sitter BHs by using null-
geodesic method and the Hamilton-Jacobi ansatz. Ali [18,19] investigated tunneling
radiation characteristics from the hot NUT–Kerr–Newman–Kasuya spacetime.

Li and Han [20] extended the Kerner and Mann fermions tunneling framework to
study the tunneling of charged and magnetized fermions from the RN BH with mag-
netic charges. Wang and Yang [21] studied Hawking radiation via charged fermions
from the NUT Kerr–Newman BH and recovered consistent Hawking temperature.
Xiao-Xiong and Qiang [22] discussed tunneling of scalar and Dirac particles from the
Taub-NUT-AdS BH by using the Hamilton-Jacobi method as well as Kerner and Mann
tunneling approach. The corresponding general form of the temperature of scalar and
Dirac particles is obtained.

We have explored few application of the tunneling phenomenon for different BHs
[23–27] by using the above mentioned methods. In a recent paper [28], we have inves-
tigated some interesting results for a group of BHs which exhibits a pair of charged
NUT accelerating and rotating BH solution. This paper extends the tunneling phe-
nomenon of charged fermions for the Plebański-Demiański (PD) class of BHs which
symbolizes a combination of charged NUT accelerating and rotating BH solution with
cosmological constant �.

The paper is planed as follows. Section 2 is devoted to explain the basic equations
for a PD class of BHs. In Sect. 3, we provide Dirac equation in the framework of PD
BHs and evaluate the tunneling probabilities as well as the corresponding temperatures
across the horizon radii. Also, we evaluate a precise construction of the particles action.
Finally, we summarize the results in the last section.

2 Plebański-Demiański family of black holes

Black holes are extremely valuable objects conjectured by general relativity [29]. The
research in this area has been broaden by addition of different sources, e.g., electric
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and magnetic charges, acceleration, rotation, cosmological constant as well as NUT
parameter in the usual mass of BH. Black hole solutions with these extensions belong
to type D class. This class of type D spacetimes can be described by a metric proposed
by Plebański and Demiański [30]. The PD metric can be reduced to the entire class of
type D BHs including a nonzero cosmological constant and electromagnetic field by
applying coordinate transformation in certain limits.

The PD metric can be interpreted by introducing two continuous parameters that
represent acceleration α and twist ω of the sources via rescaling. The twist is entirely
expressed in terms of angular velocity and NUT-like properties of the sources. Using
coordinate transformations in the modified form of the general PD metric, a (rotation
parameter of Kerr-like BH) and l (NUT parameter) can be introduced, leading to the
PD BHs [31]. Some important BH subfamilies depend upon these parameters.

The class of BH solutions can be written in the form [31]

ds2 = − 1

�2

{
Q

ρ2

[
dt −

(
a sin2 θ + 4l sin2 θ

2

)
dφ

]2

− ρ2

Q
dr2

− P̃

ρ2

[
adt −

(
r2 + (a + l)2

)
dφ

]2 − ρ2

P̃
sin2 θdθ2

}
, (1)

where

� = 1 − α

ω
(l + a cos θ)r, ρ2 = r2 + (l + a cos θ)2,

Q = (ω2k + e2 + g2) − 2Mr + εr2 − 2α
n

ω
r3 −

(
α2k + �

3

)
r4,

P̃ = sin2 θ(1 − a3 cos θ − a4 cos2 θ) = P sin2 θ,

a3 = 2α
a

ω
M − 4α2 al

ω2 (ω2k + e2 + g2) − 4
�

3
al,

a4 = −α2 a2

ω2 (ω2k + e2 + g2) − �

3
a2,

ε = ω2k

a2 − l2 + 4α
l

ω
M − (a2 + 3l2)

[
α2

ω2 (ω2k + e2 + g2) + �

3

]
,

n = ω2kl

a2 − l2 − α
a2 − l2

ω
M + l(a2 − l2)

[
α2

ω2 (ω2k + e2 + g2) + �

3

]
,

k =
(

ω2

a2 − l2 + 3α2l2
)−1 [

1 + 2α
l

ω
M − 3α2 l2

ω2 (e2 + g2) − l2�

]
.

Here, the arbitrary parameters M, e, g, �, a, l and α vary independently, while para-
meter ω varies dependently (in some sub-cases), and ε, n, k are arbitrary real parame-
ters. All parameters in PD BHs except �, e, g do not have their physical interpretation,
but have their usual physical significance in certain sub-cases. Electric and magnetic
charges of the source are denoted by e and g, respectively, while M is the source mass
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and n is the PD parameter. Notice that this class of BH involves acceleration α and
twisting behavior ω.

Generally, the NUT parameter is analogous with the gravitomagnetic monopole
parameter of the central mass, or a twisting property of the surrounding spacetime but
its exact physical meaning could not be found. If l > a (for this BH), the spacetime will
be free from curvature singularities and the resulting solution is characterized by the
NUT-like solution. However, if the rotation parameter governs the NUT parameter,
i.e., a > l, the solution corresponds to the Kerr-like and forms a ring curvature
singularity. Such singularity structure does not depend on cosmological constant. The
cosmological constant has dynamical nature which provides expanding solutions when
� > 0 (de Sitter space) and provides asymptotic regions with constant curvature when
� < 0 (anti-de Sitter space). Here, the PD BH solutions belong to the de Sitter family
of solutions and PD metric reduces to the expanding BHs with � > 0.

Kerr–Newman solution with NUT parameter in de Sitter space is obtained for
α = 0 and ω2k = (1 − l2�)(a2 − l2). In this case, ω is related to both a and l.
Thus, M, e, g, l, a vary independently, while ω depends on nonzero value of rotation
parameters l or a. It can be re-expressed by choosing a and l. For l = 0, this leads to
the Kerr–Newman accelerating de Sitter pair of BHs, while α = 0 leads to the Kerr–
Newman BH in de Sitter space and a = 0 yields the RN BH. In addition, if e = 0 = g,
we have Schwarzschild BH. Thus, the metric (1) for the generalized BHs represents
complete family of BHs. For a = 0, this leads to the C-metric having charge and
cosmological constant, consequently for � = 0 we retrieve the exact charged shape
of the C-metric.

The metric (1) can be expressed in another more suitable form

ds2 = − f (r, θ)dt2 + dr2

g(r, θ)
+ 
(r, θ)dθ2 + K (r, θ)dφ2 − 2H(r, θ)dtdφ, (2)

where f (r, θ), g(r, θ), 
(r, θ), K (r, θ) and H(r, θ) can be defined as follows

f (r, θ) =
(

Q − Pa2 sin2 θ

ρ2�2

)
, g(r, θ) = Q�2

ρ2 , 
(r, θ) = ρ2

�2 P
,

K (r, θ) = 1

ρ2�2

[
sin2 θ P[r2 + (a + l)2]2 − Q

(
a sin2 θ + 4l sin2 θ

2

)2
]

,

H(r, θ) = 1

ρ2�2

[
sin2 θ Pa[r2 + (a + l)2] − Q

(
a sin2 θ + 4l sin2 θ

2

)]
.

The four-vector potential for these BHs can be determined as [32]

Aμ = 1

a
[
r2 + (l + a cos θ)2

] [
−er

[
adt − dφ{(l + a)2 − (l2 + a2 cos2 θ

+ 2la cos θ)}] − g(l + a cos θ)
[
adt − dφ

{
r2 + (l + a)2

}]]
.
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The horizons are found for g(r, θ) = �(r)

(r,θ)

= 0 [8], where �(r) = Q
P . This implies

that �(r) = 0 = Q, yielding the horizon radii

r1± = −A′ − B ′ ± 0.5
√

D − E, (3)

r2± = −A′ + B ′ ± 0.5
√

D + E . (4)

In the above equations, BH horizons are denoted by r+ (outer) and r− (inner). The
values A′, B ′, D and E are defined as

A′ = 0.25
B

C
,

B ′ = 0.5

[{
0.25

B2

C2 + 0.666667
ε

C
+ 5.03968(−AC + 0.0833333ε2

−0.5B M)

[
C

{
− 27AB2 − 72ACε − 2ε3 + 18BεM + 108C M2

+
[

− 4(−12AC + ε2 − 6B M)3 + (−27AB2 − 72ACε − 2ε3

+18BεM + 108C M2)2
] 1

2
} 1

3
]−1

+ 0.264567

C

{
− 27AB2 − 72ACε

−2ε3 + 18BεM + 108C M2 +
[

− 4(−12AC + ε2 − 6B M)3

+(−27AB2 − 72ACε − 2ε3 + 18BεM + 108C M2)2
] 1

2
} 1

3
}] 1

2

,

D =
[

0.5
B2

C2 + 1.33333
ε

C
− 5.03968(−AC + 0.0833333ε2

+0.5B M)

[
C

{
− 27AB2 − 72ACε − 2ε3 + 18BεM + 108C M2

+
[

− 4(−12AC + ε2 − 6B M)3 + (−27AB2 − 72ACε − 2ε3

+ 18BεM + 108C M2)2
] 1

2
} 1

3
]−1

− 0.264567

C

{
− 27AB2 − 72ACε

−2ε3 + 18BεM + 108C M2 +
[

− 4(−12AC + ε2 − 6B M)3

+(−27AB2 − 72ACε − 2ε3 + 18BεM + 108C M2)2
] 1

2
} 1

3
]
,

E = 0.125

B́

(
− B3

C3 − 4
Bε

C2 − 16
M

C

)
,
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while A, B and C can be written as

A = (ω2k + e2 + g2), B = 2αn

ω
, C = α2k + �

3
,

satisfying the following condition

[
−4(−12AC + ε2 − 6B M)3 + (−27AB2

−72 ACε − 2ε3 + 18BεM + 108C M2)2
] 1

2
> 0.

The expression of angular velocity at the BH horizons can be defined as

�H = H(r+, θ)

K (r+, θ)
= a

r2+ + (a + l)2
,

where r+ corresponds to r1+ and r2+. The inverse function of f (r, θ) is

F(r, θ) = f (r, θ) + H2(r, θ)

K (r, θ)
.

For these BHs, the above expression becomes

F(r, θ) = P Q sin2 θρ2

�2
[
sin2 θ P[r2 + (a + l)2]2 − Q(a sin2 θ + 4l sin2 θ

2 )2
] .

In terms of �(r) and 
, we can write the inverse function of f (r, θ) as

F(r, θ) = P2�(r)
(r, θ)[
r2 + (a + l)2

]2 − �(r) sin2 θ
[
a + 2l

1+cos θ

]2 .

3 Charged particles tunneling

In order to study charged fermions tunneling of mass m from a class of PD BHs, we
consider the Dirac equation in covariant form as [33]

ιγ μ

(
Dμ − ιq

h̄
Aμ

)
� + m

h̄
� = 0, μ = 0, 1, 2, 3 (5)

where q is electric charge, Aμ is the four-potential, � is the wave function and

Dμ = ∂μ + �μ, �μ = 1

2
ι�αβ

μ 
αβ, 
αβ = 1

4
ι[γ α, γ β ].
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Dirac matrices [12–14] imply that [γ α, γ β ] = 0 for α = β and [γ α, γ β ] = −[γ β, γ α]
for α �= β. Consequently, Eq. (5) reduces to

ιγ μ

(
∂μ − ιq

h̄
Aμ

)
� + m

h̄
� = 0. (6)

The spinor wave function � (related to the particle’s action) has two spin states:
in +ve r -direction (spin-up) and in −ve r -direction (spin-down). For the spin-up and
spin-down particle’s solution, we assume [7]

�↑(t, r, θ, φ) =

⎡
⎢⎢⎣

A(t, r, θ, φ)

0
B(t, r, θ, φ)

0

⎤
⎥⎥⎦ exp

[
ι

h̄
I↑(t, r, θ, φ)

]
,

�↓(t, r, θ, φ) =

⎡
⎢⎢⎣

0
C(t, r, θ, φ)

0
D(t, r, θ, φ)

⎤
⎥⎥⎦ exp

[
ι

h̄
I↓(t, r, θ, φ)

]
,

where I↑/↓ denote the emitted spin-up/spin-down particle’s action, respectively. Here,
we deal with only spin-up particles, while calculations for spin-down particles is
similar as above.

The particle’s action through Hamilton–Jacobi ansatz [6,7] is

I↑ = −Et + Jφ + W (r, θ), (7)

where E, J, W are the energy, angular momentum and arbitrary function, respec-
tively. Using this ansatz in the Dirac equation with ιA = B, ιB = A and Taylor’s
expansion of F(r, θ) near the horizon r+, it follows that

−B

⎡
⎣−E +�H J + qer

[r2++(a+l)2]√
(r − r+)∂r F(r+, θ)

+ √
(r − r+)∂r g(r+, θ)(∂r W )

⎤
⎦+m A = 0, (8)

−B

⎡
⎣

√
P�2(r+, θ)

ρ2(r+, θ)
(∂θ W ) + ιρ(r+, θ)�(r+, θ)√

sin2 θ P[r2+(a + l)2]2 − Q(a sin2 θ+4l sin2 θ
2 )2

×
{

J − q

[
er [(l + a)2 − (l2 + a2 cos2 θ + 2la cos θ)]

a[r2+(l+a cos θ)2]

+g(l+a cos θ)[r2+(l+a)2]
a[r2+(l + a cos θ)2]

]} ⎤
⎦ = 0, (9)

A

[−E +�H J + qer
[r2+(a+l)2]√

(r − r+)∂r F(r+, θ)
− √

(r − r+)∂r g(r+, θ)(∂r W )

]
+m B =0, (10)

123



1058 M. Sharif, W. Javed

−A

⎡
⎣

√
P�2(r+, θ)

ρ2(r+, θ)
(∂θ W )

+ ιρ(r+, θ)�(r+, θ)√
sin2 θ P[r2 + (a + l)2]2 − Q(a sin2 θ+4l sin2 θ

2 )2

×
{

J − q

[
er [(l + a)2 − (l2 + a2 cos2 θ + 2la cos θ)]

a[r2+(l + a cos θ)2]

+g(l+a cos θ)[r2+(l + a)2]
a[r2+(l + a cos θ)2]

]} ⎤
⎦=0. (11)

The arbitrary function W (r, θ) can be separated as follows [8]

W (r, θ) = R(r) + �(θ). (12)

Firstly, we deal with Eqs. (8)–(11) for massless (m = 0) case. Consequently, Eqs. (8)
and (10) reduce to

−E + �H J + qer
[r2++(a+l)2]√

(r − r+)∂r F(r+, θ)
+ √

(r − r+)∂r g(r+, θ)R′(r) = 0, (13)

−E + �H J + qer
[r2+(a+l)2]√

(r − r+)∂r F(r+, θ)
− √

(r − r+)∂r g(r+, θ)R′(r) = 0. (14)

For r+ = r1+, the above equations imply that

R′(r) = R′+(r) = −R′−(r) =

⎡
⎢⎢⎣ [r2

1+ + (a + l)2]
(r − r1+) (r1+ − r2+) (r1+ − r2−)

×

(
E − �H J − qer1+

[r2
1++(a+l)2]

)
(r1+ − r1−)

⎤
⎥⎥⎦ , (15)

where R+ and R− correspond to the outgoing and incoming solutions, respectively.
This equation represents the pole at the horizon, r = r1+.

Integrating Eq. (15) around the pole [28], we obtain

R+(r) = −R−(r) =

⎡
⎢⎢⎣

πι
[
r2

1+ + (a + l)2
] (

E − �H J − qer1+
[r2

1++(a+l)2]

)
(r1+ − r2+) (r1+ − r2−) (r1+ − r1−)

⎤
⎥⎥⎦ . (16)
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The imaginary parts of R+ and R− yield

ImR+ = −ImR− =

⎡
⎢⎢⎣

π
[
r2

1+ + (a + l)2
] (

E − �H J − qer1+[
r2

1++(a+l)2
]
)

(r1+ − r2+) (r1+ − r2−) (r1+ − r1−)

⎤
⎥⎥⎦ . (17)

Thus, the outgoing particle’s tunneling probability is

� = Prob[out]
Prob[in] = exp[−2(ImR+ + Im�)]

exp[−2(ImR− + Im�)] = exp[−4ImR+]

= exp

⎡
⎢⎢⎣

−4π
[
r2

1+ + (a + l)2
] (

E − �H J − qer1+[
r2

1++(a+l)2
]
)

(r1+ − r2+) (r1+ − r2−) (r1+ − r1−)

⎤
⎥⎥⎦ . (18)

Using the WKB approximation, � is given in terms of classical action I of charged
particles up to leading order in h̄. Thus, for calculating the Hawking temperature, we
expand the action in terms of particles energy E , i.e., 2I = βE + O(E2) so that the
Hawking temperature is recovered at linear order

� ∼ exp[−2I ] � exp[−βE]. (19)

This shows that the emission rate in the tunneling approach, up to first order in E ,
retrieves the Boltzmann factor of the form exp[−βE] with β = 1

TH
[18]. The higher-

order terms represent self-interaction effects resulting from the energy conservation.
The required Hawking temperature at horizon r1+ can be written as

TH =
[

(r1+ − r1−) (r1+ − r2+) (r1+ − r2−)

4π [r2
1+ + (a + l)2]

]
. (20)

When l = 0, k = 1 and � = 0 in Eq. (20), the Hawking temperature of the
accelerating and rotating BHs, electric and magnetic charges is recovered [12–14].
For α = 0, it reduces to the temperature of non-accelerating BHs [15], while l =
0, k = 1, α = 0, gives Hawking temperature of the Kerr–Newman BH [8], which
further reduces to the temperature of the RN BH (for a = 0). Finally, in the absence of
charge, it exactly becomes the Hawking temperature of the Schwarzschild BH [12]. In
case of massive particles (m �= 0), following the same steps, we can obtain the same
temperature. Thus the behavior will be same for both massive and massless particles
near the BH horizon. For ω = 1.25, M = 10, α = 10, g = 1, a = 22, l = 100 (based
on the cosmological constant � and electric charge e), the graphical representation of
Hawking temperature (20) (at r = r1+) and the corresponding horizon r = r1+ (3) of
PD BHs is shown in Figs. 1 and 2, respectively.
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Fig. 1 Hawking temperature TH at r1+ versus cosmological constant � and electric charge e
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Fig. 2 Horizon radius r1+ versus cosmological constant � and electric charge e

Now, we explore the tunneling probability of charged massive and massless fermi-
ons from the horizon r2+ given in Eq. (4) by using the similar process. The corre-
sponding set of Eqs. (8)–(11) for the outgoing and incoming fermions, respectively,
yield

R+(r) = −R−(r) =

⎡
⎢⎢⎣

πι
[
r2

2+ + (a + l)2
] (

E − �α J − qer2+[
r2

2++(a+l)2
]
)

(r2+ − r1+) (r2+ − r1−) (r2+ − r2−)

⎤
⎥⎥⎦ . (21)
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Fig. 3 Hawking temperature TH at r2+ versus cosmological constant � and electric charge e

The probability for particles which tunnel through horizon will be

� = exp

⎡
⎢⎢⎣

−4π
[
r2

2+ + (a + l)2
] (

E − �H J − qer2+[
r2

2++(a+l)2
]
)

(r2+ − r2−) (r2+ − r1+) (r2+ − r1−)

⎤
⎥⎥⎦ . (22)

Consequently, the corresponding temperature value (at r2+) is

TH =
[

(r2+ − r2−) (r2+ − r1+) (r2+ − r1−)

4π
[
r2

2+ + (a + l)2
]

]
. (23)

For ω = 9, M = 0.9, α = 0.1, g = 15, a = 100, l = 10, Figs. 3 and 4 show that
the Hawking temperature (23) at horizon radius r2+ (4) always remains positive for
the above mentioned parameters. The horizon radius r2+ and Hawking temperature
TH vanish as � decreases and approach to zero for all e.

In general, both horizon temperatures will differ, but there is a set of parameters
for which both temperatures have similar behavior at r1+ and r2+ given in Figs. 5 and
6, respectively. The required set of parameters is given by ω = 25, M = 50, α =
12.5, g = .01, a = 20, l = 100.
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Fig. 4 Horizon radius r2+ versus cosmological constant � and electric charge e
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Fig. 5 Hawking temperature TH at r1+ versus cosmological constant � and electric charge e

3.1 Action for the emitted particles

We evaluate particle’s action I↑ by using Eqs. (8)–(11). For outgoing particles, Eqs.
(8) and (12) can be expressed as follows

R′(r) = m A

B
√

(r − r+)∂r g(r+, θ)
−

−E + �H J + qer+
[r2++(a+l)2]

(r − r+)
√

∂r F(r+, θ)∂r g(r+, θ)
. (24)

Integration with respect to r provides
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Fig. 6 Hawking temperature TH at r2+ versus cosmological constant � and electric charge e

R(r) = R+(r) =
∫

m A

B
√

(r − r+)∂r g(r+, θ)
dr

−

(
−E + �H J + qer+

[r2++(a+l)2]

)
√

∂r F(r+, θ)∂r g(r+, θ)
ln(r − r+). (25)

Similarly, in case of incoming particles, Eq. (10) yields

R(r) = R−(r) =
∫

m B

A
√

(r − r+)∂r g(r+, θ)
dr

+

(
−E + �H J + qer+

[r2++(a+l)2]

)
√

∂r F(r+, θ)∂r g(r+, θ)
ln(r − r+). (26)

Using Eq. (12), we can write from Eqs. (9) or (11) as

√
P�2(r+, θ)

ρ2(r+, θ)
∂θ� + ιρ(r+, θ)�(r+, θ)√

sin2 θ P[r2+ + (a + l)2]2

×
[

J − q

{
er+

[
(l + a)2 − (l2 + a2 cos2 θ + 2la cos θ)

]
a

[
r2+ + (l + a cos θ)2

]
+ g(l + a cos θ)

[
r2+ + (l + a)2

]
a

[
r2+ + (l + a cos θ)2

]
}]

= 0. (27)
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Inserting ρ and P , after some manipulation, it follows that

∂θ� = ιa sin θ [a J + qer+]
[r2+ + (a + l)2]

[
1 − 2 cos θ

{
α

a

ω
M

− 2α2l
a

ω2 (ω2k + e2 + g2) − 2�

3
al

}

− cos2 θ

{
−α2 a2

ω2 (ω2k + e2 + g2) − �

3
a2

}]−1

+−ιa J + ιqg(l + a cos θ)

a sin θ

[
1 − 2 cos θ

{
α

a

ω
M

− 2α2l
a

ω2 (ω2k + e2 + g2) − 2�

3
al

}

− cos2 θ

{
−α2 a2

ω2 (ω2k + e2 + g2) − �

3
a2

}]−1

+ ι2l(1 − cos θ)[a J + qer+]
sin θ [r2+ + (a + l)2]

[
1 − 2 cos θ

{
α

a

ω
M

− 2α2l
a

ω2 (ω2k + e2 + g2) − 2�

3
al

}

− cos2 θ

{
−α2 a2

ω2 (ω2k + e2 + g2) − �

3
a2

}]−1

.

Integrating with respect to θ , we have

� = ιa[a J + qer+]
[r2+ + (a + l)2] I1 + I2 + 2lι[a J + qer+]

[r2+ + (a + l)2] I3, (28)

where I1, I2 and I3 are given as follows

I1 =
∫ [

sin θ

1 − 2 Ã cos θ − B̃ cos2 θ

]
dθ,

I2 =
∫ [

ιqg(l + a cos θ) − ιa J

a sin θ [1 − 2 Ã cos θ − B̃ cos2 θ ]
]

dθ,

I3 =
∫ [

1 − cos θ

sin θ [1 − 2 Ã cos θ − B̃ cos2 θ ]
]

dθ,
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and

Ã =
[
α

a

ω
M − 2α2l

a

ω2 (ω2k + e2 + g2) − 2�

3
al

]
,

B̃ =
[
−α2 a2

ω2 (ω2k + e2 + g2) − �

3
a2

]
.

Solving these integrals, we obtain after some algebra

I1 =
[

1

2
√

Ã2 + B̃
ln

[
1 − x( Ã +

√
Ã2 + B̃)

1 − x( Ã −
√

Ã2 + B̃)

]]
, (29)

I2 = L1 ln

[
1 − x( Ã +

√
Ã2 + B̃)

1 − x( Ã −
√

Ã2 + B̃)

]
+ L2 ln

[
1 − 2 Ãx − B̃x2

]
+L3 ln[1 − cos θ ] + L4 ln[1 + cos θ ], (30)

where

L1 =
⎡
⎣ 1

2
√

Ã2 + B̃
[
(1 − B̃)2 − 4 Ã2

]
⎤
⎦

⎡
⎣ιJ

(
2 Ã2 − B̃2 + B̃

)

+ιqg

(
− Ã + l

a
B̃2 − 2

l

a
Ã2 − l

a
B̃ − Ã B̃

) ⎤
⎦ ,

L2 = 1[
(1 − B̃)2 − 4 Ã2

] [
ιJ Ã − ιqg

2

(
1 − B̃ + 2

l

a
Ã

)]
,

L3 = 1

2
(

1 − 2 Ã − B̃
) [

ιqg

(
l

a
+ 1

)
− ιJ

]
,

L4 = 1

2
(

1 − B̃ + 2 Ã
) [

ιJ + ιqg

(
− l

a
+ 1

)]

and I3 can be obtained as

I3 = N1 ln

[
1 − x( Ã +

√
Ã2 + B̃)

1 − x( Ã −
√

Ã2 + B̃)

]

+N2 ln
[
1 − 2 Ãx − B̃x2

]
+ N3 ln[1 + x], (31)
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where x = cos θ and

N1 =
[

Ã − B̃

2
√

Ã2 + B̃(1 − B̃ + 2 Ã)

]
,

N2 =
[

1

2(1 − B̃ + 2 Ã)

]
, N3 = −

[
1

(1 − B̃ + 2 Ã)

]
.

Equations (12), (25) and (28) can determine the value for W (r, θ) and hence the outgo-
ing massive particles action can be obtained. For m = 0, this expression diminishes to
the massless particles action. Similarly, we can determine the action for the incoming
particles either massive or massless.

4 Outlook

In this paper, we have used semiclassical WKB approximation to study tunneling
continuum of charged fermions from a pair of electrically and magnetically charged
accelerating and rotating BHs, together with NUT parameter and cosmological con-
stant. It is found that the tunneling probabilities [(18) and (22)] of outgoing charged
fermions do not depend upon fermion’s mass but only its charge. For the family of
BH solutions, the corresponding Hawking temperatures [(20) and (23)] depend upon
mass, acceleration, rotation parameters and NUT parameter as well as electric and
magnetic charges of the pair of BHs involving cosmological constant. Equations for
the spin-down case are of the identical form as in case of the spin-up particles with the
exception of negative sign. For both cases, either massive or massless, the Hawking
temperature indicates that the spin-up and spin-down particles are transmitted at the
similar tunneling rate [7].

This work is the generalization of our previous work [28] by adding � in the
family of BH solutions. We see from graphs that these solutions lead to expanding
BH solutions. We would like to mention here that the cosmological constant can
be positive/negative in general. However, for the sake of positive temperature, the
cosmological constant must be positive for this set of parameters. We can take negative
cosmological constant for some other set of parameters but it is not sure whether it
will give temperature positive or negative. It is worth mentioning here that for the PD
family of BH solutions, in the absence of the cosmological constant, all results reduce
to the results already given in [28].

The graphical representation (Figs. 1, 2) indicates that whether the cosmological
constant increases or decreases, it has no effect on the horizon radius r1+. However, the
horizon radius always increases (hence approaches to its maximum value) whether e is
decreasing to zero or increasing to zero. Similarly, the horizon radius always decreases
(hence approaches to its minimum value) whether positive e is increasing to +∞ or
negative e is decreasing to −∞. Hawking temperature remains positive for this choice
of parameters. For e < 0, the temperature decreases as e decreases (independent of
�). For e > 0, the temperature increases as e decreases. For e = 0, temperature
approaches to its maximum value, while � behaves constantly. We see from Figs. 3
and 4 that for increasing �, the temperature TH and radius r2+ increase when e < 0,

123
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while these decrease when e > 0. For e = 0, the Hawking temperature and horizon
radius attain its maximum values with positive increasing �.

The graphical behavior of horizons show that r1+ is the outer horizon, while r2+
is the cosmological horizon. In the tunneling picture, particles can also tunnel from
the cosmological horizon like the event horizon. The tunneling behavior is different
for these two horizons. The event horizon decreases when +ve-energy particles tunnel
across it, while the cosmological horizon expands. The emitted particles are found to
tunnel into the cosmological horizon in the form of radiation [12,34,35].

For de Sitter BHs, particles can be created at event horizon as well as at cosmo-
logical horizon. At the event horizon, +ve-energy (outgoing) particles tunnel out the
BH horizon to form Hawking radiation and −ve-energy (incoming) particles can fall
into the horizon along classically permitted trajectories. At the cosmological horizon,
outgoing particles can fall classically out of the horizon and incoming particles tunnel
inside the horizon to form Hawking radiation for distant observer. Thus, the tunneling
probability of incoming particles through cosmological horizon r2+ of PD BHs can
be written as

� = Prob[in]
Prob[out] = exp[−4ImR−],

= exp

⎡
⎢⎢⎣

4π
[
r2

2+ + (a + l)2
] (

E − �H J − qer2+[
r2

2++(a+l)2
]
)

(r2+ − r1+) (r2+ − r1−) (r2+ − r2−)

⎤
⎥⎥⎦ .

By comparing the above expression with the Boltzmann factor, there is only one choice
to consider −ve-energy at cosmological horizon. Thus, in de Sitter space massive
particles have −ve-energy which can tunnel inside the cosmological horizon. The
Hawking temperature at the cosmological horizon of PD BHs by using −ve-energy
particles can be written as given by Eq. (23). This temperature is same as for the
temperature of outgoing particles.

Figures 1 and 3 show that the Hawking temperatures at horizon radii r1+ and r2+
exhibit +ve behavior. Thus the Hawking temperatures (20) and (23) must be +ve
for outgoing particles through the event horizon and incoming particles through the
cosmological horizon. The graphical behavior of temperature helps to know about the
horizon radii of PD BH. These verifications are consistent with already available in
the literature [11].

Finally, it is pointed out that BHs with NUT charge are not consistent with the exis-
tence of fermions insofar as such spacetimes do not support spin structures [36]. Here
we have given calculations that surprisingly show good agreement with known results
about the Hawking temperature in the limits in which they apply. This agreement is
of particular interest even when no spin structure of � exists.
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