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Abstract We develop a general setting for the quantization of linear bosonic and
fermionic field theories subject to local gauge invariance and show how standard
examples such as linearised Yang-Mills theory and linearised general relativity fit into
this framework. Our construction always leads to a well-defined and gauge-invariant
quantum field algebra, the centre and representations of this algebra, however, have to
be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field
theory where the necessary conditions for the existence of Hilbert space representa-
tions are not met on any spacetime. On the other hand, we prove that these conditions
are met for the Rarita-Schwinger gauge field in linearised pure N = 1 supergravity on
certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes
with compact Cauchy surfaces. We also present an explicit example of a supergrav-
ity background on which the Rarita-Schwinger gauge field can not be consistently
quantized.
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1 Introduction

Quantum field theory on curved spacetimes has gone through major developments in
the last decades. Explicit models have been constructed in this framework, including
the scalar field [13], the Dirac field [10,14,28] and the Proca field [20]. These exam-
ples have later been recast into a general approach to the quantization of bosonic and
fermionic matter field theories on curved spacetimes [2,3]. On the other hand, exam-
ples of theories exhibiting a local gauge invariance have been investigated in detail,
including the Maxwell field [29,11,12,15,17,27] and linearised general relativity on
Einstein manifolds [18]. The quantization of gauge field theories bears new compli-
cations, which are not present for matter field theories. In particular, the equation of
motion in a gauge field theory is not hyperbolic and thus one does not have a well-
defined Cauchy problem or Green’s operators, which are the basic structures entering
the construction of matter quantum field theories. This problem has been resolved in
the examples mentioned above by considering only the gauge invariant content of such
a theory, i.e. gauge invariant observables, and making use of a special gauge fixing
condition. We emphasise that even though a gauge fixing is used in this construction,
the resulting algebra of observables is by definition gauge invariant. The algebra of
gauge invariant observables of a gauge field theory can have new features compared
to matter field theories. As it has been shown in [2,3] (see also Sect. 4 in the present
paper) the algebra of observables of a bosonic matter quantum field theory never has
a non-trivial centre. In gauge field theories this can in general only be guaranteed
under additional assumptions on the Cauchy surface in the spacetime, see [15] for the
Maxwell field and [18] for linearised general relativity on Einstein manifolds. There
are examples of Cauchy surfaces such that the algebra of gauge invariant observables
of the Maxwell field has a non-trivial centre [29,11]. Due to the theory of degenerate
Weyl algebras [7] these centres do not pose mathematical problems for the quantum
field theory on an individual spacetime, but they have impact on whether or not the
theory is locally covariant in the sense of [9], see e.g. [29,11]. Furthermore, the centres
are certainly of physical interest and should be understood in detail. We also want to
mention that in addition to these results on linear quantum gauge field theories there
has been a lot of effort in constructing perturbatively interacting quantum gauge field
theories on curved spacetimes, see e.g. [19,22] and references therein. In our work
we restrict ourselves to linear quantum field theories, since as it will become clear
later, there are a lot of non-trivial aspects which have to be understood in detail even
at the linear level. This is in particular the case for fermionic gauge field theories. The
restriction to linear theories will allow us to quantize gauge fields without introducing
auxiliary fields as it happens in the BRST/BV-formalism, cf. [19,22]. However, we
presume that our construction for the bosonic case yields a gauge invariant algebra
of quantum observables which is isomorphic to the one obtained in [19,22] at lowest
order in perturbation theory.

The goal of the present paper is twofold: First, we aim at developing a general
framework for the quantization of linear gauge field theories. This can be seen as
an extension of [2,3] to field theories subject to a local gauge invariance. We allow
for bosonic as well as fermionic theories and provide an axiomatic definition of a
classical linear gauge field theory in terms of fibre bundles and differential operators
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Linear quantum gauge theories 879

thereon. Our setting is general enough to cover the matter field theories of [2,3],
which will be promoted to gauge field theories with a trivial gauge structure, as well
as the standard examples such as linearised Yang-Mills theory and linearised general
relativity on Einstein manifolds. Even more, our general framework is sufficiently
flexible to include examples of fermionic gauge field theories. The prime example of
such a theory is the gravitino field (also called Rarita-Schwinger field) in linearised
pure N = 1 supergravity, which we will discuss in detail. A further example which
we will study in detail is a fermionic version of linearised Yang-Mills theory, which
emerges for example as the fermionic sector of a Yang-Mills theory modeled on
a Lie supergroup. Bosonic gauge field theories can always be quantized in terms
of (possibly degenerate) Weyl algebras, while fermionic gauge field theories bear
additional complications, similar to their matter field theory counterparts [3,2]. The
issue there is that the inner product space associated to a fermionic matter or gauge
field theory is in general indefinite, and one therefore encounters physical as well as
mathematical problems. The mathematical issue is that such indefinite inner product
spaces can not be quantized with the usual CAR-representation. The physical problem
is that, even if there would exist a suitable CAR-algebra, there are negative norm
states in any representation of it. In contrast to other approaches to the quantization
of gauge field theories which are based on kinematical (i.e. still containing gauge
degrees of freedom) representation spaces, our negative norm states would be states
in the physical (i.e. gauge invariant) Hilbert space and would thus pose problems for
the physical interpretation of the fermionic gauge field theory under consideration.
This brings us to the second goal of this paper, which is the investigation under which
conditions the two examples of fermionic gauge field theories give rise to positive
definite inner product spaces and thus can be consistently quantized in terms of a
CAR-representation. We prove that the fermionic generalisation of linearised Yang-
Mills theory always leads to an indefinite inner product space and thus can not be
quantized on any spacetime. This implies that the perturbative quantization of Yang-
Mills theories based on Lie supergroups is, in the above mentioned sense, inconsistent
and puts strong mathematical constraints on such theories. On the other hand, our
result is well in line with the spin-statistics theorem. The situation is better for the
gravitino field of linearised pure supergravity. We provide a sufficient condition for
this theory to give rise to a positive inner product space, which demands the existence
of a special type of gauge transformation. For compact Cauchy surfaces this condition
is fulfilled if the induced (Riemannian) Dirac operator on the Cauchy surface has a
trivial kernel. We also consider certain non-compact Cauchy surfaces and answer the
question of positivity affirmatively. This shows that, under suitable assumptions on the
Cauchy surface, treating the Rarita-Schwinger field as a fermionic gauge field theory
(as it is required by supergravity) improves on well-known issues appearing in the
quantization of the Rarita-Schwinger field when treated as a matter field theory, see
e.g. [2,21,30]. Introducing a mass term for the gravitino field in a gauge-invariant
way requires the coupling of matter fields to the supergravity multiplet and will be
discussed elsewhere. We also provide an example of a supergravity background on
which the Rarita-Schwinger gauge field can not be consistently quantized via a CAR-
representation. Considering the spacetime M = R × T

D−1—with T
D−1 denoting the

D−1-torus—equipped with the flat Lorentzian metric, we show that in case of the

123



880 T.-P. Hack, A. Schenkel

trivial spin structure the inner product is indefinite, while for all other spin structures it
is positive definite. A complete classification of Cauchy surfaces and induced metrics
thereon which lead to a positive inner product for the Rarita-Schwinger gauge field
seems to be very complicated and is beyond the scope of this work.

The outline of this paper is as follows: In Sect. 2 we review some basic aspects of
Lorentzian geometry and differential operators on vector bundles following mainly
the presentation in [2,3]. We then introduce our definition of classical gauge field
theories in Sect. 3 and show that the basic examples studied in the literature fit into
this framework. We conclude this section with a theorem on properties of classical
gauge field theories, which generalises the properties found in the explicit examples
to the axiomatic level. In Sect. 4 we study the quantization of gauge field theories and
in particular propose suitable algebras of gauge invariant observables. The question
of non-degeneracy (positivity) of bosonic (fermionic) gauge field theories is investi-
gated in Sect. 5. The Rarita-Schwinger gauge field is discussed separately in Sect. 6.
Appendix A contains our spinor conventions.

2 Notation and preliminaries

We fix our notations and review briefly some aspects of Lorentzian manifolds and
differential operators on vector bundles. We mainly follow [2,3] and refer to these
works for more details and references to other literature.

A Lorentzian manifold is a smooth and oriented connected D-dimensional manifold
M equipped with a smooth Lorentzian metric g of signature (−,+, . . . ,+). The
associated volume form will be denoted by volM . A time-oriented Lorentzian manifold
will be called a spacetime. For every subset A ⊆ M of a spacetime M we denote the
causal future/past of A by J±(A). A closed subset A ⊆ M is called spacelike compact
if there exists a compact C ⊆ M such that A ⊆ J (C) := J+(C)∪ J−(C). A Cauchy
surface in a spacetime M is a subset � ⊆ M which is met exactly once by every
inextensible causal curve and a spacetime is called globally hyperbolic if and only if
it contains a Cauchy surface. We shall need the following theorem proven by Bernal
and Sánchez [4,31]:

Theorem 2.1 Let (M, g) be a globally hyperbolic spacetime.

(i) Then there exists a smooth manifold �, a smooth one-parameter family of Rie-
mannian metrics {gt }t∈R on � and a smooth positive function ϑ on R ×�, such
that (M, g) is isometric to (R × �,−ϑ2dt2 ⊕ gt ). Under this isometry each
{t} ×� corresponds to a smooth spacelike Cauchy surface in (M, g).

(ii) Let also ˜� be a smooth spacelike Cauchy surface in (M, g). Then there exists a
smooth splitting (M, g) � (R×�,−ϑ2dt2⊕gt ) as in (i) such that ˜� corresponds
to {0} ×�.

Let V,W be K-vector bundles over M with K = R or C. A differential operator
of order k is a linear map P : �∞(V ) → �∞(W ), with �∞(V ), �∞(W ) denoting
the C∞(M)-modules of sections of V,W , which in local coordinates (x0, . . . , x D−1)

and a local trivialisation of V and W looks like
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P =
∑

|α|≤k

Aα(x)
∂ |α|

∂xα
. (2.1)

Here α = (α0, . . . , αD−1) ∈ N
D
0 denotes a multi-index, |α| = α0 + · · · + αD−1 is its

length and ∂ |α|
∂xα = ∂ |α|

∂(x0)α0 ···∂(x D−1)αD−1 . The Aα are smooth functions with values in
the linear homomorphisms from the typical fibre of V to the one of W . The principal
symbol σP of P associates to each covector ξ ∈ T ∗

x M a homomorphism σP (ξ) :
Vx → Wx between the fibre Vx and Wx over x ∈ M . Locally,

σP (ξ) =
∑

|α|=k

Aα(x) ξα, (2.2)

where ξα = ξ
α0
0 . . . ξ

αD−1
D−1 and ξ = ξμ dxμ (sum over μ = 0, . . . , D − 1 understood).

In addition to �∞(V ) we introduce the notations �∞
0 (V ) for the sections of compact

support and �∞
sc (V ) for the sections of spacelike compact support.

Let now K = R and let 〈 , 〉V be a non-degenerate bilinear form on V , that is a
family of non-degenerate bilinear maps 〈 , 〉Vx

: Vx × Vx → R on the fibres Vx , for
all x ∈ M , that depend smoothly on x . We define the bilinear map 〈 , 〉�(V ), for all
sections f, h ∈ �∞(V ) with compact overlapping support,

〈 f, h〉�(V ) :=
∫

M

volM 〈 f, h〉V . (2.3)

Let us also assume that W comes with a non-degenerate bilinear form 〈 , 〉W . Then
every differential operator P : �∞(V ) → �∞(W ) of order k has a unique formal
adjoint, i.e. a differential operator P† : �∞(W ) → �∞(V ) of order k, such that

〈P† f, h〉�(V ) = 〈 f, Ph〉�(W ), (2.4)

for all f ∈ �∞(W ) and h ∈ �∞(V ) with compact overlapping support. If V =
W, 〈 , 〉V = 〈 , 〉W and P† = P we say that P is formally self-adjoint (with respect
to 〈 , 〉V ).

Definition 2.2 Let P : �∞(V ) → �∞(V ) be a differential operator on a vector
bundle V over a Lorentzian manifold M . A retarded/advanced Green’s operator for
P is a continuous linear map G± : �∞

0 (V ) → �∞(V ) satisfying

(i) P ◦ G± = id,
(ii) G± ◦ P

∣

∣

�∞
0 (V )

= id,

(iii) supp(G± f ) ⊆ J±(supp( f )) for any f ∈ �∞
0 (V ).

Definition 2.3 Let P : �∞(V ) → �∞(V ) be a differential operator on a vector
bundle V over a globally hyperbolic spacetime M with a non-degenerate bilinear
form 〈 , 〉V .
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882 T.-P. Hack, A. Schenkel

(i) We say that P is Green-hyperbolic if P and P† have Green’s operators.1

(ii) We say that P is Cauchy-hyperbolic if the Cauchy problems for P and P† are
well-posed.

Remark 2.4 The Green’s operators of a Green-hyperbolic operator on a globally
hyperbolic spacetime are necessarily unique, see Remark 3.7 in [2]. Cauchy-hyperbolic
operators are also Green-hyperbolic, but there are Green-hyperbolic operators that are
not Cauchy-hyperbolic, see Section 2.7 in [2].

Example 2.5 Let M be a globally hyperbolic spacetime and V a vector bundle over M .

1. A second-order differential operator P on V is called a normally hyperbolic oper-
ator (also wave operator) if its principal symbol is given by the inverse metric g−1

times the identity on the fibre, σP (ξ) = g−1(ξ, ξ) id. In other words, a differential
operator is normally hyperbolic if and only if in local coordinates xμ and a local
trivialisation of V

P = gμν(x) ∂μ∂ν + Aμ(x) ∂μ + B(x), (2.5)

where Aμ and B smooth functions valued in the endomorphisms of the typical
fibre of V .

2. A first-order differential operator P on V is called of Dirac-type if P2 = P ◦ P
is a normally hyperbolic operator.

The formal adjoints of normally hyperbolic operators and operators of Dirac-type
are again normally hyperbolic and of Dirac-type respectively, and these two classes of
differential operators are Green-hyperbolic and even Cauchy-hyperbolic, see [2,3,24].

As a last prerequisite we require the following lemma and theorem on properties
of Green’s operators. See Lemma 3.3 and Theorem 3.5 in [2] for the proofs.

Lemma 2.6 Let M be a globally hyperbolic spacetime and V a vector bundle
over M equipped with a non-degenerate bilinear form 〈 , 〉V . Denote by G± the
retarded/advanced Green’s operators for a Green-hyperbolic operator P on V . Then
the retarded/advanced Green’s operators G†

± for P† satisfy, for all f, h ∈ �∞
0 (V ),

〈G†
∓ f, h〉�(V ) = 〈 f,G±h〉�(V ). (2.6)

In particular, if P† = P is formally self-adjoint then 〈G∓ f, h〉�(V ) = 〈 f,G±h〉�(V ),
for all f, h ∈ �∞

0 (V ).

Theorem 2.7 Let M be a globally hyperbolic spacetime, V a vector bundle over
M and P a Green-hyperbolic operator on V . For G± being the retarded/advanced
Green’s operators for P we define the linear map G := G+ − G− : �∞

0 (V ) →
�∞

sc (V ). Then the following sequence of linear maps is a complex, which is exact
everywhere:

{0} −→ �∞
0 (V )

P−→ �∞
0 (V )

G−→ �∞
sc (V )

P−→ �∞
sc (V ). (2.7)

1 We are grateful to Ko Sanders for pointing out that the existence of Green’s operators for P† does in
general not follow from the existence of Green’s operators for P .
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3 Classical gauge field theories

In this section we provide a general setting to describe classical gauge field theories.
This requires, of course, more structures compared to classical field theories which
are not subject to gauge invariance, i.e. classical matter field theories. Throughout this
article all field theories are assumed to be real and non-interacting, i.e. the dynamics
is governed by a linear equation of motion operator. The non-trivial coupling is thus
only to fixed classical background fields, such as the gravitational field or background
gauge fields.

Before investigating classical gauge field theories we first provide a definition of a
classical matter field theory following the spirit of [2,3] and give some examples.

Definition 3.1 A (real) classical matter field theory is given by a triple
(

M, V, P
)

,
where

– M is a globally hyperbolic spacetime
– V is a real vector bundle over M equipped with a non-degenerate bilinear form

〈 , 〉V
– P : �∞(V ) → �∞(V ) is a formally self-adjoint Green-hyperbolic operator

We say that a classical matter field theory is bosonic if 〈 , 〉V is symmetric and fermionic
if 〈 , 〉V is antisymmetric.

Example 3.2 (Klein-Gordon field) Let M be a globally hyperbolic spacetime and
V := M × R be the trivial real line bundle. We equip V with the canonical non-
degenerate symmetric bilinear form 〈 , 〉V , which is induced from the inner product
on the typical fibre R given by, for all v1, v2 ∈ R,

〈v1, v2〉R = v1 v2. (3.1)

The C∞(M)-module of sections �∞(V ) is isomorphic to C∞(M).
Using the differential d : 
n(M) → 
n+1(M) and its formal adjoint δ : 
n(M) →


n−1(M), given by δ = (−1)nD+D ∗d∗ with D = dim(M) and ∗ denoting the Hodge
operator, we define the Klein-Gordon operator of mass m ∈ [0,∞)

P : C∞(M) → C∞(M), f �→ P f = δd f + m2 f. (3.2)

This operator is formally self-adjoint with respect to 〈 , 〉V and normally hyperbolic,
thus in particular also Green-hyperbolic.

This shows that the Klein-Gordon field is a bosonic classical matter field theory
according to Definition 3.1.

Example 3.3 (Majorana field) For our spinor conventions see Appendix A and for
a general discussion of spinor fields we refer to [28]. Let M be a globally hyper-
bolic spacetime of dimension D mod 8 = 2, 3, 4 equipped with a spin structure
and let DM be the Dirac bundle. The typical fibre of DM is given by C

2�D/2�
.

We can use the charge conjugation map c : DM → DM to define the real sub-
bundle V := DMR := {

e ∈ DM : ec = e
}

, which we call the Majorana bundle.
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884 T.-P. Hack, A. Schenkel

We equip the typical fibre R
2�D/2�

of DMR with the non-degenerate antisymmetric
bilinear map, for all v1, v2 ∈ R

2�D/2�
,

〈v1, v2〉
R2�D/2� = i vT

1 C v2, (3.3)

where C denotes the charge conjugation matrix, i the imaginary unit and T the trans-
position operation. This induces a non-degenerate antisymmetric bilinear form 〈 , 〉V
on V = DMR.

Let us denote by T M the tangent and by T ∗M the cotangent bundle on M . Using
the connection ∇ : �∞(V ) → �∞(V ⊗ T ∗M), which is induced by the Levi-Civita
connection, and the γ -matrix section γ ∈ �∞(

T M ⊗ End(V )
)

, which is covariantly
constant, we define the Dirac operator /∇ : �∞(V ) → �∞(V ) by the contraction of γ
and ∇. In local coordinates we have /∇ = γ μ ∇μ. We further define the Dirac operator
of mass m ∈ [0,∞) by

P : �∞(V ) → �∞(V ), f �→ P f = /∇ f + m f. (3.4)

The operator P is formally self-adjoint with respect to 〈 , 〉V and of Dirac-type, thus
in particular Green-hyperbolic.

This shows that the Majorana field is a fermionic classical field theory according
to Definition 3.1.

For a classical gauge field theory Definition 3.1 is not suitable, since firstly it
does not encode the notion of gauge invariance and secondly, as well-known, gauge
invariance implies that the dynamics of gauge fields can not be governed by hyperbolic
operators. To include the missing structures we propose the following axioms:

Definition 3.4 A classical gauge field theory is given by a six-tuple
(

M, V,W,
P, K , T

)

, where

– M is a globally hyperbolic spacetime
– V and W are real vector bundles over M equipped with non-degenerate bilinear

forms 〈 , 〉V and 〈 , 〉W
– P : �∞(V ) → �∞(V ) is a formally self-adjoint differential operator
– K : �∞(W ) → �∞(V ) is a differential operator satisfying P ◦ K = 0 and

R := K † ◦ K Cauchy-hyperbolic for non-trivial K �= 0
– T : �∞(W ) → �∞(V ) is a differential operator, such that ˜P := P + T ◦ K † is

Green-hyperbolic and Q := K † ◦ T is Green-hyperbolic for non-trivial K �= 0

We say that a classical gauge field theory is bosonic if 〈 , 〉V is symmetric and fermionic
if 〈 , 〉V is antisymmetric.

Remark 3.5 As the following examples will show, the objects appearing in the
six-tuple

(

M, V,W, P, K , T
)

describing a classical gauge field theory have the fol-
lowing physical interpretation:

Sections of the vector bundle V describe configurations of the gauge field. The
operator P governs its dynamics and the formal self-adjointness of P can be interpreted
as saying that Pψ = 0 are the Euler-Lagrange equations obtained from a quadratic
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action functional for ψ . The operator K generates gauge transformations by, for all
ψ ∈ �∞(V ) and ε ∈ �∞(W ), ψ �→ ψ ′ = ψ + K ε. Thus, sections of W describe
configurations of the gauge transformation parameters. The condition P ◦ K = 0
encodes the gauge invariance of the dynamics, in particular it implies that pure gauge
configurations K ε ∈ �∞(V ) solve the equation of motion. The condition R :=
K † ◦ K Cauchy-hyperbolic is used to prove that K †ψ = 0 is a consistent gauge
fixing condition, i.e. that any solution of Pψ = 0 with spacelike compact support
is gauge equivalent to a solution in the kernel of K †, see Theorem 3.12 (iv). The
Green-hyperbolic operator ˜P := P + T ◦ K † is the equation of motion operator after
the canonical gauge fixing K †ψ = 0. The Green-hyperbolic operator Q := K † ◦ T
ensures that the canonical gauge fixing is compatible with time evolution.

Even though K † has also the interpretation of a gauge fixing operator, we want to
stress that we do not perform any explicit gauge fixing and work completely in terms
of gauge invariant quantities when discussing algebras of observables. This follows
in particular from Proposition 5.1 which implies that the canonical (anti)commutation
relations of the gauge field do not depend on ˜P , but only on P . A related observation
is that two classical gauge field theories which differ only in the operator T can be
considered to be equivalent, see Proposition 4.9.

Since for a given five-tuple
(

M, V,W, P, K
)

the choice of T seems to be non-
unique in general and since in the following examples T is usually read off from the
five-tuple

(

M, V,W, P, K
)

rather than being given as an independent datum, a natural
question is whether and under which additional assumptions a differential operator T
satisfying the last point of Definition 3.4 exists for every five-tuple

(

M, V,W, P, K
)

satisfying the first four points of Definition 3.4. Unfortunately, a satisfactory answer
to this question, which would allow us to treat linear gauge theories solely in terms
of five-tuples

(

M, V,W, P, K
)

, seems to be non-trivial and is beyond the scope of
this work. For this reason we have chosen to consider T as an additional datum in our
following general treatment of linear gauge theories.

Before providing non-trivial examples of classical gauge field theories we show
that any classical matter field theory is also a classical gauge field theory with trivial
gauge structure K .

Proposition 3.6 Let
(

M, V, P
)

be a classical matter field theory and let T :
�∞(V ) → �∞(V ) be an arbitrary differential operator. Then

(

M, V, V, P, K =
0, T

)

is a classical gauge field theory with trivial gauge structure K = 0.

Proof Since K = 0 we also have K † = 0. All conditions of Definition 3.4 are easily
verified. ��

The standard examples of linearised bosonic and fermionic gauge field theories
also fit into Definition 3.4.

Example 3.7 (Linearised Yang-Mills field) The Yang-Mills field should only serve as
an illustrative example. This is why we restrict ourselves to the case of trivial gauge
bundles in order to simplify the discussion.

Let M be a globally hyperbolic spacetime andg be a real semisimple Lie algebra. Let
W be the trivial vector bundle W := M ×g and V := W ⊗ T ∗M , with T ∗M denoting
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the cotangent bundle. We equip W with the non-degenerate symmetric bilinear form
〈 , 〉W induced from the Killing form on the typical fibre g, for all w1, w2 ∈ g,

〈w1, w2〉g = Tr
(

adw1 adw2

)

(3.5)

and V with the non-degenerate symmetric bilinear form 〈 , 〉V given by the product
of 〈 , 〉W and the inverse metric g−1 on M . The C∞(M)-module of sections �∞(W )

is isomorphic to the C∞(M)-module of g-valued functions C∞(M, g) and �∞(V ) is
isomorphic to the g-valued one-forms 
1(M, g).

A Yang-Mills field in this setting is a section A ∈ 
1(M, g). The curvature of A
is given by F = dA + 1

2 [A, A] ∈ 
2(M, g). We define the covariant differential
dA : 
n(M, g) → 
n+1(M, g) by dAη := dη + [A, η] and denote its formal adjoint
by δA : 
n(M, g) → 
n−1(M, g). Explicitly, δAη = (−1)n D+D ∗ dA ∗ η, where
∗ denotes the Hodge operator and D = dim(M). The Yang-Mills equation reads
δA F = 0.

Let us now linearise the Yang-Mills field A around a solution A0 ∈ 
1(M, g) of
the Yang-Mills equation, i.e. we write A = A0 + α with α ∈ 
1(M, g) and consider
only terms linear in α. The linearised curvature reads Flin = F0 + dA0α, where F0 is
the curvature of A0 and dA0 the covariant differential given by A0. The linearisation
of the Yang-Mills equation yields

0 = δA0 F0 + δA0 dA0α + (−1)D ∗ [α, ∗F0] = δA0 dA0α − ∗[∗F0, α], (3.6)

since A0 is on-shell. We define the differential operator P on 
1(M, g) � �∞(V ),

P : 
1(M, g) → 
1(M, g), α �→ Pα = δA0 dA0α − ∗[∗F0, α]. (3.7)

It is formally self-adjoint with respect to 〈 , 〉V .
The gauge invariance of the full (not linearised) theory is given by transformations

A �→ A + dAε labelled by ε ∈ C∞(M, g). Notice that C∞(M, g) � �∞(W ). If we
linearise the gauge transformations we obtain for all ε ∈ C∞(M, g) the transformation
law α �→ α + dA0ε. Let us define the operator K by

K : C∞(M, g) → 
1(M, g), ε �→ K ε = dA0ε. (3.8)

It is a standard calculation to check that P ◦ K = 0, provided the background Yang-
Mills field A0 is on-shell, i.e. δA0 F0 = 0.

We define further the operator

T : C∞(M, g) → 
1(M, g), η �→ Tη = dA0η. (3.9)

Notice that T = K and that ˜P := P + T ◦ K † = δA0 ◦ dA0 + dA0 ◦ δA0 − ∗[∗F0, · ]
is normally hyperbolic and thus in particular Green-hyperbolic. We further obtain
Q := K † ◦ T = δA0 ◦dA0 , which is a normally hyperbolic operator on C∞(M, g) and
thus in particular Green-hyperbolic. The operator R := K † ◦ K = δA0 ◦ dA0 agrees
with Q and is Cauchy-hyperbolic.
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This shows that the linearised Yang-Mills field on a trivial g-bundle is a bosonic
classical gauge field theory according to Definition 3.4.

Example 3.8 (Linearised general relativity) The case of linearised D = 4 general
relativity in presence of a cosmological constantΛ has been recently studied in detail
by Fewster and Hunt [18]. We briefly show that this theory is a bosonic classical gauge
field theory according to Definition 3.4 and refer to [18] for more details. As in this
paper we restrict ourselves to D=4 and employ a tensor index notation to simplify
readability.

Let M be a globally hyperbolic spacetime of dimension D=4. Let further W :=
T ∗M be the cotangent bundle and V := ∨2 T ∗M be the bundle of symmetric con-
travariant tensors of rank 2. The metric gμν ∈ �∞(V ) of the globally hyperbolic space-
time M is assumed to be a solution of the vacuum Einstein equations Rμν = Λ gμν ,
with Rμν denoting the Ricci tensor of gμν . We equip W with the canonical non-
degenerate symmetric bilinear form 〈 , 〉W induced by the inverse metric gμν on M
and V with the non-degenerate symmetric bilinear form

〈 f, h〉V = f
μν

hμν = gμρgνσ
(

fμν − 1

2
gμν f

)

hρσ = f μνhμν − 1

2
f h, (3.10)

where f = f μμ = gμν fμν is the trace and · is called the trace-reversal operation.
Let us consider fluctuations gμν + εμν , with εμν ∈ �∞(V ), of the background

metric. The equation of motion operator obtained by linearising the vacuum Einstein
equations reads for the trace-reversed metric fluctuations hμν := εμν = εμν − 1

2 gμν ε

P : �∞(V ) → �∞(V ), hμν �→ (Ph)μν = gμν∇ρ∇σ hρσ + �hμν + 2� hμν
−2∇ρ∇(μhν)ρ, (3.11)

where ∇ denotes the Levi-Civita connection corresponding to gμν and � = ∇μ∇μ =
gμν∇μ∇ν the d’Alembert operator. The parenthesis ( ) denotes symmetrisation of
weight one. It can be checked that P is formally self-adjoint with respect to 〈 , 〉V .

The gauge invariance of linearised general relativity is governed by the operator

K : �∞(W ) → �∞(V ), wμ �→ (Kw)μν = ∇(μwν) = ∇(μwν) − 1

2
gμν∇ρwρ.

(3.12)

The property P◦K = 0, which holds for backgrounds satisfying the on-shell condition
Rμν = Λ gμν , has already been verified in [18], see also [32]. More precisely, the
operators PFH and KFH of Fewster and Hunt are related to ours by P = −2 PFH ◦ ·
and K = 1

2 · ◦KFH and from PFH ◦KFH = 0 it follows P ◦K = −PFH ◦ · ◦ · ◦KFH =
−PFH ◦ KFH = 0, since the trace-reversal squares to the identity. The formal adjoint
of K is given by, for all hμν ∈ �∞(V ), (K †h)μ = −∇νhμν .
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Let us further define the operator

T : �∞(W ) → �∞(V ), wμ �→ (Tw)μν = −2(Kw)μν

= −2

(

∇(μwν) − 1

2
gμν∇ρwρ

)

. (3.13)

For ˜P := P + T ◦ K † we obtain

˜P : �∞(V ) → �∞(V ), hμν �→ (˜Ph)μν = �hμν − 2 Rρ σ
μν hρσ , (3.14)

where Rρ σ
μν is the Riemann tensor. This is a normally hyperbolic operator and thus

in particular Green-hyperbolic. For Q := K † ◦ T we obtain

Q : �∞(W ) → �∞(W ), wμ �→ (Qw)μ = �wμ +Λwμ, (3.15)

which is also a normally hyperbolic operator and thus in particular Green-hyperbolic.
The operator R := K † ◦ K = − 1

2 Q is a multiple of a normally hyperbolic operator
and in particular Cauchy-hyperbolic.

This shows that linearised general relativity in presence of a cosmological constant
is a bosonic classical gauge field theory according to Definition 3.4.

Example 3.9 (Toy model: Fermionic gauge field) Before introducing the Rarita-
Schwinger gauge field as an example of a fermionic gauge field theory in Example 3.10
we first discuss a simple toy model.

Let M be a globally hyperbolic spacetime and let
(

R
2m,


)

, with m ∈ N, be the
symplectic vector space of dimension 2m, i.e. 
 is a non-degenerate antisymmetric
2m × 2m-matrix. We define W := M × R

2m to be the trivial vector bundle and
equip it with the non-degenerate antisymmetric bilinear form 〈 , 〉W induced from the
symplectic structure on the typical fibre, for all w1, w2 ∈ R

2m ,

〈w1, w2〉
 := wT
1
w2. (3.16)

We further define V := W ⊗ T ∗M , where T ∗M is the cotangent bundle, and equip
it with the non-degenerate antisymmetric bilinear form 〈 , 〉V given by the product
of 〈 , 〉W and the inverse metric g−1 on M . The C∞(M)-module of sections �∞(W )

is isomorphic to the C∞(M)-module C∞(M,R2m) and �∞(V ) is isomorphic to the
R

2m-valued one-forms 
1(M,R2m).
We define the operator

P : 
1(M,R2m) → 
1(M,R2m), α �→ Pα = δdα, (3.17)

which is formally self-adjoint with respect to 〈 , 〉V . We further define

K : C∞(M,R2m) → 
1(M,R2m), ε �→ K ε = dε. (3.18)
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It obviously holds P ◦ K = 0 and the formal adjoint of K is K † = δ. Defining the
operator

T : C∞(M,R2m) → 
1(M,R2m), ε �→ T ε = dε, (3.19)

we obtain that the operators ˜P := P + T ◦ K † = δ ◦ d + d ◦ δ (on 
1(M,R2m))
and Q := K † ◦ T = δ ◦ d (on C∞(M,R2m)) are normally hyperbolic and thus in
particular Green-hyperbolic. Since T = K we also have that R := K † ◦ K = δ ◦d is a
normally hyperbolic operator on C∞(M,R2m) and in particular Cauchy-hyperbolic.

The six-tuple
(

M, V,W, P, K , T
)

is thus a fermionic classical gauge field theory
according to Definition 3.4.

Example 3.10 (Rarita-Schwinger gauge field) Our model for the Rarita-Schwinger
gauge field is inspired by D = 4 simple supergravity, which we will briefly sketch.
For details on supergravity we refer to [25,34,37]. The field content of this theory is
the gravitational field, described by a vierbein E , and the gravitino field�. The action
functional is given by a locally supersymmetric extension of the Einstein-Hilbert action
of general relativity. Solutions of the corresponding equations of motion in a trivial
gravitino background Ψ = 0 are given by Ricci-flat Lorentzian manifolds (M, g). We
are interested in modelling linearised fluctuations of the gravitino field around these
backgrounds.

As we have already seen in the Examples 3.7 and 3.8, the on-shell conditions for the
background fields are necessary to maintain gauge invariance of the linearised gauge
field theory. Thus, we are forced to assume that M is a globally hyperbolic spacetime
which is Ricci-flat and equipped with a spin structure. We take D mod 8 = 2, 3, 4 in
order to have a suitable Majorana condition available, see Appendix A for our spinor
conventions. The Rarita-Schwinger gauge field on more general spacetimes requires
the coupling of supergravity to matter fields and will be discussed elsewhere. We
also assume that D ≥ 3 to have a non-trivial equation of motion for the gravitino
(otherwise the γ μνρ defined below is trivial; note that this is well in accord with the
fact that gravity in D = 2 is not dynamical). We define W := DMR to be the Majorana
bundle (see Example 3.3) and V := DMR ⊗T ∗M , where T ∗M denotes the cotangent
bundle. We equip W with the canonical non-degenerate antisymmetric bilinear form
〈 , 〉W , see (3.3) for an expression on the typical fibre. It is convenient not to use
the supergravity gravitino � ∈ �∞(V ) (linearised around the trivial configuration)
as the dynamical degrees of freedom, but to do a field redefinition instead. This is
similar to the trace-reversal we have used in Example 3.8. Using the γ -section γ ∈
�∞(

T M ⊗ End(DMR)
)

we define the linear map ·̃ : �∞(V ) → �∞(V ), which
is given in local coordinates by, for all ψ ∈ �∞(V ), ˜ψμ := ψμ − 1

D−2γμ γ
νψν ,

where γμ = gμρ γ ρ . Notice that γ μ˜ψμ = − 2
D−2γ

μψμ and that ·̃ is invertible via

·̃ −1 given locally by ˜ψ−1
μ = ψμ − 1

2γμγ
νψν . We define the Rarita-Schwinger gauge

field ψ ∈ �∞(V ) by the equation Ψ = ˜ψ , where Ψ ∈ �∞(V ) is the linearised
supergravity gravitino field. We equip V with the non-degenerate bilinear form 〈 , 〉V ,
which reads in local coordinates
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〈ψ1, ψ2〉V := 〈˜ψ1μ,ψ
μ
2 〉W = 〈ψ1μ,ψ

μ
2 〉W + 1

D − 2
〈γ μψ1μ, γ

νψ2ν〉W . (3.20)

Notice that 〈 , 〉V is antisymmetric.
The equation of motion for the linearised supergravity gravitino field Ψ ∈ �∞(V )

is obtained by the supergravity action and it is given by the massless Rarita-Schwinger
equation, which reads in local coordinates γ μνρ∇νΨρ = 0, where γ μνρ = γ [μγ νγ ρ],
the parenthesis [ ] denotes antisymmetrisation of weight one and ∇ is the connection on
V = DMR ⊗ T ∗M induced by the Levi-Civita connection. For the redefined degrees
of freedom ψ ∈ �∞(V ) with � = ˜ψ the dynamics is governed by the equation of
motion operator P , given in local coordinates by

P : �∞(V ) → �∞(V ), ψμ �→ (Pψ)μ = /∇ψμ − γμ∇νψν. (3.21)

This operator is formally self-adjoint with respect to 〈 , 〉V .
The linearised local supersymmetry transformations act on the supergravity grav-

itino field Ψ ∈ �∞(V ) by Ψμ �→ Ψμ + ∇με, where ε ∈ �∞(W ). For the redefined
degrees of freedomψ ∈ �∞(V )withΨ = ˜ψ we obtain the operator K , given in local
coordinates by

K : �∞(W ) → �∞(V ), ε �→ (K ε)μ = ∇̃με−1 = ∇με − 1

2
γμ /∇ε. (3.22)

By a standard calculation one checks that P ◦ K = 0 if and only if the metric g
is Ricci-flat, which was exactly the on-shell condition imposed by supergravity. The
formal adjoint of K is given by, for all f ∈ �∞(V ), K † f = −∇μ fμ.

Let us further define the operator

T : �∞(W ) → �∞(V ), f �→ (T f )μ = −γμ f. (3.23)

Then ˜P := P + T ◦ K † is simply the (twisted) Dirac operator on V , given in local
coordinates by (˜Pψ)μ = /∇ψμ. We further find that the operator Q := K † ◦ T is
the Dirac operator on W (remember that the section γ is covariantly constant). These
operators are of Dirac-type and thus in particular Green-hyperbolic. For the operator
R := K † ◦ K we find, for all ε ∈ �∞(W ), Rε = − 1

2∇μ∇με, where we have used
that the metric g is Ricci-flat. This is up to a constant prefactor a normally hyperbolic
operator and thus in particular Cauchy-hyperbolic.

This shows that the Rarita-Schwinger gauge field is a fermionic classical gauge
field theory according to Definition 3.4.

We collect important properties of classical gauge field theories which follow from
the Definition 3.4 and will be required later for the construction and analysis of the
algebra of observables. Before, we have to introduce some notations:

Definition 3.11 Let
(

M, V,W, P, K , T
)

be a classical gauge field theory. We define
the following spaces:
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– Ker0(K †) := {

h ∈ �∞
0 (V ) : K †h = 0

}

– Sol := {

f ∈ �∞
sc (V ) : P f = 0

}

– G := K [�∞
sc (W )] := {

K h : h ∈ �∞
sc (W )

}

– ̂G := K [�∞(W )] ∩ �∞
sc (V ) = {

K h ∈ �∞
sc (V ) : h ∈ �∞(W )

}

Notice that G ⊆ ̂G ⊆ Sol, where the last inclusion is due to P ◦ K = 0. We say
that ψ,ψ ′ ∈ �∞

sc (V ) are G-gauge equivalent, if there exists a K ε ∈ G such that
ψ ′ = ψ + K ε. Analogously, we say that ψ,ψ ′ ∈ �∞

sc (V ) are ̂G-gauge equivalent, if
there exists a K ε ∈ ̂G such that ψ ′ = ψ + K ε. Since the inclusion G ⊆ ̂G holds true,
G-gauge equivalence implies ̂G-gauge equivalence.

Theorem 3.12 Let
(

M, V,W, P, K , T
)

be a classical gauge field theory with ˜P :=
P +T ◦K †, Q := K †◦T and R := K †◦K . Let us denote by G ˜P± : �∞

0 (V ) → �∞(V )
the retarded/advanced Green’s operators for ˜P. In case of K �= 0 we denote by
G Q

± ,G R± : �∞
0 (W ) → �∞(W ) the retarded/advanced Green’s operators for Q and

R, respectively. Then the following hold true:

(i) K † ◦ ˜P = Q ◦ K † and ˜P ◦ K = T ◦ R.
(ii) If K �= 0, then K † ◦ G ˜P± = G Q

± ◦ K † on �∞
0 (V ) and K ◦ G R± = G ˜P± ◦ T on

�∞
0 (W ).

(iii) G ˜P := G ˜P+ − G ˜P− satisfies, for all f, h ∈ Ker0(K †),

〈 f,G
˜P h〉�(V ) = −〈G ˜P f, h〉�(V ). (3.24)

That is, G ˜P is formally skew-adjoint with respect to 〈 , 〉V on the kernel
Ker0(K †) ⊆ �∞

0 (V ).
(iv) Any ψ ∈ �∞

sc (V ) is G-gauge equivalent to a ψ ′ ∈ �∞
sc (V ) satisfying K †ψ ′ = 0.

In particular, any ψ ∈ Sol is G-gauge equivalent to a ψ ′ ∈ Sol satisfying
K †ψ ′ = 0 and thus also ˜Pψ ′ = 0.

(v) Any ψ ∈ Sol satisfying K †ψ = 0 is G-gauge equivalent to G ˜P h for some
h ∈ Ker0(K †).

(vi) Let h ∈ Ker0(K †), then G ˜P h ∈ G if and only if h ∈ P[�∞
0 (V )].

(vii) Let T ′ : �∞(W ) → �∞(V ) be an arbitrary differential operator such that
replacing T by T ′ still yields a classical gauge field theory and let ˜P ′ := P +
T ′ ◦ K . Then 〈 f,G ˜P ′

± h〉�(V ) = 〈 f,G ˜P±h〉�(V ), for all f, h ∈ Ker0(K †).

Proof Proof of (i): Since P is formally self-adjoint and P ◦K = 0 we obtain K †◦ P =
0. It follows K † ◦ ˜P = K † ◦ T ◦ K † = Q ◦ K † and ˜P ◦ K = T ◦ K † ◦ K = T ◦ R.

Proof of (ii): Using (i) we obtain, for all h ∈ �∞
0 (W ) and f ∈ �∞

0 (V ),

〈h, K †G
˜P± f 〉�(W ) = 〈Q†G Q†

∓ h, K †G
˜P± f 〉�(W ) = 〈G Q†

∓ h, QK †G
˜P± f 〉�(W )

= 〈G Q†

∓ h, K †
˜PG

˜P± f 〉�(W ) = 〈G Q†

∓ h, K † f 〉�(W ) = 〈h,G Q
± K † f 〉�(W ),

(3.25)

where we also have used Lemma 2.6 in the last equality. The hypothesis now follows
from the non-degeneracy of 〈 , 〉W . The other identity is proven analogously.
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Proof of (iii): For K = 0 we have ˜P = P and the hypothesis follows from the fact
that P was assumed to be formally self-adjoint and Lemma 2.6. Let us now assume that
K �= 0 and consider f, h ∈ Ker0(K †). From (ii) we obtain K †G ˜P± f = G Q

± K † f = 0

and similarly K †G ˜P±h = 0. Thus,

〈 f,G
˜P±h〉�(V ) = 〈˜PG

˜P∓ f,G
˜P±h〉�(V ) = 〈PG

˜P∓ f,G
˜P±h〉�(V ) = 〈G ˜P∓ f, PG

˜P±h〉�(V )
= 〈G ˜P∓ f, ˜PG

˜P±h〉�(V ) = 〈G ˜P∓ f, h〉�(V ), (3.26)

where we have used in the second and fourth equality that on Ker(K †) the operator
˜P equals P and in the third equality that P is formally self-adjoint. This in particular
shows (3.24).

Proof of (iv): Let ψ ∈ �∞
sc (V ) be arbitrary and let ε ∈ �∞

sc (W ). We define ψ ′ :=
ψ+K ε and obtain from the condition K †ψ ′ = 0 the equation K † K ε = −K †ψ . Since
K †ψ ∈ �∞

sc (W ) and R = K † ◦ K was assumed to be Cauchy-hyperbolic this equation
has a solution ε ∈ �∞

sc (W ), see [1, Chapter 3, Corollary 5] for a discussion of how
to treat inhomogeneities of non-compact support. It then holds that ψ ′ = ψ + K ε ∈
�∞

sc (V ) with K †ψ ′ = 0 and K ε ∈ G.
Proof of (v): We first note that as a consequence of (ii) and Theorem 2.7 we obtain

that G ˜P h with h ∈ �∞
0 (V ) satisfies K †G ˜P h = G Q K †h = 0 if and only if K †h ∈

Q[�∞
0 (W )].

Let now ψ ∈ Sol be such that K †ψ = 0. As a consequence, ˜Pψ = 0 and since ˜P
is Green-hyperbolic there is a h ∈ �∞

0 (V ) such thatψ = G ˜P h, see Theorem 2.7. Due
to the argument above, we have K †h = Qk for some k ∈ �∞

0 (W ). Let us consider
the following G-gauge transformation

ψ − K G Rk
(ii)= ψ − G

˜P T k = G
˜P(

h − T k
)

. (3.27)

Defining h′ := h − T k we have shown that ψ is G-gauge equivalent to G ˜P h′ with
K †h′ = K †h − K †T k = Qk − Qk = 0, i.e. h′ ∈ Ker0(K †).

Proof of (vi): If h = P f ∈ P[�∞
0 (V )] then G ˜P h = G ˜P P f = −G ˜P T K † f =

−K G R K † f is an element in G. To show the other direction, let h ∈ Ker0(K †) be
such that there is a k ∈ �∞

sc (W ) satisfying G ˜P h = K k. It follows that K † K k = 0
and since R = K † ◦ K is assumed to by Cauchy-hyperbolic there is by Theorem 2.7
an f ∈ �∞

0 (W ) such that k = G R f . Using (ii) we obtain K k = K G R f = G ˜P T f =
G ˜P h, which implies h − T f = ˜Pq for some q ∈ �∞

0 (V ). The condition K †h = 0
further leads us to −K †T f = QK †q, i.e. Q

(

K †q + f
) = 0, and since f and q are

of compact support we have by Theorem 2.7 f = −K †q. Thus, h = T f + ˜Pq =
−T K †q + ˜Pq = Pq.

Proof of (vii): For arbitrary f, h ∈ Ker0(K †) we compute using (iii) and (ii)

〈 f,G
˜P±h〉�(V ) = 〈G ˜P∓ f, h〉�(V ) = 〈G ˜P∓ f, ˜P ′G ˜P ′

± h〉�(V )
= 〈G ˜P∓ f, ˜PG

˜P ′
± h〉�(V ) + 〈G ˜P∓ f,

(

T ′ − T
)

K †G
˜P ′
± h〉�(V ) = 〈 f,G

˜P ′
± h〉�(V ). (3.28)

��
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4 Gauge invariant on-shell algebra of observables

The goal of this section is to construct from the data of a classical gauge field
theory

(

M, V,W, P, K , T
)

a suitable quantum algebra of gauge invariant observ-
ables describing the quantized gauge field theory. We will first review the quantization
of bosonic and fermionic matter field theories and then extend these constructions
to gauge field theories. We again follow the spirit of [2], where also more details on
bosonic and fermionic quantization can be found.

The strategy to quantize a bosonic (fermionic) matter field theory
(

M, V, P
)

is to
first associate to it a suitable symplectic (inner product) space, which is then quantized
in terms of a CCR (CAR) representation.

Proposition 4.1 Let
(

M, V, P
)

be a classical matter field theory, denote the Green’s
operators for P by G± and G := G+ − G−. We define the vector space E :=
�∞

0 (V )/P[�∞
0 (V )] and the bilinear map

τ : E × E → R, ([ f ], [h]) �→ τ
([ f ], [h]) = 〈 f,Gh〉�(V ) =

∫

M

volM 〈 f,Gh〉V .

(4.1)

Then the map τ is well-defined and weakly non-degenerate. If further
(

M, V, P
)

is
bosonic, then τ is antisymmetric, i.e. (E, τ ) is a symplectic vector space. If

(

M, V, P
)

is fermionic, then τ is symmetric, i.e. (E, τ ) is an (i.g. indefinite) inner product space.

Proof The map τ is well-defined, since G is formally skew-adjoint with respect to
〈 , 〉V (see Lemma 2.6) and we have G ◦ P = 0 on �∞

0 (V ).
We now show that τ is weakly non-degenerate. Notice that because of the non-

degeneracy of 〈 , 〉V the condition 〈 f,Gh〉�(V ) = 0, for all f ∈ �∞
0 (V ), implies

Gh = 0. By Theorem 2.7 there exists k ∈ �∞
0 (V ), such that h = Pk, meaning that

[h] = [0]. Thus, τ is weakly non-degenerate.
Using again the skew-adjointness of G and the symmetry (antisymmetry) of 〈 , 〉V

for a bosonic (fermionic) matter field theory we obtain, for all [ f ], [h] ∈ E ,

τ
([ f ], [h]) = 〈 f,Gh〉�(V ) = −〈G f, h〉�(V ) = ∓〈h,G f 〉�(V ) = ∓ τ([h], [ f ]),

(4.2)

where − is for bosonic and + for fermionic theories. ��
For a physically and also mathematically consistent quantization of fermionic field

theories we have to demand further a positivity condition on τ . See the Remarks 4.6
and 4.8 below for a detailed comment.

Definition 4.2 A fermionic classical matter field theory
(

M, V, P
)

is of positive type
if (E, τ ) is a (real) pre-Hilbert space, i.e. the map τ is positive definite.

We provide examples of fermionic classical matter field theories of positive type in
the next section. Any bosonic classical matter field theory can be quantized in terms
of a CCR-representation.
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Definition 4.3 A CCR-representation of a symplectic vector space (E, τ ) is a pair
(w, A), where A is a unital C∗-algebra and w : E → A is a map satisfying:

(i) A = C∗(w(E)),
(ii) w(0) = 1,

(iii) w( f )∗ = w(− f ),
(iv) w( f + h) = ei τ( f,h)/2 w( f )w(h),

for all f, h ∈ E .

Furthermore, any fermionic classical matter field theory of positive type can be
quantized in terms of a CAR-representation.

Definition 4.4 A (self-dual) CAR-representation of a pre-Hilbert space (E, τ ) over
R is a pair (b, A), where A is a unital C∗-algebra and b : E → A is a linear map
satisfying:

(i) A = C∗(b(E)),
(ii) b( f )∗ = b( f ),

(iii) {b( f ),b(h)} = τ( f, h)1,

for all f, h ∈ E .

The following theorem is proven in [2,3].

Theorem 4.5 There exists up to C∗-isomorphism a unique CCR-representation (CAR-
representation) for every symplectic vector space (pre-Hilbert space).

Remark 4.6 For defining the CCR-representation we have assumed that the map τ
is weakly non-degenerate. While for a bosonic classical matter field theory this is
automatically given by Proposition 4.1, this condition turns out to be too restrictive for
gauge field theories, see Sect. 5 for a discussion. The quantization of a pre-symplectic
vector space (E, τ ) can always be performed in terms of a field polynomial algebra.
However, one looses the C∗-algebra property when making this choice. Fortunately,
in [7] the existence and uniqueness of the Weyl algebra for a generic pre-symplectic
vector space has been proven. This means that Definition 4.3 can be extended to any
pre-symplectic vector space and the result of Theorem 4.5 is unaltered in this case. We
refer to [7] for details on Weyl algebras of degenerate pre-symplectic vector spaces.
We finish this remark by noting that a similar result for degenerate pre-Hilbert spaces
and their CAR-quantization are not known to us.

Remark 4.7 This remark is quite standard, however, it is essential for understanding
our construction of the algebra of observables for a gauge field theory.

Let (E, τ ) be the symplectic vector space associated to a bosonic classical matter
field theory

(

M, V, P
)

, i.e. E = �∞
0 (V )/P[�∞

0 (V )] and τ as given in (4.1). The Weyl
symbols w([ f ]), [ f ] ∈ E , are physically interpreted as quantizations of the following
functionals w f , f ∈ �∞

0 (V ), on the configuration space�∞(V ) of the classical matter
field theory

w f : �∞(V ) → C, ψ �→ w f [ψ] = ei 〈ψ, f 〉
�(V ) . (4.3)
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The on-shell condition Pψ = 0 is then encoded on the level of the functionals by
identifying wP f by the constant functional 1 (use (4.3) and that P is formally self-
adjoint). The functionals on the on-shell configuration space are thus labelled by
equivalence classes, i.e. elements in E = �∞

0 (V )/P[�∞
0 (V )].

An analogous interpretation holds for a fermionic matter field theory, where the
symbols b([ f ]), [ f ] ∈ E , are interpreted as quantizations of the functionals

b f : �∞(V ) → R, ψ �→ b f [ψ] = 〈ψ, f 〉�(V ), (4.4)

with f ∈ �∞
0 (V ). The on-shell condition Pψ = 0 is encoded here by identi-

fying the functionals bP f , f ∈ �∞
0 (V ), with 0, giving rise to the vector space

E = �∞
0 (V )/P[�∞

0 (V )] which labels the functionals on the on-shell configuration
space.

Remark 4.8 We give a physical motivation for the positivity requirement for fermionic
matter field theories given in Definition 4.2. Take any [ f ] ∈ E and consider the
corresponding symbol b([ f ]). From Definition 4.4 (ii) and (iii) it follows that

{

b([ f ]),b([ f ])} = 2 b([ f ])∗ b([ f ]) = τ([ f ], [ f ])1. (4.5)

Assume that we have a representation of this algebra on a Hilbert space and let |Ψ 〉 be
any normalised vector 〈Ψ |Ψ 〉 = 1. Taking the expectation value of both sides of (4.5)
gives us the equality τ([ f ], [ f ]) = 2 〈b([ f ])Ψ |b([ f ])Ψ 〉. If now τ([ f ], [ f ]) < 0 the
vector |b([ f ])Ψ 〉 has a negative norm square, which is inconsistent with the Hilbert
space assumption. In case τ([ f ], [ f ]) = 0 the Hilbert space vector |b([ f ])Ψ 〉 has zero
norm and since |Ψ 〉 has been an arbitrary normalised vector the operator associated
to b([ f ]) is the zero operator in any Hilbert space representation.

Let us now consider a classical gauge field theory
(

M, V,W, P, K , T
)

. The goal is
to construct a pre-symplectic vector space for bosonic and a possibly indefinite inner
product space for fermionic classical gauge field theories. Following the interpretation
of Remark 4.7 we are thus looking for a suitable vector space of smearing functions.
It turns out to be convenient to directly encode gauge invariance on the level of this
vector space, leading later to a quantization of only the gauge invariant degrees of
freedom. Let us for example consider a bosonic classical gauge field theory: We can
again consider functionals on the off-shell configuration space as in (4.3). Such a
functional w f is gauge invariant, i.e. independent on whether we evaluate it on ψ or
ψ + K ε with ε ∈ �∞(W ), if and only if K † f = 0. Indeed,

w f [ψ + K ε] = ei 〈ψ+K ε, f 〉
�(V ) = ei 〈ψ, f 〉

�(V )+i 〈ε,K † f 〉
�(W ) = w f [ψ], (4.6)

for all ε ∈ �∞(W ) if and only if K † f = 0. Thus, in order to capture the gauge
invariant degrees of freedom we should consider instead of �∞

0 (V ) only the kernel
Ker0(K †) ⊆ �∞

0 (V ) of K † when formulating the space E for gauge theories. The
implementation of the on-shell condition is then a suitable quotient by the equation of
motion operator. This construction can be performed and a well-defined pre-symplectic
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896 T.-P. Hack, A. Schenkel

structure (respectively, indefinite inner product structure) can be defined on E for
bosonic (respectively fermionic) gauge field theories.

Proposition 4.9 Let
(

M, V,W, P, K , T
)

be a classical gauge field theory with ˜P :=
P+T ◦K †, Q := K †◦T and R := K †◦K . Let us denote by G ˜P± the retarded/advanced

Green’s operators for ˜P and G ˜P := G ˜P+ − G ˜P−. We define the vector space E :=
Ker0(K †)/P[�∞

0 (V )] and the bilinear map

τ : E × E →R, ([ f ], [h]) �→ τ
([ f ], [h])=〈 f,G

˜P h〉�(V )=
∫

M

volM 〈 f,G
˜P h〉V .

(4.7)

Then the map τ is well-defined. Furthermore, τ is antisymmetric for bosonic gauge
field theories and symmetric for fermionic ones. Finally, let T ′ : �∞(W ) → �∞(V )
be an arbitrary differential operator such that

(

M, V,W, P, K , T ′) is a classical
gauge field theory and let τ ′ : E × E → R be defined in analogy to (4.7) by means of
G ˜P ′

with ˜P ′ := P + T ′ ◦ K †. Then τ ′ = τ .

Proof For the trivial case K = 0 the proof is as in Proposition 4.1. In particular,
the vector space E and the map τ are then exactly those of a classical matter field
theory. So let us assume that K �= 0. According to Theorem 3.12 (iii) G ˜P is formally
skew-adjoint with respect to 〈 , 〉V on Ker0(K †). That τ is well-defined follows from
this fact and the following calculation, for all f ∈ Ker0(K †) and h ∈ �∞

0 (V ),

〈 f,G
˜P Ph〉�(V ) = 〈 f,G

˜P (˜P − T K †)h〉�(V ) = −〈 f, K G R K †h〉�(V )
= −〈K † f,G R K †h〉�(W ) = 0, (4.8)

where in the second equality we have used Theorem 3.12 (ii) and G ˜P
˜Ph = 0.

The antisymmetry (symmetry) of τ for bosonic (fermionic) gauge field theories is
proven as in the proof of Proposition 4.1.

The last statement follows immediately from Theorem 3.12 (vii). ��
In contrast to classical matter field theories we can not guarantee that the map

τ is weakly non-degenerate for a classical gauge field theory. For bosonic gauge
field theories this is mathematically not problematic, since the CCR-representation of
Definition 4.3 is also available and well-behaved for degenerate pre-symplectic vector
spaces, see Remark 4.6. Physically, these degeneracies might be interpreted as charge
observables and are worth being studied in detail for the important examples of gauge
field theories, see [29] for the Maxwell field case. In order to quantize fermionic gauge
field theories we have to require analogously to Definition 4.2 positivity of the inner
product.

Definition 4.10 A fermionic classical gauge field theory
(

M, V,W, P, K , T
)

is
called of positive type if τ is positive definite, i.e. (E, τ ) is a (real) pre-Hilbert space.
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Bosonic classical gauge field theories can be quantized via the CCR-representation
(see Definition 4.3 with a possible extension to pre-symplectic vector spaces as in
Remark 4.6) and fermionic classical gauge field theories of positive type via the CAR-
representation (see Definition 4.4). Although a quantization of fermionic classical
gauge field theories in terms of a field polynomial algebra is also mathematically
possible if they are not of positive type, the physical interpretation of such a quantum
theory would remain unclear, cf. Remark 4.8. It thus remains to study if a given
fermionic classical gauge field theory

(

M, V,W, P, K , T
)

is of positive type or not.
From the physical perspective it is also interesting to understand if a given bosonic
classical gauge field theory has a weakly non-degenerate τ or not.

Irrespective of the non-degeneracy or positivity of τ we can already prove an impor-
tant structural property of the (classical and quantized) gauge field theory correspond-
ing to

(

M, V,W, P, K , T
)

.

Proposition 4.11 Every gauge field theory
(

M, V,W, P, K , T
)

satisfies the time-
slice axiom: Let � be an arbitrary Cauchy surface in (M, g), and let �± be any two
other Cauchy surfaces such that � �

(

J−(�+) ∩ J+(�−)
)

. Then for every [ f ] ∈ E
there is a representative f ∈ Ker0(K †) with supp( f ) ⊂ (

J−(�+) ∩ J+(�−)
)

.

Proof We can obtain such f by a standard construction. Let h ∈ [ f ] be arbitrary.
Without loss of generality we can assume that supp(h) ⊂ J+(�−). We pick a smooth
function χ such that χ = 0 on J−(�−) and χ = 1 on J+(�+) and define

f := h − PχG
˜P−h. (4.9)

One can now verify that χG ˜P−h has compact support, whence [ f ] = [h], and that f
has the required support property. ��

5 Non-degeneracy and positivity of gauge field theories

Let
(

M, V,W, P, K , T
)

be a classical gauge field theory and denote by (E, τ ) the
vector space of Proposition 4.9 equipped with the bilinear map τ , which is antisym-
metric for bosonic and symmetric for fermionic theories. In order to investigate if τ
is weakly non-degenerate for bosonic or respectively positive definite for fermionic
theories it is in some cases convenient to induce an equivalent bilinear map on the
space of solutions of P .

Let us denote by Sol := {

ψ ∈ �∞
sc (V ) : Pψ = 0

}

the space of all solutions of
P with spacelike compact support. For every ψ there exists a compact set C ⊆ M ,
such that supp(ψ) ⊆ J (C). We can split ψ = ψ+ + ψ− such that supp(ψ±) ⊆
J±(C). This splitting is not unique and the difference between two such splittings
ψ = ψ+ +ψ− = ψ

˜+ +ψ
˜− is given by a compactly supported section ψ˜+ −ψ+ =

ψ− − ψ
˜− =: χ ∈ �∞

0 (V ). We define on Sol the bilinear map

〈 , 〉Sol : Sol × Sol → R, (ψ1, ψ2) �→ 〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉�(V ). (5.1)
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898 T.-P. Hack, A. Schenkel

This map is well-defined, since firstly from Pψ1 = 0 it follows that Pψ+
1 = −Pψ−

1
and in particular that Pψ±

1 has compact support, such that the integral exists. Secondly,
it is independent of the splitting,

〈Pψ˜+
1 , ψ2〉�(V ) = 〈Pψ+

1 , ψ2〉�(V ) + 〈Pχ,ψ2〉�(V )
= 〈ψ1, ψ2〉Sol + 〈χ, Pψ2〉�(V ) = 〈ψ1, ψ2〉Sol, (5.2)

where we have used that P is formally self-adjoint and that Pψ2 = 0. Notice that the
map (5.1) is not trivial, sinceψ+

1 andψ2 i.g. do not have compact overlapping support
and thus we can not integrate by parts P to the right side.

Proposition 5.1 The following statements hold true:

(i) The map 〈 , 〉Sol is antisymmetric for bosonic and symmetric for fermionic gauge
field theories.

(ii) The map 〈 , 〉Sol is ̂G-gauge invariant, i.e. for all ψ ∈ Sol and ε ∈ �∞(W ) such
that K ε ∈ �∞

sc (V ) we have 〈ψ, K ε〉Sol = 〈K ε, ψ〉Sol = 0.
In particular, the map 〈 , 〉Sol induces well-defined bilinear maps on the quotients
Sol/̂G and Sol/G (remember that G ⊆ ̂G).

(iii) Let f, h ∈ Ker0(K †), then

〈G ˜P f,G
˜P h〉Sol = τ

([ f ], [h]). (5.3)

Proof Proof of (i): Let ψ1, ψ2 ∈ Sol be arbitrary and consider the splittings ψi =
ψ+

i +ψ−
i , i = 1, 2. Notice that from Pψi = 0 is follows that Pψ+

i = −Pψ−
i . Then

〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉�(V ) = 〈Pψ+

1 , ψ
+
2 〉�(V ) + 〈Pψ+

1 , ψ
−
2 〉�(V )

= −〈Pψ−
1 , ψ

+
2 〉�(V ) + 〈ψ+

1 , Pψ−
2 〉�(V ) = −〈ψ−

1 , Pψ+
2 〉�(V )

−〈ψ+
1 , Pψ+

2 〉�(V ) = −〈ψ1, Pψ+
2 〉�(V ) = ∓〈Pψ+

2 , ψ1〉�(V )
= ∓〈ψ2, ψ1〉Sol, (5.4)

where − is for bosonic and + for fermionic theories. All integrations by parts of P in
the calculation above are well-defined, since the integrals are always over functions
with compact support.

Proof of (ii): Let ψ ∈ Sol and K ε ∈ ̂G. We obtain

〈ψ, K ε〉Sol = 〈Pψ+, K ε〉�(V ) = 〈K † Pψ+, ε〉�(W ) = 0. (5.5)

In the second equality we have used that Pψ+ is of compact support and in the third
equality that K † ◦ P = 0. By (5.4) we have 〈K ε, ψ〉Sol = −〈K ε, Pψ+〉�(V ) =
−〈ε, K † Pψ+〉�(W ) = 0.

Proof of (iii): Let f, h ∈ Ker0(K †). Then G ˜P f,G ˜P h ∈ Sol, since

PG
˜P f = (˜P − T K †)G

˜P f = −T K †G
˜P f = 0, (5.6)

123



Linear quantum gauge theories 899

where in the last equality we have used Theorem 3.12 (ii). The same applies for G ˜P h.
A convenient decomposition is given by G ˜P f = G ˜P+ f − G ˜P− f and we find

〈G ˜P f,G
˜P h〉Sol = 〈PG

˜P+ f,G
˜P h〉�(V ) = 〈˜PG

˜P+ f,G
˜P h〉�(V ) = 〈 f,G

˜P h〉�(V )
= τ

([ f ], [h]), (5.7)

where in the second equality we have used Theorem 3.12 (ii). ��
We combine the statements proven in Theorem 3.12 and Proposition 5.1 in order to

construct an isomorphism between the space (E, τ ) of Proposition 4.9 and the space
(Sol/G, 〈 , 〉Sol).

Theorem 5.2 The sequence of maps

Ker0(K
†)

G ˜P−→ Sol
id−→ Sol (5.8)

induces a well-defined sequence of maps on the quotients (which we denote with a
slight abuse of notation by the same symbols)

E = Ker0(K
†)/P[�∞

0 (V )] G ˜P−→ Sol/G id−→ Sol/̂G. (5.9)

The first map is an isomorphism and the second map is a surjection which becomes an
isomorphism if and only if G = ̂G. Furthermore, the sequence of maps (5.9) preserves
the bilinear mappings in (E, τ ), (Sol/G, 〈 , 〉Sol) and (Sol/̂G, 〈 , 〉Sol).

Proof From Theorem 3.12 (vi) it follows that the first map is well-defined and injective.
Surjectivity of the first map follows from Theorem 3.12 (iv) and (v). The second map
is well-defined and surjective since G ⊆ ̂G. It is an isomorphism if and only if G = ̂G.
The bilinear mappings are preserved due to Proposition 5.1 (iii) and (ii). ��
Corollary 5.3 If G ⊂ ̂G is a proper subspace then the map τ in (E, τ ) is degenerate.

Proof Assume that G ⊂ ̂G is a proper subspace. Then there is a ε ∈ �∞(W ) such that
K ε �∈ G, but K ε ∈ ̂G ⊆ Sol. From Proposition 5.1 (ii) we know that 〈ψ, K ε〉Sol = 0
for all ψ ∈ Sol. Since in Sol/G this K ε is not equivalent to zero the bilinear map
〈 , 〉Sol is degenerate on Sol/G. Because (Sol/G, 〈 , 〉Sol) is isomorphic to (E, τ ) the
statement follows. ��
Remark 5.4 This corollary might suggest that it is more convenient (regarding non-
degeneracy) to choose (Sol/̂G, 〈 , 〉Sol) instead of (E, τ ) as the underlying vector space
for a CCR or CAR-representation. There are, however, two arguments against this
choice. Firstly, the additional elements in ̂G, which are not in G, can not be interpreted
as on-shell conditions in accord with Remark 4.7. Secondly, as clarified in [29] for the
Maxwell field case, the observables in ̂G \ G can be of physical significance.

We next show that the map 〈 , 〉Sol can be evaluated on any Cauchy surface� ⊆ M .
We split the globally hyperbolic spacetime M = �+ ∪�− into the future/past�± :=
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J±(�) ⊆ M of the Cauchy surface �. We also split 〈 , 〉�(V ), for all f, h ∈ �∞(V )
with compact overlapping support,

〈 f, h〉�(V ) =
∫

�+
volM 〈 f, h〉V +

∫

�−
volM 〈 f, h〉V =: 〈 f, h〉+�(V ) + 〈 f, h〉−�(V ).

(5.10)

This allows us to rewrite 〈 , 〉Sol as follows, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = 〈Pψ+
1 , ψ2〉�(V ) = 〈Pψ+

1 , ψ2〉+�(V ) + 〈Pψ+
1 , ψ2〉−�(V )

= −〈Pψ−
1 , ψ2〉+�(V ) + 〈Pψ+

1 , ψ2〉−�(V ). (5.11)

In both terms we can now perform integration by parts, since the integral over the future
�+ (respectively the past�−) is over a function of support in J−(C) (respectively in
J+(C)). The remaining boundary terms are then located on the Cauchy surface �.

Proposition 5.5 Let P : �∞(V ) → �∞(V ) be a first-order differential operator,
which is formally self-adjoint with respect to 〈 , 〉V . Then for all ψ1, ψ2 ∈ Sol we
have for any Cauchy surface � ⊆ M

〈ψ1, ψ2〉Sol =
∫

�

vol� 〈σP (n
�)ψ1|�,ψ2|�〉V , (5.12)

where σP is the principal symbol of P, n is the future pointing normal vector field of
�, vol� is the induced volume form on � and |� denotes the restriction of sections
to �.

Proof This is a result of Green’s formula [33, p. 160, Prop. 9.1] and of Pψ2 = 0. We
have, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = −〈Pψ−
1 , ψ2〉+�(V ) + 〈Pψ+

1 , ψ2〉−�(V )
=

∫

�

vol�
(

〈σP (n
�)ψ−

1 |�,ψ2|�〉V + 〈σP (n
�)ψ+

1 |�,ψ2|�〉V

)

=
∫

�

vol� 〈σP (n
�)ψ1|�,ψ2|�〉V . (5.13)

��
Before we discuss our examples of gauge field theories it is instructive to con-

sider first the case of fermionic matter field theories. We will show that there are
fermionic matter field theories which are not of positive type (see Definition 4.2),
see also [2]. This means that positivity is not a property which follows from the
basic axioms of a fermionic classical matter or gauge field theory, see Definitions 3.1
and 3.4.

123



Linear quantum gauge theories 901

Example 5.6 (Positive and non-positive fermionic matter field theories) We start with
the Majorana field of Example 3.3 as an example for a fermionic matter field theory
of positive type. The principal symbol of the massive Dirac operator is given by
σP (ξ) = γ μ ξμ = /ξ , where in local coordinates ξ = ξμdxμ. The bilinear map (5.12)
then reads, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol = i
∫

�

vol�
(

/nψ1|�
)T

Cψ2|�. (5.14)

Using Theorem 2.1 we obtain that the future-pointing normal vector field of the Cauchy
surface� is given by n = ϑ−1 ∂t , where ϑ is the positive function on R×� appearing
in the metric g = −ϑ2 dt2 ⊕ gt of Theorem 2.1. Then /n = γ 0ϑ = −iβ, where β
is the matrix used in defining the Dirac adjoint, see Appendix A. Since on Majorana
spinors the Dirac adjoint equals the Majorana adjoint and since β† = β = β−1 we
have

〈ψ1, ψ2〉Sol =
∫

�

vol� ψ
†
1 |�ψ2|�. (5.15)

It holds that 〈ψ,ψ〉Sol ≥ 0 for allψ ∈ Sol. Even more, 〈ψ,ψ〉Sol = 0 implies that the
initial dataψ |� ≡ 0 vanishes and thus due to the Cauchy-hyperbolicity of the massive
Dirac operator ψ ≡ 0.

An example of a fermionic matter field theory which is not of positive type is
the projected Rarita-Schwinger field presented in [2, Section 2.6]. As above we use
Theorem 2.1 to get a particularly simple expression for the normal vector field. We
take V := DMR ⊗ T ∗M , but restrict ourselves to the image of the projection operator
defined by, for all ψ ∈ �∞(V ), (πψ)μ := ψμ − 1

D γμγ
νψν . These sections satisfy

γ μψμ = 0. We equip the bundle V with the non-degenerate antisymmetric bilinear
form 〈 f, h〉V = i f T

μChμ. The projected Rarita-Schwinger operator is defined by,

for all ψ ∈ �∞(V ) with γ μψμ = 0, (Pψ)μ := /∇ψμ − 2
D γμ∇νψν . It satisfies

γ μ(Pψ)μ = 0 for all ψ ∈ �∞(V ) with γ μψμ = 0 and thus is a differential operator
on the projected Rarita-Schwinger bundle. It is formally self-adjoint with respect to
〈 , 〉V on sections of the projected Rarita-Schwinger bundle. The bilinear map (5.12)
reads, for all ψ1, ψ2 ∈ Sol,

〈ψ1, ψ2〉Sol =
∫

�

vol� ψ
†
1μ|� ψμ2 |�. (5.16)

We can solve the constraint γ μψμ = 0 for ψ0 and find ψ0 = −γ0γ
iψi , where i =

1, . . . , D−1 is a spatial index. Putting this into (5.16) and settingψ1 = ψ2 = ψ ∈ Sol
leads to

〈ψ,ψ〉Sol =
∫

�

vol�
(

ψ
†
i |� ψ i |� − (γ iψi )

†|� (γ jψ j )|�
)

. (5.17)
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This is an indefinite inner product, since if we evaluate it on initial data ψi |� with
γ iψi |� = 0 we obtain a positive number, while evaluating it onψi |� = (γiχ)|� with
χ |� ∈ �∞

sc (DMR)|� we obtain a negative one.

We next will briefly comment on the question of weak non-degeneracy for our
examples of bosonic gauge field theories.

Example 5.7 (Linearised Yang-Mills field) We analyze the case of a Yang-Mills field
linearised around a vanishing background A0 and sketch the main non-degeneracy
result, see [29] for details on the U (1) case. In this case, K = dA0 = d is the exterior
differential and the associated (compactly supported) de Rham cohomology groups
of M are defined as

Hn(M, g) := Ker
(

d : 
n(M, g) → 
n+1(M, g)
)

Im
(

d : 
n−1(M, g) → 
n(M, g)
) = Hn(M,R)⊗ g, (5.18a)

Hn
0 (M, g) :=

Ker
(

d : 
n
0(M, g) → 
n+1

0 (M, g)
)

Im
(

d : 
n−1
0 (M, g) → 
n

0(M, g)
) = Hn

0 (M,R)⊗ g. (5.18b)

We first observe that

τ([ f ], [h]) = 〈 f,G
˜P h〉�(V ) =

∫

M

〈 f, ∗G
˜P h〉g = 0, (5.19)

for all f ∈ Ker0(K †) = Ker0(δ), implies in particular that

∫

M

〈k, ∗dG
˜P h〉g = 0, (5.20)

for all k ∈ 
2
0(M, g). From the non-degeneracy of

∫

M 〈 · , ∗ · 〉g we then obtain dG ˜P h =
0, such that G ˜P h defines an element in H1(M, g). The Hodge-dual ∗ f for f ∈ Ker0(δ)

defines an element in H D−1
0 (M, g) and thus τ([ f ], [h]) = 0 for all f implies that

G ˜P h corresponds to the trivial element in H1(M, g) by Poincaré duality (see e.g. [8]),
i.e. G ˜P h = dε for some ε ∈ C∞(M, g). This in turn implies that the necessary
condition for weak non-degeneracy found in Corollary 5.3 is sufficient in the case at
hand.

In particular, for any spacetime with compact Cauchy surfaces we have G = ̂G and
thus for the linearised Yang-Mills field with A0 = 0 the space (E, τ ) is symplectic.
We next provide a simple example of a spacetime for which G ⊂ ̂G is a proper
subset, thus τ is degenerate by Corollary 5.3. Let us take Minkowski space R

D with
flat metric g and remove the light cone of the origin 0 ∈ R

D , i.e. we consider the
globally hyperbolic spacetime M := R

D \ J ({0})with the induced metric. We further
take two closed balls (with strictly positive radius) B1 ⊂ B2 ⊂ R

D centred at 0 in
R

D and denote B M
1 := B1 ∩ M and B M

2 := B2 ∩ M . Let us now take a function
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Linear quantum gauge theories 903

ε ∈ C∞(M, g) such that 0 �= ε = w ∈ g is a constant on J (B M
1 ) and ε = 0 on

M \ J (B M
2 ). The differential dε is then an element in 
1

sc(M, g) and thus dε ∈ ̂G. It
remains to show that there is no ε̃ ∈ C∞

sc (M, g) such that dε = dε̃. In order to show
this, let us consider the smooth embedding ι : (0,∞) → M ⊂ R

D given in Cartesian
coordinates on M ⊂ R

D by x �→ ι(x) = (0, x, 0, . . . , 0). Pulling back the one-form
dε and integrating over (0,∞) we find by Stokes theorem

∫

(0,∞)

ι∗(dε) =
∫

(0,∞)

dι∗(ε) = −w �= 0, (5.21)

while doing the same for dε̃ with ε̃ ∈ C∞
sc (M, g) results in 0. Thus, G ⊂ ̂G is a proper

subset for the model under consideration and τ in (E, τ ) is degenerate. For a physical
interpretation of this degeneracy we refer to [29].

Example 5.8 (Linearised general relativity) If the globally hyperbolic spacetime M
has compact Cauchy surfaces the weak non-degeneracy of the pre-symplectic structure
for linearised general relativity on Einstein manifolds has been shown by Fewster and
Hunt [18, Theorem 4.3]. The analysis of the non-compact case is to our best knowledge
not yet completely understood.

As it has been argued above, the positivity of a fermionic gauge field theory accord-
ing to Definition 4.2 is a physically and mathematically motivated condition. We will
study this aspect for our two examples of fermionic gauge field theories in detail.

Example 5.9 (Toy model: Fermionic gauge field) We give a simple proof that the
fermionic toy model introduced in Example 3.9 is not of positive type. For this proof
we do not need the expression of τ on a Cauchy surface (5.11), but we will work with τ
as given in (4.7). Our strategy is as follows: We assume the existence of a f ∈ Ker0(K †)

such that τ
([ f ], [ f ]) > 0 and then explicitly construct an f ′ ∈ Ker0(K †) such that

τ
([ f ′], [ f ′]) < 0. For this we choose a basis of the symplectic vector space

(

R
2m,


)

,
such that 
 takes the standard form


 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 . . .

−1 0 0 0
0 0 0 1
0 0 −1 0
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.22)

We further consider the 2m × 2m-matrix

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 . . .

1 0 0 0
0 0 0 1
0 0 1 0
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.23)
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904 T.-P. Hack, A. Schenkel

Let now f ∈ Ker0(K †) be such that τ
([ f ], [ f ]) > 0. Then defining f ′ := B f we

have f ′ ∈ Ker0(K †), since K † = δ and B commutes. Using that BT
B = −
 and
also that B commutes with G ˜P and the Hodge operator, we obtain

τ
([ f ′], [ f ′])=

∫

M

f ′T ∧
 ∗ G
˜P f ′ =

∫

M

f T ∧ BT
B ∗ G
˜P f =−τ([ f ], [ f ])<0.

(5.24)

6 Positivity of the Rarita-Schwinger gauge field

We derive a sufficient condition for the positivity of the Rarita-Schwinger gauge field
and prove that this condition is satisfied on a large class of spacetimes.

Theorem 6.1 Consider the Rarita-Schwinger gauge field (M, V,W, P, K , T )defined
in Example 3.10. Then the following statements hold:

(i) For all f1, f2 ∈ Ker0(K †) and on a Cauchy surface � as in Theorem 2.1

τ([ f1], [ f2]) =
∫

�

vol�

(

ψ
†
1μ|� ψμ2 |� − 1

D − 2
ψ/

†
1|�ψ/2|�

)

, (6.1)

where ψi := G ˜P fi ∈ Sol, i = 1, 2, and ψ/ := γ μψμ.
(ii) Let us assume that for all ψ ∈ Sol satisfying γ μψμ = 0 there exists an ε ∈

�∞(W ) such that

/∇ε = 0 on M, (6.2a)

γ i∇iε = −γ iψi on �, (6.2b)

and ε|� is vanishing on the (possibly empty) boundary of �, whereas ∇ε|� is
bounded. Then (E, τ ) is a pre-Hilbert space, i.e. τ is positive definite.

(iii) Let D ≥ 4 and let M be asymptotically flat in the following sense [26]: There
is a t ∈ R, such that in a canonical foliation given by Theorem 2.1 the Cauchy
surface (�, gt ) is complete. Further, there is a compact set C ⊂ �, such that
� \ C is the disjoint union of a finite number of subsets �1, . . . , �N of �, each
diffeomorphic to the complement of a contractible compact set in R

D−1. Under
this diffeomorphism, the Riemannian metric gt on �b, b = 1, . . . , N, should be
of the form

(gt )i j = δi j + ai j (6.3)

in Cartesian coordinates xi of R
D−1, where ai j = O(r−D+3), ∂kai j =

O(r−D+2), and ∂l∂kai j = O(r−D+1). Furthermore, the second fundamen-
tal form (extrinsic curvature) hi j of {t} × � should satisfy hi j = O(r−D+2),
∂khi j = O(r−D+1).
In this case (E, τ ) is a pre-Hilbert space.
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Linear quantum gauge theories 905

(iv) Let M contain compact Cauchy surfaces. In a canonical foliation given by The-
orem 2.1 let there be a t ∈ R, such that the induced Dirac operator on {t} × �

has a trivial kernel.
In this case (E, τ ) is a pre-Hilbert space.

Proof Proof of (i): The principal symbol of the Rarita-Schwinger operator (3.21) reads

σP (ξ)
ν
μ = /ξδνμ − γμξ

ν . Hence, ˜(σP (n�)ψ)μ = /nψμ + 1
D−2γμ/nψ/ and by (5.12) we

have

τ([ f1], [ f2]) = 〈ψ1, ψ2〉Sol =
∫

�

vol� 〈σP (n
�)ψ1|�,ψ2|�〉V

=
∫

�

vol�

(

〈/nψμ1 |�,ψ2μ|�〉W − 1

D − 2
〈/nψ/1|�,ψ/2|�〉W

)

=
∫

�

vol�

(

ψ
†
1μ|� ψμ2 |� − 1

D − 2
ψ/

†
1|�ψ/2|�

)

, (6.4)

where the last identity follows by arguments used in Example 5.6.
Proof of (ii): We see from (6.1) that positivity in particular holds if for all ψ ∈ Sol

we can set γ μψμ = 0 andψ0 = 0 on� by a suitable choice of gauge fixing (recall that
in our conventions the metric is positive definite on spacelike vectors). It is convenient
to perform such a gauge fixing in two steps. First, let ψ ′ ∈ Sol be arbitrary. Using
a G-gauge transformation K ε with ε ∈ �∞

sc (W ), we define ψμ := ψ ′
μ + (K ε)μ =

ψ ′
μ + ∇με − 1

2γμ
/∇ε. Demanding γ μψμ = 0 leads to the equation

/∇ε = 2

D − 2
γ μψ ′

μ, (6.5)

which can be solved for ε ∈ �∞
sc (W ), e.g. by imposing a trivial initial condition.

Thus, any ψ ′ ∈ Sol is G-gauge equivalent to a ψ ∈ Sol satisfying γ μψμ = 0. Using
Proposition 5.1 (ii) and (6.1) we obtain after this gauge transformation

τ([ f1], [ f2]) = 〈ψ1, ψ2〉Sol =
∫

�

vol� ψ
†
1μ|� ψμ2 |�. (6.6)

Given such a ψ ∈ Sol with γ μψμ = 0 we perform a second gauge transformation
to set the zero-component ψ0 = 0 on �, while preserving the γ -trace condition
γ μψμ = 0 on M . The γ -trace condition is preserved by the gauge transformation
K ε, ε ∈ �∞(W ), if and only if /∇ε = 0 on M . Using this and demanding that the
zero component of the gauge transformed section vanishes leads us to the equation
(6.2b). We assume that a solution ε ∈ �∞(W ) of (6.2) exists, for all ψ ∈ Sol with
γ μψμ = 0, and that ε|� is vanishing on ∂� whereas ∇ε|� is bounded.

Notice that we do not demand that ε is an element in�∞
sc (W ), nor that K ε ∈ �∞

sc (V ).
It thus remains to show that the inner product 〈 , 〉Sol is also gauge invariant under such
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906 T.-P. Hack, A. Schenkel

extended gauge transformations, more precisely that [note that ∇̃με = ∇̃με−1 = ∇με
due to (6.2a)]

∫

�

vol� 〈σP (n
�)μνψν |�, (∇με)|�〉W (6.7)

vanishes for all ε ∈ �∞(W ) which vanish at ∂� and all ψ ∈ �∞(V ) which are
bounded on� and satisfy Pψ = 0. To this avail, we note that the covariant derivative
∇� compatible with the Riemannian metric gt on � and ∇ compatible with g are
related by [36, Lemma 10.2.1]

∇�
ρ T α1···αk

β1···βl
= �α1

μ1
· · ·�αk

μk
�
ν1
β1

· · ·�νl
βl
�λρ∇λTμ1···μk

ν1···νl
, (6.8)

where Πμ
ν := δ

μ
ν + nμnν is the projector to the tangent bundle on �. Since

nμσP (n�)μν = 0 we have Πμ
ρ σP (n�)ρν = σP (n�)μν and we can replace ∇ in (6.7)

by ∇� . Integration by parts is well-defined under the assumptions on ψ and ε. Using
again (6.8) in order to replace ∇� by ∇ and projectors Πν

μ, the statement follows by
applying the Leibniz rule and using the equation of motion Pψ = 0.

Proof of (iii): The first equation (6.2a) for ε can be solved for arbitrary initial
conditions ε|� as /∇ is Cauchy-hyperbolic, while the second equation (6.2b) is an
elliptic constraint equation for such initial conditions, whose solvability in general
depends on the topology of� and the properties of gt . We shall now use a generalisation
of [26, Theorem 4.2] to prove this solvability under our hypotheses. Let R ≥ 1 be large
enough such that each �b ⊂ R

D−1 (we omit the diffeomorphisms �b → R
D−1 \ C̃ ,

with suitable contractible compact C̃ ⊂ R
D−1, here and in the following) contains the

exterior of the ball BR of radius R. For each b and each r ≥ R, we set�b,r := �b \ Br

and fix a smooth function ρ on � such that ρ ≥ 1, ρ = r in �b,2R and ρ = 1 in
� \ ( ⋃N

b=1�b,R
)

. Let now s ∈ {0, 1} and let ‖ε‖s,δ,p, ε ∈ �∞
sc (W )|� , denote the

weighted Sobolev norm

‖ε‖s,δ,p := s‖ρδ+1∇�ε‖p + ‖ρδε‖p, (6.9a)

where ∇� is the spin connection on � and

‖ε‖p :=
⎛

⎝

∫

�

vol�
(

ε†ε
)p/2

⎞

⎠

1/p

. (6.9b)

By Hs,δ,p we denote the completion of �∞
sc (W )|� with respect to ‖ ·‖s,δ,p. Let us first

consider the case D = 4. By [26, Theorem 4.2], the map

γ i∇i =: D : H1,δ,p → H0,δ+1,p (6.10)

is an isomorphism with a bounded inverse D−1, if p = 2, δ = −1 or p ≥ 2,
0 < δ < 2 − 3/p. Furthermore, D−1 maps sections in H0,δ+1,p ∩�∞(W ) to sections
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Linear quantum gauge theories 907

in H1,δ,p∩�∞(W ). This proves that (6.2b) has a unique solution and that ε ∈ �∞(W ).
The required decay/boundedness properties of ε|� and ∇ε|� follow by the arguments
used in the proof of [26, Proposition 5.3]. This implies that the condition in (ii) is
fulfilled and thus (E, τ ) is a pre-Hilbert space for the asymptotically flat case in D = 4.

One can straightforwardly generalise [26, Theorem 4.2] to the case D > 4 by
noting that the part of the proof of the said theorem which is concerned with the
invertability of D for p = 2, δ = −1 can be straightforwardly generalised to D > 4
as all inbetween steps are still valid in higher dimensions and with the steeper decay
of ai j , ∂kai j and hi j . At the same time, these parameters are sufficient to guarantee
the required decay/boundedness properties of ε|� and ∇ε|� for D > 4. Hence, the
condition in (ii) is fulfilled and (E, τ ) is a pre-Hilbert space for the asymptotically flat
case in general D ≥ 4.

Proof of (iv): The elliptic differential operator γ i∇i on � is formally skew-adjoint
with respect to the inner product 〈ψ, χ〉 = ∫

�
vol� ψ

† χ , see [26, Section 3] and note
the different Clifford algebra conventions used by the authors. Thus, the trivial kernel
of γ i∇i implies a trivial kernel of its formal adjoint, and the solvability of (6.2b) for all
source terms is guaranteed by the general theory of elliptic operators on vector bundles
over compact Riemannian manifolds, see e.g. [23, Chapter III] or Donaldson’s lecture
notes [16, Section 3]. Elliptic regularity implies that ε|� ∈ �∞(W )|� . This ε|� can
be used as initial condition for solving (6.2a) and the resulting section ε ∈ �∞(W )

satisfies the required properties, since � is compact. Hence, the condition in (ii) is
fulfilled and (E, τ ) is a pre-Hilbert space. ��

To close, we present an example of a Ricci-flat globally hyperbolic spacetime M
with spin structure on which the Rarita-Schwinger gauge field is not of positive type.
Let us take M = R × T

D−1, with T
D−1 denoting the D−1-torus, equipped with the

flat metric g = −dt2 +∑D−1
i=1 dϕ2

i . Here t ∈ R denotes time and ϕi ∈ [0, 2π) are the
angles on the torus. We choose the trivial spin structure on M , in particular there exists
a global basis of �∞(V ). The equation of motion for the Rarita-Schwinger gauge field
(3.21) reads (Pψ)μ = γ ν∂νψμ − γμ∂νψν = 0. Notice that, in particular, all constant
sections ψμ ≡ const solve this equation and thus belong to the space Sol. We obtain
for such sections

〈ψ,ψ〉Sol = (2π)D−1
(

ψ†
μψ

μ − 1

D − 2
ψ/†ψ/

)

, (6.11)

where (2π)D−1 is the volume of the torus. Choosing ψμ �= 0 such that ψ0 = 0
and γ iψi = 0 we obtain that 〈ψ,ψ〉Sol = (2π)D−1 ψ

†
i ψ

i > 0. On the other hand,
choosing ψi = 0 and ψ0 �= 0 we obtain

〈ψ,ψ〉Sol = −(2π)D−1 D − 1

D − 2
ψ

†
0ψ0 < 0. (6.12)

We note that if we equip M = R × T
D−1 with one of the 2D−1 − 1 non-trivial spin

structures [5], the induced Dirac operator on the torus T
D−1 has a trivial kernel. Thus,

the Rarita-Schwinger gauge field is of positive type by Theorem 6.1 (iv). This shows

123



908 T.-P. Hack, A. Schenkel

an interesting correlation between the choice of spin structure and the positivity of the
Rarita-Schwinger gauge field.
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Appendix A: Spinor and gamma-matrix conventions

We review some aspects of spinors in higher dimensions following [35], being mainly
interested in properties of Majorana spinors. Let D mod 8 = 2, 3, 4 and we denote
by ηab = diag (−,+,+, . . . ,+)ab the D-dimensional Minkowski metric. The γ -
matrices γ a , a = 0, . . . , D − 1, are complex 2�D/2� × 2�D/2�-matrices satisfying
the Clifford algebra relations {γ a, γ b} = 2 ηab. We take the timelike γ -matrix to be

antihermitian γ 0† = −γ 0 and the spatial γ -matrices hermitian γ i † = γ i , for all
i = 1, . . . , D − 1. We further fix β := iγ 0 which satisfies β† = β. There exists a
charge conjugation matrix C , which is antisymmetric, i.e. CT = −C , in the dimensions
we are considering, see Table 1 in [35]. Further properties are C† = C−1 and, for all
a = 0, . . . , D − 1,

γ aT = −Cγ aC−1. (7.1)

We define the charge conjugation operation on spinors χ ∈ C
2�D/2�

by

χc := −β C∗ χ∗, (7.2)

where ∗ denotes component-wise complex conjugation. This operation squares to the
identity, χcc = χ , for all χ . A Majorana spinor is defined by the reality condition
χc = χ and the space of Majorana spinors is a real vector space of dimension 2�D/2�.
For every Majorana spinor χ the Dirac adjoint equals the Majorana adjoint, χ :=
χ†β = χTC , and thus the hermitian structure χλ on Dirac spinors equivalently reads
for Majorana spinors

χλ = χTCλ = −λTCχ, (7.3)

where in the last equality we have used that CT = −C . We thus have a non-degenerate
R-bilinear antisymmetric map χTCλ on the space of Majorana spinors. However, this
map takes values in the purely imaginary numbers iR and therefore should be rescaled
by the imaginary unit in order to take values in the reals R.

References

1. Bär, C., Fredenhagen, K. (eds.): Quantum field theory on curved spacetimes . Lecture Notes Physics,
Vol. 786, p. 1 (2009)

123



Linear quantum gauge theories 909

2. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17,
359 (2011) [arXiv:1104.1158 [math-ph]]

3. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zuerich,
Switzerland: Eur. Math. Soc. (2007) p. 194 [arXiv:0806.1036 [math.DG]]

4. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic
space-times. Commun. Math. Phys. 257, 43 (2005) [arXiv:gr-qc/0401112]

5. Bär, C.: Dependence on the spin structure of the Dirac spectrum. In: Bourguignon, J.P., Branson, T.,
Hijazi, O. (eds.) Seminaires et Congres 4, Global Analysis and Harmonic Analysis, pp. 17–33 (2000)
[arXiv:math/0007131]

6. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy
time functions. Lett. Math. Phys. 77, 183 (2006) [arXiv:gr-qc/0512095]

7. Binz, E., Honegger, R., Rieckers, A.: Construction and uniqueness of the C∗-Weyl algebra over a
general pre-symplectic space. J. Math. Phys. 45, 2885 (2004)

8. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, New York (1995)
9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm

for local quantum field theory. Commun. Math. Phys. 237, 31 (2003) [arXiv:math-ph/0112041]
10. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and

the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241 (2009) [arXiv:0904.0612
[math-ph]]

11. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general
local covariance. [arXiv:1104.1374 [gr-qc]]

12. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes.
[arXiv:1106.5575 [gr-qc]]

13. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)
14. Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133–147 (1982)
15. Dimock, J.: Quantized Electromagnetic Field on a Manifold. Rev. Math. Phys. 4, 223–233 (1992)
16. Donaldson, S.: Lecture Notes for TCC Course Geometric Analysis. http://www2.imperial.ac.uk/

~skdona/GEOMETRICANALYSIS.PDF (2008)
17. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin one fields in curved space-

time. J. Math. Phys. 44, 4480 (2003) [arXiv:gr-qc/0303106]
18. Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes.

[arXiv:1203.0261 [math-ph]]
19. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field

theory. [arXiv:1110.5232 [math-ph]]
20. Furlani, E.P.: Quantization of massive vector fields in curved space-time. J. Math. Phys. 40, 2611

(1999)
21. Hack, T.-P., Makedonski, M.: A No-Go Theorem for the consistent quantization of spin 3/2 fields on

general curved spacetimes. Phys. Lett. B. 718, 1465–1470 (2013) [arXiv:1106.6327 [hep-th]]
22. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033

(2008) [arXiv:0705.3340 [gr-qc]]
23. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)
24. Muehlhoff, R.: Cauchy problem and Green’s functions for first order differential operators and algebraic

quantization. J. Math. Phys. 52, 022303 (2011) [arXiv:1001.4091 [math-ph]]
25. Nilles, H.P.: Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1 (1984)
26. Parker, T., Taubes, C.H.: On witten’s proof of the positive energy theorem. Commun. Math. Phys. 84,

223 (1982)
27. Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class.

Quant. Gravit. 26, 135017 (2009) [arXiv:0902.4887 [math-ph]]
28. Sanders, J.A.: Aspects of locally covariant quantum field theory. arXiv:0809.4828 [math-ph]
29. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm

effect and Gauss’ law. [arXiv:1211.6420 [math-ph]]
30. Schenkel, A., Uhlemann, C.F.: Quantization of the massive gravitino on FRW spacetimes. Phys. Rev.

D 85, 024011 (2012) [arXiv:1109.2951 [hep-th]]
31. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy

time functions. Lett. Math. Phys. 77, 183 (2006) [arXiv:gr-qc/0512095]
32. Stewart, J.M., Walker, M.: Perturbations of spacetimes in general relativity. Proc. R. Soc. Lond. A 341,

49 (1974)

123

http://www2.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF
http://www2.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF


910 T.-P. Hack, A. Schenkel

33. Taylor, M.E.: Partial Differential Equations I—Basic Theory. Springer, New York (1996)
34. Van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189 (1981)
35. Van Proeyen, A.: Tools for supersymmetry. hep-th/9910030
36. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)
37. Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992)

123


	Linear bosonic and fermionic quantum gauge theories on curved spacetimes
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 Classical gauge field theories
	4 Gauge invariant on-shell algebra of observables
	5 Non-degeneracy and positivity of gauge field theories
	6 Positivity of the Rarita-Schwinger gauge field
	Acknowledgments
	Appendix A: Spinor and gamma-matrix conventions
	References


