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Abstract We investigate a class of cosmological solutions of Einstein’s field
equations in higher dimensions with a cosmological constant and an ideal fluid matter
distribution as a source. We discuss the dynamical evolution of the universe subject
to two constraints that (i) the total volume scale factor of the universe is constant and
(ii) the effective energy density is constant. We obtain various interesting new dynam-
ics for the external space that yield a time varying deceleration parameter including
oscillating cases when the flat/curved external and curved/flat internal spaces are con-
sidered. We also comment on how the universe would be conceived by an observer in
four dimensions who is unaware of the extra dimensions.

Keywords Kaluza–Klein cosmology · Variable deceleration parameter ·
Accelerated expansion

1 Introduction

The idea that the spacetime has actually more than four dimensions but appears to be
four dimensional because the extra space dimensions are too small for local detection
goes directly back to the years after Einstein’s general relativitistic theory of gravi-
tation was first introduced in 1915. Kaluza and Klein’s attempt to unify gravitation
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and electromagnetism during the 1920s was based on the assumption that the uni-
verse we live in is in fact five dimensional, but as the fifth dimension remains small,
it appears effectively four dimensional [1]. The unification of fundamental interac-
tions of nature achieved in higher dimensions in more recent years provides a strong
motivation to give a serious consideration to this possibility. We know today that
anomaly-free superstring models of all fundamental interactions require a spacetime
of ten dimensions for consistency and the M-theory in which they are embedded lives
in an eleven dimensional spacetime (see [2] and references therein). It is generally
assumed that all but four of the spacetime dimensions are compactified on an unob-
servable internal manifold, leaving an observable (1 + 3)-dimensional spacetime. On
the other hand, in the early 1980s the dynamical (cosmological) reduction of internal
dimensions to unobservable scales with the external physical dimensions expanding
while the internal dimensions contracting started to be considered in a cosmological
context [3–5]. Since then different possibilities have been investigated: Cosmological
models where the external dimensions are expanding while the internal dimensions
are (i) contracting [3–5], (ii) static [6,7], (iii) expanding at a much slower rate than the
external dimensions [8] or (iv) exhibiting any combination of these possibilities [3,9].

The accelerating expansion of the universe which is one of the crucial components
of contemporary cosmology has further reinforced the interest in higher dimensional
cosmological models. An accelerating expansion phase of the universe first came into
serious consideration when it was realized that the presence of an accelerating expan-
sion epoch in the early universe (inflation) could resolve the problems of standard Big
Bang cosmology such as the observed spatial homogeneity, isotropy and flatness of
the universe (e.g., [10,11]). Today it is widely believed that the inflationary scenario
is one of the most prominent attempts to resolve the problems of standard Big Bang
cosmology. Surprisingly, the direct observational realization of the possibility of an
accelerating expansion of the universe came from the discovery of the current acceler-
ation of the universe from SNIa observations [12,13] and is supported by independent
observations e.g. the WMAP observations [14]. However, most of the inflationary
scenario variations are based on general relativity and the accelerating expansion is
generated by ad hoc scalar fields that can behave like a positive cosmological constant
under some conditions and there is not yet a concrete derivation of inflation from
a fundamental theory such as the string theory [15]. On the other hand, the current
acceleration of the universe can be easily explained by the inclusion of a positive cos-
mological constant into the Einstein’s field equations in the presence of pressure-less
matter. This is the starting point of �CDM cosmology, which is the simplest model
that can accommodate the observed dynamics of the universe. However, a positive
cosmological constant is mathematically equivalent to a vacuum energy density and
the theoretical estimates for it exceed the observational limits by some 120 orders of
magnitude. This is still one of the most pressing unsolved problems in fundamental
physics [16–18] and it led to the dark energy concept [19] in cosmology. To address
these issues the presence of higher dimensions has also been considered among several
other possibilities such as modifying general relativity or predicting the presence of
unknown energy sources, i.e. inflaton and dark energy fields. The idea is that both the
extra dimensions (although they are today out of our reach) and the possible higher
dimensional fluids can affect the dynamics of the observed universe and hence can
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The dynamical evolution of 3-space 961

appear as unknown sources in the four dimensional universe where it is interpreted in
terms of the conventional general relativity.

There are neither a priori nor observational reasons for assuming that the universe
during its dynamical evolution has always been four dimensional and the presence
of extra dimensions seems a good place for seeking answers to many questions in
cosmology. Indeed, there is a wide literature on higher dimensional cosmological
models that have been studied extensively within various approaches and contexts (see
for instance references [20–29]). In the literature there is an interesting class of models
where the total volume of the higher dimensional space remains constant [4,5,9,30,
31]. In particular, Dereli and Tucker [5], considering the inflationary model introduced
by Guth [10], obtained a higher dimensional general relativistic cosmological model
within the framework of flat external and internal spaces by assuming that the external
space expands exponentially and the internal space contracts exponentially. It is found
that the volume of the higher dimensional space is constant and additionally that the
energy density of the higher dimensional fluid is also constant.

A higher dimensional space with a constant volume lives forever with no begin-
ning and no end. Yet, the three dimensional space that is inferred from this eternal
higher dimensional space may have dynamics consistent with the observed universe.
For instance, it may exhibit the dynamics similar to the standard Big Bang or �CDM
model. The constancy of the higher dimensional volume also assures the dynami-
cal contraction (reduction) of the internal space for an expanding three dimensional
external space. The three dimensional space can still commence with a coordinate
singularity and the size of the higher dimensional space can be chosen so that the
physical processes do occur the same as in the four dimensional universe. Another
interesting feature of the idea of a constant higher dimensional volume comes out
when it is further assumed that the energy density of the higher dimensional effec-
tive fluid is also constant. In such a cosmological model, there would occur a mass
leakage from the contracting space into the expanding space, say, from the contract-
ing n-dimensional space into the expanding 3-dimensional space. Hence matter is
neither created nor exhausted in such a model but is redistributed between the exter-
nal and internal spaces. The effective (1 + 3)-dimensional spacetime may simulate
a steady-state cosmology with a natural mechanism for maintaining a constant den-
sity of matter without modifying the mathematical structure of general relativity as
assumed in the conventional steady-state cosmological model with continuos creation
of matter [32,33].

In what follows, we study the dynamics of a higher dimensional cosmological model
that yields a constant higher dimensional volume and energy density in the context
of Einstein’s general relativity with a cosmological constant. We obtain various solu-
tions and also discuss the apparent universe for an observer living in four dimensions
unaware of the presence of higher dimensions considering these solutions.

2 The model

The theory of gravitation we consider is the generalization of the conventional (1 +
3)-dimensional Einstein’s gravity to (1 + 3 + n)-dimensions in the presence of a
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(1 + 3 + n)-dimensional cosmological constant with a negative sign that is consistent
with anti-de Sitter (AdS) vacua:

Rμν − 1

2
Rgμν + �gμν = −kTμν. (1)

Here the indices μ and ν run through 0, 1, 2, . . . , 3 + n and 0 is reserved for the time
coordinate t . Rμν , R and gμν are the Ricci tensor, Ricci scalar and the metric tensor,
respectively, of the (1 + 3 + n)-dimensional spacetime. Tμν is the energy-momentum
tensor of a (1+3+n)-dimensional inviscid, incompressible fluid and k = 8πG where
G is the (1 + 3 + n)-dimensional gravitational coupling constant.

We consider (1 + 3 + n)-dimensional spacetime manifold with product topology

M1+3+n = R × M3 × Kn, (2)

where R is the manifold of time, M3 is the manifold of 3-dimensional external space
that represents the space we observe and Kn is the manifold of the n-dimensional
compact internal space that may be so small to be observed directly and locally.
We define, on this manifold, a spatially homogenous but not necessarily isotropic
(1 + 3 + n)-dimensional synchronous spacetime metric that involves 3-dimensional
external space with constant curvature for M3 and n-dimensional internal space with
constant curvature for Kn :

ds2 =−dt2 + a2(t)
dx2

1 +dx2
2 +dx2

3[
1+ κa

4 (x2
1 +x2

2 +x2
3 )

]2 +s2(t)
dy2

1 +· · ·+dy2
n

[
1+ κs

4 (y2
1 +· · ·+y2

n )
]2 . (3)

Here a(t) is the scale factor, κa is the curvature index of the 3-dimensional external
space. s(t) is the scale factor, κs is the curvature index and n = 1, 2, 3, . . . is the
number of the internal dimensions of the n-dimensional internal space. The curvature
indices κa and κs can take values −1, 0 and 1. We note that the manifold R × M3

is equipped with the usual Robertson-Walker metric and M3 can be either open, flat
or closed that correspond to κa = −1, 0 and 1, respectively. On the other hand, it is
important that the internal space is compact since we require internal space to yield
finite volume. It is known that there are non-trivial global topologies that are compact
for any sign of the sectional curvature. In the case κs = 1 the n-dimensional space
is n-sphere (Kn = Sn), in the case κs = 0 the most simple example for a compact
n-dimensional space is the n-dimensional torus (Kn = T n). We note that we also
consider negative constant sectional curvature κs = −1 (hyperbolic geometry) for
the internal space. Such spaces are also compact if they have a quotient structure
such that Kn = Hn/�, where Hn and � are n-dimensional hyperbolic space and its
discrete isometry group, respectively [34]. In the following we shall refer to the cases
κs = −1, 0 and 1 as the open, flat and closed internal space in accordance with the
common usage in cosmology.

We describe the (1 + 3 + n)-dimensional fluid with an energy-momentum tensor
that yields distinct pressures in the external and internal spaces:
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The dynamical evolution of 3-space 963

Tμ
ν = diag[−ρ, pe, pe, pe, pi, . . . , pi] (4)

where ρ is the energy density, pe and pi are the pressures that are associated with
the external and internal dimensions, respectively. In fact, this is the most general
form of the energy-momentum tensor that can be used for describing a fluid at rest in
comoving coordinates, i.e. whose (1+3+n)-velocity is uμ = (1, 0, 0, . . .), within the
framework of the spacetime defined by the metric (3). Since we do not know the nature
of the physical ingredients of the higher dimensional universe, we conveniently allow
the possibility of an energy-momentum tensor with distinct and dynamical pressures
in the external and internal spaces.

Einstein’s field Eqs. (1) for the metric (3) in the presence of the energy-momentum
tensor given by (4) lead to the following system of differential equations:

3
ȧ2

a2 + 3
κa

a2 + 3n
ȧ

a

ṡ

s
+ 1

2
n(n − 1)

κs + ṡ2

s2 + � = kρ, (5)

ȧ2

a2 + 2
ä

a
+ κa

a2 + n
s̈

s
+ 2n

ȧ

a

ṡ

s
+ 1

2
n(n − 1)

κs + ṡ2

s2 + � = −kpe, (6)

3
ȧ2

a2 + 3
ä

a
+ 3

κa

a2 + (n − 1)
s̈

s
+ 3(n − 1)

ȧ

a

ṡ

s
+ 1

2
(n − 1)(n − 2)

κs + ṡ2

s2 + � = −kpi. (7)

From the Bianchi identity, we know that Einstein’s field equations imply the con-
servation of the energy-momentum tensor, i.e. the continuity equation for the higher
dimensional fluid follows:

ρ̇ +
(

3
ȧ

a
+ n

ṡ

s

)
ρ + 3

ȧ

a
pe + n

ṡ

s
pi = 0. (8)

The field Eqs. (5)–(7) should be satisfied by five unknown functions a, s, ρ, pe and pi
and therefore the system is not fully determined. We must provide further constraint
equations for a full determination. Here, we are interested in higher dimensional cos-
mologies that exhibit the following two properties:

(i) The higher dimensional universe has a constant volume as a whole but the internal
and external spaces are dynamical.

(ii) The energy density is constant in the higher dimensional universe.

In accordance with these requirements, we assume that the (3+n)-dimensional volume
scale factor of the universe is constant:

V3+n ≡ a3sn = V0 = constant. (9)

Note that although the higher dimensional volume scale factor V3+n is constant and
finite, the volume scale factors of the external space V3 = a3 and that of the internal
space Vn = sn are not necessarily constant and finite. The above condition also assures
the dynamical contraction (hence reduction) of the internal space for an expanding
external space. As a second constraint we assume that the energy (mass) density of
the (1 + 3 + n)-dimensional matter is a positive definite constant:
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ρ = ρ0 > 0. (10)

This means that matter need not be created nor exhausted in the higher dimensional
universe but will be redistributed between the external and internal spaces as the
time progresses. There should be a matter leakage from the contracting space into
the expanding space, that mimics a continuos matter creation in the expanding space
that leads to a modification in general relativity, just as it is in the four dimensional
steady-state model introduced by Bondi and Gold [32] in 1948.

With the above assumptions, our system becomes fully determined and we can
proceed with an exact solution. Using the constraints (9) and (10), the system of Eqs.
(5)–(7) are further reduced and can be written in terms of the scale factor of the external
space a only:

− 3

2

(
3 + n

n

)
ȧ2

a2 + 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + 3

κa

a2 + � = kρ0, (11)

1

2

(
9 + 5n

n

)
ȧ2

a2 − ä

a
+ 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + κa

a2 + � = −kpe, (12)

3

2

(
1 + n

n

)
ȧ2

a2 + 3

n

ä

a
+ 1

2
κs(n − 1)(n − 2)V

− 2
n

0 a
6
n + 3

κa

a2 + � = −kpi. (13)

Using the constraints (9) and (10) in the continuity Eq. (8), we find that the pressures
in the external and internal spaces should be identical:

pe = pi ≡ p. (14)

Hence, Eqs. (12) and (13) are the same and all we need to do is to solve the following
system of equations:

− 3

2

(
3 + n

n

)
ȧ2

a2 + 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + 3

κa

a2 + � = kρ0, (15)

1

2

(
9 + 5n

n

)
ȧ2

a2 − ä

a
+ 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + κa

a2 + � = −kp. (16)

Since ρ0 is a positive constant, we first solve (15) for the scale factor of the external
space a explicitly and then obtain the scale factor of the internal space s by substituting
a into (9). Finally, p can be obtained by substituting a into (16). We were not able to
obtain the most general analytic solution, i.e., for the case κa �= 0 and κs �= 0. We
discuss the following three special cases:

(i) Both of the external and internal spaces are flat; κa = κs = 0. This is the solution
found in Ref. [5]. This case is given in Sect. 3.1.

(ii) The external space is curved but internal space is flat; κa �= 0 and κs = 0.
One may observe that, in the field Eqs. (15)–(16), for sufficiently small a (i.e.
large s) values, the term containing the curvature of the internal space would be
negligible, while the term containing the curvature of the external space would
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be important. Hence, this class approximates the general solution for sufficiently
small a (i.e. large s) values. This case is given in Sect. 3.2.

(iii) The external space is flat but internal space is curved; κa = 0 and κs �= 0. Similar
to the case (ii), for sufficiently large a (i.e. small s) values, the term containing
the curvature of the external space now is negligible, while the term containing
the curvature of the internal space is important. Hence, this class approximates
the general solution for sufficiently large a (i.e. small s) values. This case is given
in Sect. 3.3.

3 Solutions

3.1 Solution for flat external and flat internal spaces (κa = κs = 0)

Setting κa = κs = 0, the field Eqs. (15) and (16) read

− 3

2

(
3 + n

n

)
ȧ2

a2 + � = kρ0, (17)

1

2

(
9 + 5n

n

)
ȧ2

a2 − ä

a
+ � = −kp. (18)

We determine from (17) the cosmological parameters of the external space; the scale
factor, Hubble parameter and deceleration parameter, respectively, as follows:

a = a0e
n̄
3

√
�−kρ0 t , (19)

Ha ≡ ȧ

a
= n̄

3

√
� − kρ0, (20)

qa ≡ − äa

ȧ2 = −1. (21)

Here we introduce a new parameter n̄ =
√

6n
3+n that takes values in a narrow range

according to the number of internal dimensions: for n = 1, 2, . . . ,∞ we have

n̄ =
√

3
2 ,

√
12
5 , . . . ,

√
6. Then substituting (19) into (9), we obtain the cosmological

parameters of the internal space; the scale factor, Hubble parameter and deceleration
parameter, respectively, as follows:

s = s0e− n̄
n

√
�−kρ0 t , (22)

Hs ≡ ṡ

s
= − n̄

n

√
� − kρ0, (23)

qs ≡ − s̈s

ṡ2 = −1. (24)

Here and in the rest of the paper we will use s0 = V
1
n

0 a
− 3

n
0 . Finally, substituting (19)

into (18), the pressure of the higher dimensional effective fluid is found to be
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p = ρ0 − 2
�

k
. (25)

The equation of state (EoS) parameter of the fluid then follows:

p

ρ0
= w = 1 − 2

�

kρ0
. (26)

It should be observed that, in this model, a consistent dynamical cosmology requires
� > kρ0, and hence w < −1. In this model, the external space expands exponentially
while the internal space contracts exponentially. Therefore, the external space, i.e., the
space we observe, exhibits de Sitter expansion. This is the well known solution of the
(1+3)-dimensional Einstein field equations in the presence of a positive cosmological
constant (�E), which is mathematically equivalent to the conventional vacuum energy
density (pvac = −ρvac, where ρvac and pvac are the energy density and pressure of
the vacuum, respectively) for the spatially flat Robertson-Walker spacetime [18]. We
would like to note that the dynamics that would be generated by a positive cosmological
constant in conventional (1 + 3)-dimensional general relativity is generated here by a
negative cosmological constant we consider in the (1 + 3 + n)-dimensional universe.
We shall further comment on this below in Sect. 4.

We note that the universe has no beginning in the finite past and no end in the finite
future and that neither the external nor internal dimensions reach zero size at finite
t values. Therefore, as the reference point to distinguish between different times,

we consider the time teq = − 3n
(n+3)ñ

√
�−kρ0

ln
(

a0
s0

)
when the external and internal

dimensions are at the same size a(teq) = s(teq). We note that a ∼ s, hence the space
is effectively (3 + n)-dimensional, when t ∼ teq . On the other hand, provided that the
internal space possesses a finite number of dimensions; a → 0 and s → ∞ as t →
−∞, while a → ∞ and s → 0 as t → ∞. Hence, although the (3 + n)-dimensional
space is eternal and preserves its constant volume, at very early times (t � teq) the
space was effectively an infinitely large n-dimensional space, i.e., infinitely large s and
infinitely small a. Similarly, at very late times (t 	 teq) the space will be effectively
an infinitely large 3-dimensional space, i.e., infinitely large a and infinitely small s.

From the constant (3+n)-dimensional volume condition, it is evident that the mag-
nitude of the expansion rate of the external space and of the contraction rate of the inter-
nal space are equal independent of the number of the internal dimensions. However,
the number of the extra dimensions appears in two different ways in the Hubble para-
meters of the external and internal dimensions. For the external dimensions the factor
is n̄, which increases with the number of the extra dimensions, n̄ =

√
3
2 ,

√
12
5 , . . . ,

√
6

as n = 1, . . . ,∞. For the internal dimensions, on the other hand, the factor is n̄
n which

decreases with the number of extra dimensions, n̄
n =

√
3
2 ,

√
3
5 , . . . , 0 as n = 1, . . . ,∞.

Accordingly, the number of the extra dimensions affects the dynamics of the external
dimensions slightly, while it affects the dynamics of the internal dimensions drasti-
cally. The internal dimensions are almost static for very large values of n and they even
freeze as n → ∞, although the external dimensions are affected only slightly. If we
consider the limit n → ∞, the extra dimensions will be static, for instance, at Planck
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length scales, but will still be affecting the evolution of the external dimensions. This is
because, in that case, the total effect of the arbitrary number of extra dimensions with
arbitrarirly small contractions have considerable effect on the dynamics of the external
space. In other words, the scales of the extra dimensions could always be at Planck
length scales, while the external dimensions expand monotonously to arbitrarily large
scales.

3.2 Solution for curved external and flat internal spaces (κa �= 0, κs = 0)

In this section we give the solution for the case where the internal is space flat while
the external space is curved. Accordingly, upon the substitution κs = 0, the field Eqs.
(15)–(16) read

− 3

2

(
3 + n

n

)
ȧ2

a2 + 3
κa

a2 + � = kρ0, (27)

1

2

(
9 + 5n

n

)
ȧ2

a2 − ä

a
+ κa

a2 + � = −kp. (28)

Solving (27), we obtain the cosmological parameters of the external dimensions as
follows:

a = a0e
n̄
3
√

�−kρ0 t − 3

4

κa

a0(� − kρ0)
e− n̄

3
√

�−kρ0 t , (29)

Ha = n̄

3

√
� − kρ0

a0e2 n̄
3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t − 3
4

κa
a0(�−kρ0)

, (30)

qa = −
⎛

⎝
a0e2 n̄

3

√
�−kρ0 t − 3

4
κa

a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

⎞

⎠

2

. (31)

Using (29) together with (9), we obtain the cosmological parameters of the internal
dimensions as follows:

s = V
1
n

0

(
a0e

n̄
3
√

�−kρ0 t − 3

4

κa

a0(� − kρ0)
e− n̄

3
√

�−kρ0 t
)− 3

n

, (32)

Hs = − n̄

n

√
� − kρ0

a0e2 n̄
3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t − 3
4

κa
a0(�−kρ0)

, (33)

qs = −1 − n κa
�−kρ0

e2 n̄
3
√

�−kρ0 t

(
a0e2 n̄

3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

)2 . (34)
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Finally, putting (29) into (28), the pressure of the higher dimensional effective fluid is
found to be:

p = −�

k
+

(
ρ0 − �

k

) ⎛

⎝
a0e2 n̄

3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t − 3
4

κa
a0(�−kρ0)

⎞

⎠

2

−κa
3

k

1 + n

3 + n

(
a0e

n̄
3
√

�−kρ0 t − 3

4

κa

a0(� − kρ0)
e− n̄

3
√

�−kρ0 t
)−2

. (35)

Hence the EoS parameter of the higher dimensional effective fluid turns out to be

w = − �

kρ0
+

(
1 − �

kρ0

)⎛

⎝
a0e2 n̄

3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t − 3
4

κa
a0(�−kρ0)

⎞

⎠

2

−κa
3

kρ0

1 + n

3 + n

(
a0e

n̄
3
√

�−kρ0 t − 3

4

κa

a0(� − kρ0)
e− n̄

3
√

�−kρ0 t
)−2

. (36)

One may observe that this solution is consistent for � − kρ0 > 0 in general, but
is consistent for � − kρ0 < 0 only if κa = 1 with a particular choice of the other
parameters. The dynamics are quite different for the cases � > kρ0 and � < kρ0.
Hence it will be convenient to discuss these two cases separately.

First let us consider the case � − kρ0 > 0. We check that, for consistency, by
substituting κa = 0 the solution reduces to the one given for flat external and internal
spaces. On the other hand, the non-flat geometry of the external space alters the
exponential behavior of the solutions obtained for the case flat external and internal
spaces. We find that there is a critical time

tc = 3

2n̄

1√
� − ρ0

ln

(
3

4a0
3
√

� − kρ0

)
, (37)

where

a(tc) = 0

s(tc) = ∞

⎫
⎪⎬

⎪⎭
for κa = 1 (closed external space) (38)

and

a(tc) = amin =
√

3

� − kρ0

s(tc) = smax = V0
1
n

(
� − kρ0

3

) 3
2n

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

for κa = −1 (open external space). (39)
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Fig. 1 Scale factors of the external and internal spaces versus cosmic time t for n = 2. Solid and dashed
curves represent external and internal spaces respectively. Blue, black and red curves represent open, flat
and closed external space cases respectively (color figure online)

Fig. 2 Hubble parameters of the external and internal spaces versus cosmic time t for n = 2. Solid and
dashed curves represent external and internal spaces respectively. Blue, black and red curves represent open,
flat and closed external space cases respectively (color figure online)

In both cases, the external space expands and the internal space contracts almost
exponentially while t 	 tc. However, the non-zero curvature of the external space
alters the dynamics dramatically for t < tc. So that the external space contracts and
the internal space expands almost exponentially when t � tc. To show the generic
behavior of the model, we depict the magnitudes of the scale factors (Fig. 1), Hubble
parameters (Fig. 2) and deceleration parameters (Fig. 3) of the external (solid lines)
and internal (dashed lines) spaces. We have given the EoS parameter (Fig. 4) of the
higher dimensional effective fluid for open (blue), flat (black) and closed (red) external
spaces with the choice n = 2 and some selected values for the parameters.

The case of open external space (κa = −1): The negative curvature of the external
space prevents it from ever reaching zero size (i.e., amin > 0). In the infinite past, the
external space is infinitely large and the internal space is infinitely small. The external
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Fig. 3 Deceleration parameters of the external and internal spaces versus cosmic time t for n = 2. Solid
and dashed curves represent external and internal spaces respectively. Blue, black and red curves represent
open, flat and closed external space cases respectively (color figure online)

dimensions bounce1 at t = tc; they contract till they reach a minimum value amin at
t = tc and then start expanding at a rate that approximates the de Sitter expansion
for t 	 tc. Meanwhile the internal dimensions expand till they reach a maximum
value smax at t = tc and then start contracting at a rate that approximates exponential
contraction. In this solution we have two interesting observations to make. Expansion
of the external dimensions starts from a non-zero size amin, which may be called
the non-singular Big Bang for an observer living today in an effectively (1 + 3)-
dimensional universe. Following this early expansion, the external dimensions enter
into a de Sitter expansion, which may be related with inflation in the early universe.
On the other hand, the size of the internal dimensions can never exceed a maximum
value smax. Hence, although the internal dimensions affect the dynamics of the external
dimensions, they may never be able to reach observable scales.

The case of closed external space (κa = 1): The dynamics in this solution are
similar to the ones we obtain in open external space case when t � tc, but are different
for t ∼ tc; the positive curvature of the external space forces it to reach zero size (i.e.,
amin = 0) at tc. In the infinite past, the external dimensions are infinitely large and the
internal dimensions are infinitely small. The external dimensions contract and reach
zero size at t = tc, while the internal dimensions expand and become infinitely large.
The expansion of the external dimensions starts from zero size at t = tc and goes
at a rate that approximates the de Sitter expansion for t 	 tc, while the contraction
of the internal dimensions starts from an infinitely large size and goes at a rate that
approximates exponential contraction. The external dimensions start expanding from
zero size at t = tc with qa = 0 and Ha = ∞, i.e. there is a Big Bang at t = tc for
the external space and that can be taken as the origin of the universe by an observer
living today in an effectively (1 + 3)-dimensional universe. Following the Big Bang,
the external dimensions evolve into de Sitter expansion, i.e. the inflationary regime as
t increases.

1 See Ref. [35] and references therein for further reading on bouncing cosmologies.
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Fig. 4 EoS parameters of the external and internal spaces versus cosmic time t for n = 2. Solid and dashed
curves represent external and internal spaces respectively. Blue, black and red curves represent open, flat
and closed external space cases respectively (color figure online)

Similar to the solution with both the external and internal dimensions flat, the
number of internal dimensions here alters the dynamics of the external space only
slightly but the dynamics of the internal space drastically. In the limit n → ∞, while
the external dimensions preserve the generic pattern of their expansion, the internal
dimensions freeze at unit size, i.e., s → 1 and Hs → 0.

In the case of �−kρ0 < 0, using the Euler’s formula, the scale factor of the external
space can be written as follows:

a = a0

(
1 + 3

4

κa

a0
2(kρ0 − �)

)
cos

(
n̄

3

√
kρ0 − � t

)

+ia0

(
1 − 3

4

κa

a0
2(kρ0 − �)

)
sin

(
n̄

3

√
kρ0 − � t

)
, (40)

which is a complex function. However, provided that

κa = 1 and a0 = 1

2

√
3

kρ0 − �
, (41)

the imaginary part vanishes and we obtain a real solution. Hence, using these values
for the parameters, we obtain the cosmological parameters of the external dimensions
as follows:

a =
√

3

kρ0 − �
cos

(
n̄

3

√
kρ0 − � t

)
, (42)

Ha = − n̄

3

√
kρ0 − � tan

(
n̄

3

√
kρ0 − � t

)
, (43)

qa = −1 + sin−2
(

n̄

3

√
kρ0 − � t

)
, (44)
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and of the internal dimensions as follows:

s = V0
1
n

(
3

kρ0 − �

)− 3
2n

cos− 3
n

(
n̄

3

√
kρ0 − � t

)
, (45)

Hs = n̄

n

√
kρ0 − � tan

(
n̄

3

√
kρ0 − � t

)
, (46)

qs = −1 − n

3
sin−2

(
n̄

3

√
kρ0 − � t

)
. (47)

The pressure and EoS parameter of the higher dimensional effective fluid become:

p = ρ0 − 2
�

k
−

(
ρ0 − �

k

)
4 + 2n

3 + n
cos−2

(
n̄

3

√
kρ0 − � t

)
, (48)

w = 1 − 2
�

kρ0
−

(
1 − �

kρ0

)
4 + 2n

3 + n
cos−2

(
n̄

3

√
kρ0 − � t

)
. (49)

This oscillating2 special case is possible if the external space is closed but the
internal space is flat. Since � < kρ0, the � can be less than zero, which corresponds
to a (1 + 3 + n)-dimensional positive cosmological constant in this case. The external
and internal dimensions oscillate with a period T = 6π

n̄
√

kρ0−�
and with amplitudes

Aa =
√

3
kρ0−�

and As = V0
1
n

(
kρ0−�

3

) 3
2n

, respectively. The number of the internal

dimensions does not alter the amplitude of the external dimensions at all but the
amplitude of the internal dimensions are affected strongly. It also alters the period of the
oscillations slightly. In the limit n → ∞; the period of oscillations T → π√

6
1√

kρ0−�

and the internal dimensions oscillate with unit amplitude As → 1.

3.3 Solution for flat external and curved internal spaces (κa = 0, κs �= 0)

In this section we discuss the solutions where the external space is flat while the
internal space is curved and n ≥ 2 (We note that for n = 1 the solution in this section
reduces to the solution for which both the external and internal spaces are flat given
in Sect. 3.1). Accordingly, substituting κa = 0, the field Eqs. (15)–(16) read

−3

2

(
3 + n

n

)
ȧ2

a2 + 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + � = kρ0, (50)

1

2

(
9 + 5n

n

)
ȧ2

a2 − ä

a
+ 1

2
κsn(n − 1)V

− 2
n

0 a
6
n + � = −kp. (51)

2 See Ref. [35–37] and references therein for further reading on oscillating cosmologies.
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Solving (50), the cosmological parameters of the external dimensions are obtained as
follows:

a = V
1
3

0

(
s0e− n̄

n

√
�−kρ0 t − n(n − 1)

8

κs

s0(� − kρ0)
e

n̄
n

√
�−kρ0 t

)− n
3

, (52)

Ha = n̄

3

√
� − kρ0

s0e−2 n̄
n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

, (53)

qa = −1 − (n − 1) 6
4

κs
�−kρ0

e−2 n̄
n

√
�−kρ0 t

(
s0e−2 n̄

n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

)2 . (54)

Using (52) together with (9), we obtain the cosmological parameters of the internal
dimensions as follows:

s = s0e− n̄
n

√
�−kρ0 t − n(n − 1)

8

κs

s0(� − kρ0)
e

n̄
n

√
�−kρ0 t , (55)

Hs = − n̄

n

√
� − kρ0

s0e−2 n̄
n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

, (56)

qs = −
⎛

⎝
s0e−2 n̄

n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

⎞

⎠

2

. (57)

Finally, using a in (28), the pressure of the higher dimensional effective fluid is found
to be:

p = −�

k
+

(
ρ0 − �

k

) ⎛

⎝
s0e−2 n̄

n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

⎞

⎠

2

−κs
3

k

1 + n

3 + n
V

− 2
3

0

(
s0e− n̄

n

√
�−kρ0 t − n(n − 1)

8

κs

s0(� − kρ0)
e

n̄
n

√
�−kρ0 t

) 2
3 n

.

(58)

Hence the EoS parameter of the fluid is also found:

w = − �

kρ0
+

(
1 − �

kρ0

) ⎛

⎝
s0e−2 n̄

n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

⎞

⎠

2

−κs
3

kρ0

1 + n

3 + n
V

− 2
3

0

(
s0e− n̄

n

√
�−kρ0 t − n(n − 1)

8

κs

s0(� − kρ0)
e

n̄
n

√
�−kρ0 t

) 2
3 n

.

(59)
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Similar to the solution for the curved external and flat internal spaces, this solution
is also consistent for � − kρ0 > 0 in general, but is consistent for � − kρ0 < 0
only if κs = 1 with a particular choice of the other parameters. In this solution also,
the dynamics are quite different for the cases � > kρ0 and � < kρ0. Hence it
will be convenient to discuss the physical behavior of the model in these two cases
separately.

First considering the case � − kρ0 > 0, one may check, for consistency, by sub-
stituting κs = 0 the solution reduces as expected to the one given in [5] when both
the external and internal spaces are flat. The exponential behavior in the solution for
flat external and internal spaces are altered, this time, by the non-flat geometry of the
internal space. In this solution too, there is a critical time

tc =
√

2

n̄

1√
� − kρ0

ln

(
8s0

2 � − kρ0

n(n − 1)

)
(60)

where

a(tc) = ∞

s(tc) = 0

⎫
⎪⎬

⎪⎭
for κs = 1 (closed internal space) (61)

and

a(tc) = amax = V
1
3

0

(
2

� − kρ0

n(n − 1)

) n
6

s(tc) = smin =
√

1

2

n(n − 1)

� − kρ0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

for κs = −1 (open internal space). (62)

In both cases of closed and open internal spaces, when t � tc the external dimensions
expand almost exponentially while the internal dimensions contract almost exponen-
tially. However, as would be expected, the curvature of the internal space becomes
more dominant as the internal space contracts and eventually develops a drastic devi-
ation from the exponential behavior. If the internal space is closed, it reaches zero
size (smin = 0) at t = tc while the external space reaches infinitely large sizes. If
the internal space is open, on the other hand, it reaches its non-zero minimum value
smin while the external space expands until it reaches its finite maximum value amax
at t = tc and then starts contracting. To show the generic behavior of the model, we
depict the magnitudes of the scale factors (Fig. 5), Hubble parameters (Fig. 6) and
deceleration parameters (Fig. 7) of the external (solid curves) and internal (dashed
curves) dimensions. We also give the EoS parameter (Fig. 8) of the higher dimen-
sional effective fluid for the case of open (blue), flat (black) and closed (red) internal
spaces with the choice n = 2 and some selected values for the parameters.
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Fig. 5 Scale factors of the external and internal spaces versus cosmic time t for n = 2. Solid and dashed
curves represent external and internal spaces respectively. Blue, black and red curves represent open, flat
and closed internal space cases respectively (color figure online)

Fig. 6 Hubble parameters of the external and internal spaces versus cosmic time t for n = 2. Solid and
dashed curves represent external and internal spaces respectively. Blue, black and red curves represent open,
flat and closed internal space cases respectively (color figure online)

In this solution, the size of the internal dimensions do not remain small. Moreover,
in contrast with the solutions in the previous sections, the number of the internal
dimensions suppress the expansion of the external dimensions and the contraction of
the internal dimensions. As n → ∞; s → ∞ and Hs → +∞, whereas a → 0
and Ha → −∞. This behavior is understandable; the spatial curvature of the internal
space κsn(n − 1)/s2 becomes infinitely large unless s becomes infinitely large too.
Hence a curved internal space with arbitrarily large number of dimensions is fatal for
a dynamical cosmology.

In the case of �−kρ0 < 0, using the Euler’s formula, the scale factor of the internal
space can be written as follows:
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Fig. 7 Deceleration parameters of the external and internal spaces versus cosmic time t for n = 2. Solid
and dashed curves represent external and internal spaces respectively. Blue, black and red curves represent
open, flat and closed internal space cases respectively (color figure online)

Fig. 8 EoS parameters of the external and internal spaces versus cosmic time t for n = 2. Solid and dashed
curves represent external and internal spaces respectively. Blue, black and red curves represent open, flat
and closed internal space cases respectively (color figure online)

s = s0

(
1 + n(n − 1)

8

κs

s0
2(kρ0 − �)

)
cos

(
n̄

n

√
kρ0 − � t

)

+is0

(
1 − n(n − 1)

8

κs

s0
2(kρ0 − �)

)
sin

(
n̄

n

√
kρ0 − � t

)
(63)

which is a complex function. Similar to the discussion in Sect. 3.2, for the choice

n ≥ 2, κs = 1 and s0 =
√

n(n − 1)

8(kρ0 − �)
, (64)
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the imaginary part vanishes and a real solution is obtained. Hence, using these values
for the parameters, we obtain the cosmological parameters of the external dimensions
as:

a = V0
1
3

(
1

2

n(n − 1)

kρ0 − �

)− n
6

cos− n
3

(
n̄

n

√
kρ0 − � t

)
, (65)

Ha = n̄

3

√
kρ0 − � tan

(
n̄

n

√
kρ0 − � t

)
, (66)

qa = −1 − 3

n
sin−2

(
n̄

n

√
kρ0 − � t

)
, (67)

the cosmological parameters of the internal dimensions as:

s =
√

1

2

n(n − 1)

kρ0 − �
cos

(
n̄

n

√
kρ0 − � t

)
, (68)

Hs = − n̄

n

√
kρ0 − � tan

(
n̄

n

√
kρ0 − � t

)
, (69)

qs = −1 + sin−2
(

n̄

n

√
kρ0 − � t

)
, (70)

and the pressure and EoS parameter of the higher dimensional effective fluid as:

p = ρ0 − 2
�

k
−

(
ρ0 − �

k

)
4 + 2n

3 + n
cos−2

(
n̄

n

√
kρ0 − � t

)
, (71)

w = 1 − 2
�

kρ0
−

(
1 − �

kρ0

)
4 + 2n

3 + n
cos−2

(
n̄

n

√
kρ0 − � t

)
. (72)

This oscillating special case is possible provided that the internal space is closed
but the external space is flat. Since � < kρ0, the � can be less than zero, which
corresponds to a (1 + 3 + n)-dimensional positive cosmological constant in this case.
The external and internal dimensions oscillate continuously with the amplitudes Aa =
V0

1
3

(
1
2

n(n−1)
kρ0−�

)− n
6

and As =
√

1
2

n(n−1)
kρ0−�

, respectively, and with a period T = 2πn
n̄
√

kρ0−�
.

In this solution, contrary to the case of oscillating solution for the curved external and
flat internal spaces; the higher the number of internal dimensions the longer the period
of oscillations. As n → ∞; the period of oscillations T → ∞, which means that
there will no oscillation anymore. In the same limits the amplitude of the external
space Aa → 0 and Ha → 0, which means that the external dimensions freeze at zero
size, while As → ∞ with Hs → 0, which means that the internal dimensions freeze
at infinitely large size similar to the non-oscillating solution above.

123



978 Ö. Akarsu, T. Dereli

4 The universe according to an observer in (1 + 3)-dimensions

We do not usually deal in cosmology with direct measurements of energy density
and pressure of the material/physical content of the universe. We collect data on the
kinematics of the observed universe instead, for instance from the supernova Ia obser-
vations [13] and on the geometry of the space from cosmic microwave background by
WMAP observations [14]. Furthermore, we assume that the space we live in is three
dimensional. Then, what we do in general is to interpret the collected information
using a reliable theory for gravitation, for instance the general relativity of Einstein,
to infer the properties of the material content of the universe. This is naturally the
approach of an observer who is unaware of internal dimensions. In fact, we may
be living in a higher dimensional space which appears effectively three dimensional
since the internal dimensions are so small that they evade direct and local detection.
However, the internal dimensions may still be controlling the dynamics of the exter-
nal dimensions that we observe. Hence, while we are interpreting the cosmological
data within the framework of four dimensional general relativity, the components
related to the internal dimensions and the higher dimensional fluid we introduced
could appear as an effective source in the 4-dimensional Einstein’s field equations. An
observer who lives in four dimensions would use the 4-dimensional Einstein’s field
equations:

R̃i j − 1

2
R̃g̃i j = −k̃ T̃i j , (73)

where i and j run through 0, 1, 2, 3 and k̃ = 8π G̃ with G̃ being the gravitational
coupling constant. T̃i j is the energy-momentum tensor that will be inferred from the
kinematics we obtain in our higher dimensional models. We know that the present
universe is very well described by the spatially flat four dimensional Robertson-Walker
metric. We do not expect the fluids to have bulk motion at cosmological scales, hence
we assume that the fluid is at rest in the comoving coordinates. The Robertson-Walker
metric admits only perfect fluid representation of the energy-momentum tensor as
long as the fluid is at rest in the comoving coordinates, hence the energy-momentum
tensor that we will infer can be represented by

T̃i j = diag[−ρ̃, p̃, p̃, p̃] (74)

where ρ̃ and p̃ are the induced energy density and pressure. Writing down the Einstein
field equations in (1 + 3)-dimensions in the framework of conventional Robertson–
Walker metric, we have

3
ȧ2

a2 + 3
κa

a2 = k̃ρ̃, (75)

ȧ2

a2 + 2
ä

a
+ κa

a2 = −k̃ p̃. (76)
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The observables in these equations are ȧ
a , ä

a and κa
a2 , which in return give us the

opportunity to infer the effective energy density and pressure of the physical content
of the universe. One may now observe how the components of the higher dimensional
universe appear as an effective energy-momentum source in the four dimensional
universe:

k̃ρ̃ = kρ0 − � − 3n
ȧ

a

ṡ

s
− 1

2
n(n − 1)

κs + ṡ2

s2 , (77)

k̃ p̃ = kp + � + n
s̈

s
+ 2n

ȧ

a

ṡ

s
+ 1

2
n(n − 1)

κs + ṡ2

s2 , (78)

subject to the constraints (9) and (10).
We consider the solutions with the flat external space case such that κa = 0 and

κs �= 0. Using (52), (55) and (58) in (77) and (78) the induced four dimensional
effective energy density and pressure become

ρ̃ = 1

k̃

2n

3 + n
(� − kρ0)

⎛

⎝
s0e−2 n̄

n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

s0e−2 n̄
n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

⎞

⎠

2

, (79)

p̃ = −1

k̃

2n

3 + n
(� − kρ0)

⎡

⎢
⎣1 + κs

(n + 2)(n − 1)

2(� − kρ0)

e−2 n̄
n

√
�−kρ0 t

(
s0e−2 n̄

n

√
�−kρ0 t − n(n−1)

8
κs

s0(�−kρ0)

)2

⎤

⎥
⎦ .

(80)

Therefore, the induced EoS parameter for the fluid in the effective four dimensional
universe would be

w̃ ≡ p̃

ρ̃
= −1 − κs

n − 1

� − kρ0

e−2 n̄
n

√
�−kρ0 t

(
s0e−2 n̄

n

√
�−kρ0 t + n(n−1)

8
κs

s0(�−kρ0)

)2 . (81)

The total mass within the 3-volume scale factor (V3 = a3) of the effective universe
reads

M̃ ≡ ρ̃V3 = 2

k̃

n

3 + n
(� − kρ0)

⎛

⎝
a0e2 n̄

3
√

�−kρ0 t + 3
4

κa
a0(�−kρ0)

a0e2 n̄
3
√

�−kρ0 t − 3
4

κa
a0(�−kρ0)

⎞

⎠

2

(82)

× V0

(
s0e− n̄

n

√
�−kρ0 t − n(n − 1)

8

κs

s0(� − kρ0)
e

n̄
n

√
�−kρ0 t

)−n

.

On the other hand, for the special case � − kρ0 < 0 with κs = 1, n ≥ 2 and

s0 =
√

n(n−1)
8(kρ0−�)

the induced energy density

ρ̃ = 2

k̃

n

3 + n
(kρ0 − �) tan2

(
n̄

n

√
kρ0 − � t

)
, (83)
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and the induced pressure

p̃=−2

k̃

n

3+n
(kρ0−�)

[
tan2

(
n̄

n

√
kρ0−� t

)
− 2

n
cos−2

(
n̄

n

√
kρ0−� t

)]
. (84)

Therefore, the induced EoS parameter

w̃ = −1 + 2

n
sin−2

(
n̄

n

√
kρ0 − � t

)
. (85)

The total mass within the 3-volume scale factor V3

M̃ = 2

k̃

n

3 + n
(kρ0 − �)

(
1

2

n(n − 1)

kρ0 − �

)− n
2

V0

[
tan

( n̄
n

√
kρ0 − � t

)

cos
n
2
( n̄

n

√
kρ0 − � t

)

]2

. (86)

For consistency, we check the case where both the external and the internal spaces
are flat, i.e., κa = 0 = κs . We obtain the induced energy density, pressure and the EoS
parameter of the four dimensional effective fluid as follows:

ρ̃ = 2

k̃

n

3 + n
(� − kρ0), (87)

p̃ = −2

k̃

n

3 + n
(� − kρ0), (88)

w̃ = p̃

ρ̃
= −1. (89)

The total mass within the 3-volume scale factor turns out to be

M̃ ≡ ρ̃a3 = 2

k̃

n

3 + n
(� − kρ0)a0

3en̄
√

�−kρ0 t . (90)

These expressions agree with the results given in Ref. [5].
The effective energy density, pressure, EoS parameter and total mass within the 3-

volume scale factor we obtained above are the ones that an observer would infer using
the conventional four dimensional Einstein’s field equations whenever the internal
dimensions are so small that the observer is unaware of their presence. The energy
density and pressure of the four dimensional effective fluid are dynamical for κs �=
0 but both are constants for κs = 0 and we give the generic behavior of the four
dimensional effective fluid’s energy density in Fig. 9, pressure in Fig. 10 and EoS
parameter in Fig. 11 for the choice n = 2. We would like to note that the behavior
depicted in these figures corresponds to the behavior of the effective fluid that would
generate the kinematics of the external space (solid curves) given in Fig 5. One may
observe that the external space exhibits de Sitter expansion when the internal space is
flat, and exhibits an almost de Sitter expansion for t � tc, but deviates from de Sitter
expansion as the time approaches tc, in different ways for the cases with closed and
open internal spaces.
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The dynamical evolution of 3-space 981

Fig. 9 The energy density would observer infer versus cosmic time t for n = 2. Blue, black and red curves
represent spatially closed, flat and open internal spaces respectively (color figure online)

Fig. 10 The pressure of the fluid would observer infer versus cosmic time t for n = 2. Blue, black and red
curves represent spatially closed, flat and open internal spaces respectively (color figure online)

Fig. 11 The EoS parameter of the fluid would observer infer versus cosmic time t for n = 2. Blue, black
and red curves represent spatially closed, flat and open internal spaces respectively (color figure online)
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Fig. 12 Mass of the universe would observer infer versus cosmic time t for n = 2. Blue, black and red
curves represent spatially closed, flat and open internal spaces respectively (color figure online)

In the case of closed internal space, the positive curvature speeds up the expansion
rate of the external space to an increasingly super-exponential expansion rate as the
internal space becomes smaller, and the size of the external space diverges at a finite
time t = tc. This behavior is the one we know from the Big Rip cosmological models
[38–40], though in our model external space has an infinite past. Indeed, one may
observe that the induced energy density also diverges at t = tc in Fig. 9 as it would in
the Big Rip models that are constructed in conventional general relativity. Hence, the
observer would infer a source whose energy density increases as the universe expands
and which is known as phantom field characterized by an EoS parameter less than
−1 , is controlling the dynamics of the universe, as seen in Fig. 11. One may observe
from Fig. 12 that the mass within the volume scale factor also diverges at t = tc. In
this case, the observer would think that matter is being created faster and faster as
the universe expands, though in our model both the energy density and the volume in
higher dimensions are constants.

In the case of open internal space, the negative curvature slows down the expansion
rate of the external space more and more as the internal space becomes smaller and
does not allow it to reach zero size but a non-zero minimum size is reached at t = tc.
Hence the external space scale factor cannot evolve to infinitely large values but to a
maximum value and then starts contracting. Meanwhile, the induced energy density
remains almost constant for t � tc, starts to decrease considerably as t approaches
tc and becomes zero at t = tc (Fig. 9). The induced mass of the physical universe
increases almost exponentially up to a certain time, but this increase stops at some
point and the induced mass starts to decrease and the universe evolves into an empty
universe at t = tc (Fig. 12). In this case, the observer would think that matter is being
created slower and slower as the universe evolves and after some time the observer
would think that matter has disappeared as the universe continues to evolve.

In the case of flat internal space, the observed universe expands exponentially and
hence eternally. The induced energy density (Fig. 9) is constant and the induced mass
of the universe (Fig. 12) increases proportionally with the volume of the external
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space. This is a behavior of the well known four dimensional de Sitter solution of
the Einstein’s field equations with a positive cosmological constant. However, in our
model the exponential expansion of the external space is not due to positive values of
the Einstein’s four dimensional cosmological constant but the positive values of the
higher dimensional cosmological constant with anti-de Sitter sign.

The cosmological constant was first proposed by Einstein to obtain a static (ȧ = 0)
universe model. It was simply taken as the constant curvature of the empty spacetime
and could take any real value. The positive cosmological constant is also mathemati-
cally equivalent to conventional vacuum energy ρ̃vac = k̃�̃E with an EoS p̃vac = −ρ̃vac
in conventional four dimensional general relativity. This gave rise to one of the most
significant controversies of modern physics that is known as the cosmological con-
stant problem [16–18]. Here we have a higher dimensional universe model and hence
the higher dimensional vacuum energy can be thought as a constituent of our higher
dimensional effective fluid ρ0. Note that, assuming k and k̃ of the same sign, any fluid
with positive energy density will contribute negatively to the four dimensional effec-
tive fluid that is induced from the kinematics of the four dimensional external space.
The higher dimensional negative cosmological constant, on the other hand, contributes
positively. The higher dimensional � we considered has anti-de Sitter sign and hence
its positive values correspond to negative energy density with a positive pressure with
an EoS parameter equal to −1. Accordingly, we can safely interpret it as the inher-
ent curvature of the higher dimensional empty spacetime rather than vacuum energy
density of the higher dimensional universe. Therefore, in our model, the energy of
the vacuum is not the source that is responsible for the accelerating expansion of the
external space but it is the higher dimensional negative cosmological constant. In fact,
the higher dimensional vacuum energy would slow down in this case the expansion
rate of the external space.

5 Final remarks

Cosmological models for which the higher dimensional volume is constant in time had
already appeared in the literature in various contexts [4,5,9,30,31]. Here we made use
of the constant higher dimensional volume assumption as a constraint that accompanies
the constant higher dimensional energy density assumption. The constancy of the (3+
n)-volume of the higher dimensional universe may be interpreted in two ways. Firstly
it may be thought as the volume of the (1+3+n)-dimensional one and only universe.
A constant and finite volume with constant energy (mass) density corresponds to a
very familiar situation; namely an incompressible fluid. Hence, in the context of this
interpretation, we may think that in our models the matter in (3+n)-dimensional space
behaves like a (3 + n)-dimensional incompressible fluid, which can be described by
the energy-momentum tensor we obtained in the solutions, under the influence of
(1+3+n)-dimensional Einstein’s gravity with a cosmological constant. On the other
hand, we may regard the higher dimensional constant volume as the volume of a (3+n)-
dimensional region that is forced to stay constant inside a larger space. This is due to
the fact (1 + 3 + n)-dimensional effective fluid is under the influence of (1 + 3 + n)-
dimensional Einstein’s gravity with a cosmological constant. This interpretation can

123



984 Ö. Akarsu, T. Dereli

Table 1 The length scale of the mean scale factor of the 3 + n dimensional space l0 according to the
number of internal dimensions

n 3 + n l0 for s1 = lPlanck and a = 1027 m l0 for s1 = lLHC and a = 1027 m

1 4 1012m 1015m

2 5 102m 108m

3 6 10−4m 104m

4 7 10−8m 1m

5 8 10−12m 10−2m

6 9 10−14m 10−4m

7 10 10−16m 10−6m

≥8 ≥11 <10−16m <10−7m

∞ ∞ lPlanck = 10−35 m lLHC = 10−20m

We assume the length scale of the observed universe is 1027 m today and of the extra dimensions are
somewhere between the Planck length scale lPlanck ∼ 10−35m and LHC length scale, i.e., lPlanck � s1 �
lLHC. We calculate values of l0 for s1 = lPlanck and s1 = lLHC

be illuminated in analogy with gravitational fluctuations in the smooth background of
a three dimensional space defined by the squashing of a spherical ball into an ellipsoid
without changing its volume.

One may further ask whether it is possible to estimate the size of the (1 + 3)-
dimensional space. The mean scale factor of the (3 + n)-space can be defined by

l0 ≡ V0
1

3+n = a
3

3+n s
n

3+n , which depends on the number of internal dimensions as well
as the length scales of the external and internal dimensions. Hence, in order to estimate
l0 we need to fix the length scales a, s and the number of the internal dimensions n. We
expect the length scale of s to remain at unobservable sizes i.e. in order not to contradict
observations we expect the size of the extra dimensions to be less than ∼ lLHC = 10−20

m that corresponds to the TeV energy scale that is probed by the LHC (Large Hadron
Collider). Hence we may carry out our analyses by assuming the size s1 of the extra
dimensions today is somewhere between the Planck length scale and LHC length scale,
that is 10−35m � s1 � 10−20m. On the other hand, the scale of the observed universe
is ∼ 1027m (46 billion light years). Accordingly, the mean length scale of the (3+n)-

dimensional space can be given in the range 10
81−35n

3+n m � l0 � 10
81−20n

3+n m for various
numbers of internal dimensions. Considering this range, we give the mean length
scale of the higher dimensional volume against the number of internal dimensions in
Table 1. One may observe that, as the number of internal dimensions increases the
mean length scale of the (3 + n)-dimensional space approaches the length scale of the
internal dimensions, i.e., l0 → s1 as n → ∞. This behaviour leads to some interesting
results. Because the mean length scale of the space is already constant, the internal
dimensions are expected to remain almost constant with an arbitrarily large number of
dimensions. Moreover, in the case of infinitely many internal dimensions, the size of
the internal dimensions should be frozen (stabilize) at the magnitude l0 as long as the
size of the external space is not zero. Hence, for instance, if the internal dimensions
today are at Planck scales, they should always remain at Planck scales.
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We have been arguing that an observer living in (1+3)-dimensions will be unaware
of the presence of small internal dimensions. This is a valid assumption so long as
the size of the internal dimensions remain within the range lPlanck � s � lLHC.
However, even in this regime, the time variation in the size of the internal space
would have important consequences for the fundamental constants of four-dimensional
physics, for instance for the (1 + 3)-dimensional gravitational coupling k̃ = 8π G̃ in
our study (See Ref. [1] and references therein for the possible effects of the extra
dimensions on the four-dimensional physics). Such effects might be interpreted as an
evidence for the presence of internal dimensions and used for providing information
on the internal space by the observer. Therefore alternative to what we had done in the
previous section, the 4-dimensional gravitational coupling k̃ = 8π G̃ could have been
related to the higher dimensional gravitational coupling constant k = 8πG through
the volume scale factor of the compact internal space as k̃ ∝ k/V3. Then it follows that
˙̃k/k̃ = −nHs . However, this is not the approach we took in this paper. We included all
the effects due to the internal space in the definition of the effective energy-momentum
tensor T̃i j in four dimensions. A detailed discussion may be found in Ref. [8].

To summarize, we have discussed a higher dimensional cosmological model for
which both the higher dimensional volume and energy density are constants. These
assumptions lead to the interesting result that matter in our 3-space is neither cre-
ated nor exhausted but redistributed between the internal and external spaces. Higher
dimensional cosmological models with constant total volume that satisfy either power-
law expansion [4,9,30] or de Sitter expansion [5] of the external space are already given
in the literature. Here in this paper we have obtained various interesting new dynam-
ics for the external space that yield a time varying deceleration parameter including
oscillating cases when flat/curved external and curved/flat internal spaces are consid-
ered. Our model can be improved by considering modified gravity theories in higher
dimensions rather than Einstein’s general relativity as is done here.
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References

1. Overduin, J.M., Wesson, P.S.: Kaluza-Klein gravity. Phys. Rep. 283, 303–378 (1997)
2. Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343–492 (2000)
3. Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Physical Review D 21, 2167 (1980)
4. Freund, P.G.O.: Kaluza Klein cosmologies. Nucl. Phys. B 209, 146–156 (1982)
5. Dereli, T., Tucker, R.W.: Dynamical reduction of internal dimensions in the early universe. Phys. Lett.

B 125, 133–135 (1983)
6. Barrow, J.D., Stein-Schabes, J.: The stability of some Kaluza-Klein cosmological models. Phys. Lett.

B 167, 173–177 (1986)
7. Bringmann, T., Eriksson, M., Gustafsson, M.: Cosmological evolution of homogeneous universal extra

dimensions. Phys. Rev. D 68, 063516 (2003)
8. Akarsu, Ö., Dereli, T.: A four-dimensional � CDM-Type cosmological model induced from higher

dimensions using a kinematical constraint, (2012) arXiv:1201.4545 [gr-qc].

123



986 Ö. Akarsu, T. Dereli

9. Bleyer, U., Zhuk, A.: Kasner-like, inflationary and steady-state solutions in multi-dimensional cos-
mology. Astron. Nachr. 317, 161–173 (1996)

10. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev.
D 23, 347–356 (1981)

11. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homo-
geneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)

12. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmo-
logical constant. Astron. J. 116, 1009–1038 (1998)

13. Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys.
J. 517, 565–586 (1999)

14. Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cos-
mological interpretation. Astrophys. J. Suppl. 192, 18 (2011)

15. Quevedo, F.: Lectures on string/brane cosmology. Class. Quantum Gravity 19, 5721–5779 (2002)
16. Zeldovich, Ya B.: The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi

11, 381–393 (1968)
17. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)
18. Sahni, V., Starobinsky, A.: The case for a positive cosmological �-term. Int. J. Mod. Phys. D 9, 373–443

(2000)
19. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936

(2006)
20. Sahdev, D.: Perfect-fluid higher-dimensional cosmologies. Phys. Rev. D 30, 2495–2507 (1984)
21. Sato, H.: Dynamics of higher dimensional universe models. Prog. Theor. Phys. 72, 98–105 (1984)
22. Ishihara, H.: Kaluza-Klein inflation. Prog. Theor. Phys. 72, 376–378 (1984)
23. Demaret, J., Hanquin, J.-L.: Anisotropic Kaluza-Klein cosmologies. Phys. Rev. D 31, 258–261 (1985)
24. Okada, Y.: Evolution of the Kaluza-Klein universe. Nucl. Phys. B 264, 197–220 (1986)
25. de Leon, J.P., Wesson, P.S.: Exact solutions and the effective equation of state in Kaluza-Klein theory.

J. Math. Phys. 34, 4080–4092 (1993)
26. Yearsley, J., Barrow, J.D.: Cosmological models of dimensional segregation. Class. Quantum Gravity

13, 2693–2706 (1996)
27. Mohammedi, N.: Dynamical compactification, standard cosmology, and the accelerating universe.

Phys. Rev. D 65, 104018 (2002)
28. Carroll, S.M., Johnson, M.C., Randall, L.: Dynamical compactification from de Sitter space. J. High

Energy Phys. 11, 094 (2009)
29. Reyes, L.M., Madriz-Aguilar, J.E., Urena-Lopez, L.A.: Cosmological dark fluid from five-dimensional

vacuum. Phys. Rev. D 84, 027503 (2011)
30. Rainer, M., Zhuk, A.: Einstein and Brans-Dicke frames in multidimensional cosmology. Gen. Relativ.

Gravit. 32, 79–104 (2000)
31. Ho, C.M., Kephart, T.W.: Inflatonless inflation. Int. J. Mod. Phys. A 27, 1250151 (2012)
32. Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc. 108,

252–270 (1948)
33. Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. 273, 1–11 (1963)
34. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, New York (2006)
35. Novello, M., Bergliaffa, S.E.P.: Bouncing cosmologies. Pyhs. Rep. 463, 127–213 (2008)
36. Barrow, J.D., Dabrowski, M.P.: Oscillating universes. Mon. Not. R. Astron. Soc. 275, 850 (1995)
37. Sahni, V., Toporensky, A.: Cosmological hysteresis and the cyclic universe. Phys. Rev. D 85, 123542

(2012)
38. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w< − 1

Causes a Cosmic Doomsday. Phys. Rev. Lett. 91, 071301 (2003)
39. Nesseris, S., Perivolaropoulos, L.: Crossing the phantom divide: theoretical implications and observa-

tional status. J. Cosmol. Astropart. Phys. 0701, 018 (2007)
40. Cai, Y.F., Saridakis, E.N., Setare, M.R., Xia, J.Q.: Quintom cosmology: theoretical implications and

observations. Phys. Rep. 493, 1–60 (2010)

123


	The dynamical evolution of 3-space in a higher dimensional steady state universe
	Abstract
	1 Introduction
	2 The model
	3 Solutions
	3.1 Solution for flat external and flat internal spaces (κa=κs=0)
	3.2 Solution for curved external and flat internal spaces (κa=0, κs=0)
	3.3 Solution for flat external and curved internal spaces (κa= 0, κs=0)

	4 The universe according to an observer in (1+3)-dimensions
	5 Final remarks
	Acknowledgments
	References


