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Abstract The Bañados et al. (Phys Rev Lett 69:1849, 1992) solution corresponding
to the exterior space-time of a black hole in (2 + 1) dimensions has been found to be
very useful to understand various aspects relating to the gravitational field of a black
hole. We present here a class of interior solutions corresponding to the BTZ exterior
by making use of a model presented by Finch and Skea (Class Quantum Grav 6:467,
1989) which was earlier found to be relevant for the description realistic stars in (3+1)

dimensions. We show physical viability of the model in lower dimensions as well.
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718 A. Banerjee et al.

1 Introduction

Investigations in lower dimensional gravity play a crucial role towards our understand-
ing of various aspects of gravity. Some of the fundamental problems in 4 dimensional
gravitational analyses become much simpler in (2+1) dimensions for obvious reasons.
In the studies of black holes, a lower dimensional analysis has often been preferred
to understand various issues which are otherwise difficult to resolve in conventional
dimensions. For example, Bañados, Teitelboim and Zanelli [1] (henceforth BTZ), in
the presence of a negative cosmological constant, have obtained an analytic solution
representing the exterior gravitational field of a black hole in (2+1) dimensions which
has opened up the possibility of investigating many interesting features of black holes.

The objective of the present work is to obtain a class of interior solutions corre-
sponding to the BTZ exterior metric describing a static circularly symmetric star in
equilibrium. Collapse of a dust cloud in (2+1) dimensions leading to a black hole was
analyzed by Mann and Ross [3]. Considering the collapse of a circularly symmetric
anisotropic fluid, a self-similar solution in (2 +1) dimensions was obtained by Martins
et al. [4]. Cruz and Zanelli [5] obtained an interior solution for an incompressible fluid
in (2 + 1) dimensions and investigated the bound on the maximum allowed mass of
the resultant configuration. By assuming a particular density profile, a class of interior
solutions corresponding to BTZ exterior was provided by Cruz et al. [6]. Sá [7] pro-
posed an interior solution corresponding to the BTZ exterior where a polytropic type
equation of state (EOS) was assumed. Sharma et al. [8] assumed a particular form of
the mass function to obtain a new class of interior solutions corresponding to the BTZ
exterior. At the back drop of such varied developments, García and Campuzano [9]
provided a general methodology to construct all possible types of solutions in (2 + 1)

dimensions for a static circularly symmetric perfect fluid source. The exact analytic
form of the metric potentials, in this formulation, can be obtained for any arbitrary
choice of the density profile or EOS of the matter content of the fluid source. In partic-
ular, they presented a solution corresponding to a static circularly symmetric perfect
fluid source having constant energy density, which (in the presence of a cosmological
constant) might be considered as analogous to the incompressible Schwarzschild inte-
rior solution in (3 + 1) dimensions. Since determination of the exact analytic form of
the solution in this formalism requires knowledge about the EOS of the composition
or the radial dependence of energy-density, we find it worthwhile to adopt an alterna-
tive method where the right hand side of the Einstein’s field equations (Ti j ) will be
governed by the geometry of the associated space-time (Gi j ). In this vein, following
Finch and Skea [2], we use the ansatz for one of the metric functions (grr ) describing
the background space-time and determine the remaining metric function gtt by solving
the relevant Einstein’s field equations. In (3 + 1) dimensions, the Finch and Skea [2]
ansatz has been found to be useful to develop physically acceptable models capable of
describing realistic stars. The physical 3-space of the back ground space-time, when
embedded in a 4-dimensional Euclidean space, represents a 3-paraboloid which is a
departure from the 3-spherical geometry [10,11]. Similarly, in (2 + 1) dimensions,
though the space-time remains circularly symmetric, the t = constant hyper-surface
of the associated background space-time becomes a parabola rather than a circle. In
the present work, we show that by making use of the Finch and Skea [2] ansatz in
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Finch-Skea star in (2 + 1) dimensions 719

(2 + 1) dimensions, it is possible to generate physically acceptable interior solutions
corresponding to the BTZ exterior metric. Though the class of solutions obtained here
may be regarded as a particular case of the general formalism mentioned in Ref. [9],
the two approaches are complementary in nature. Our geometric approach may open
up the possibility of analyzing the role of space-time geometry on the dynamics of a
collapsing system which, however, is a matter of further investigation.

2 Interior space-time

We write the line element for the interior space-time of a static circularly symmetric
Finch and Skea [2] type star in (2 + 1) dimensions as

ds2− = −e2ν(r)dt2 +
(

1 + r2

R2

)
dr2 + r2dθ2, (1)

where R is a curvature parameter governing the geometry of the background space-
time. Note that the t = constant hyper-surface of the metric (1) is parabolic in
nature. We assume a perfect fluid type matter distribution for the interior of the star
and accordingly write the energy-momentum tensor in the form

Ti j = (ρ + p)ui u j + pgi j , (2)

where ui = e−νδi
t is 3-velocity of the fluid. In (2), ρ and p represent the energy density

and isotropic pressure of the matter distribution of the star, respectively.
The Einstein’s field equations with a negative cosmological constant (� < 0) are

then obtained as (we assume G = c = 1)

2πρ + � = 1

R2

(
1 + r2

R2

)−2

, (3)

2πp − � = ν′

r

(
1 + r2

R2

)−1

, (4)

2πp − � =
(

1 + r2

R2

)−1 (
ν′2 + ν′′ − ν′

r2 + R2 r

)
, (5)

where a ‘′’ denotes the differentiation with respect to r .
The mass function m(r) of the star may be obtained by integrating Eq. (3) which

yields

m(r) =
r∫

0

2πρrdr = r2

2
(
r2 + R2

) − �r2

2
. (6)

The above equation shows that m(r) = 0 at r = 0 and is positive for any finite radius
since � has been assumed to be negative.
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720 A. Banerjee et al.

To determine the metric potential ν(r), we combine Eqs. (4)–(5) which yields

ν′

r
= ν′2 + ν′′ − ν′r

r2 + R2 . (7)

Integrating Eq. (7), we get

ν′

r
=

√
r2 + R2

1
3 (r2 + R2)3/2 + B

, (8)

where B is an integration constant. Integration of Eq. (8) helps us to determine the
unknown metric function ν(r) in the form

ν(r) = ln

[
C

{
1

3
(r2 + R2)3/2 + B

}]
, (9)

where C is an integration constant.
From Eq. (4), the isotropic pressure is then obtained as

p = 1

2π

(
1 + r2

R2

)−1
[ √

r2 + R2

1
3 (r2 + R2)3/2 + B

]
+ �

2π
. (10)

It is to be noted here that for obtaining an analytic solution, the technique adopted
here is equivalent to prescribing a density profile of the form (3) in the formulation
discussed in Ref. [9].

Now, in (3 + 1) dimensions the metric (1) gets the form

ds2− = −e2ν(r)dt2 +
(

1 + r2

R2

)
dr2 + r2(dθ2 + sin2 θdφ2). (11)

Assuming that the metric (11) describes the space-time of a perfect fluid with energy-
momentum tensor of the form (2), one can utilize the Einstein’s field equations to
write the pressure isotropy condition in the form

ν′

r
= ν′2 + ν′′ − ν′r

r2 + R2 + r2

R2(r2 + R2)
. (12)

It is interesting to note that Eqs. (7) and (12) are almost identical except for the last
term appearing on the right hand side of Eq. (12). The solution to Eq. (12), as provided
by Finch and Skea [2], is given by
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eν =
⎛
⎝D − A

√
1 + r2

R2

⎞
⎠ cos

√
1 + r2

R2

+
⎛
⎝D

√
1 + r2

R2 + A

⎞
⎠ sin

√
1 + r2

R2 , (13)

where, A and D are constants whose values are determined by using the boundary
conditions across the boundary surface joining the interior and the exterior region. The
BTZ metric is replaced by the Schwarzschild metric in (3 + 1) dimensional model
developed by Finch and Skea [2]. In fact, any physically motivated appropriate exterior
space-time region may be taken up in this extrapolation procedure to understand the
nature of the physical parameters of the configuration. However, an attempt to obtain
the corresponding solution in (2 + 1) dimensions by a dimensional reduction method
will be of little significance as it is well known that vacuum solutions corresponding to
the Einstein’s field equations in (2 + 1) dimensions are necessarily flat. A meaningful
approach in such a situation would be to consider an anti-de Sitter type exterior region.
However, since we are interested in obtaining an interior solution corresponding to the
BTZ exterior metric, in the following section we write down the appropriate junction
conditions and analyze the physical behaviour of the model accordingly.

3 Exterior space-time and matching conditions

We assume that the exterior space-time of the configuration is described by the BTZ
metric given by

ds+2 = −
(
−M0 − �r2

)
dt2 +

(
−M0 − �r2

)−1
dr2 + r2dθ2, (14)

where M0 corresponds to the conserved mass associated with the asymptotic invariance
under time displacements. If a is assumed to be the radius of the star, continuity of
the metric functions gtt and grr across the boundary yields the following results:

[
C

{
1

3
(a2 + R2)3/2 + B

}]2

= −M0 − �a2, (15)

(
1 + a2

R2

)−1

= −M0 − �a2, (16)

Since pressure must be zero at the boundary of the star r = a, from Eq. (10), we get

[ √
a2 + R2

1
3 (a2 + R2)3/2 + B

]
= −�

(
1 + a2

R2

)
. (17)
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We solve Eqs. (15)–(17) simultaneously and determine the constants as

B =
(

a

−�

) [
(−�a2 − M0)√
(1 + M0 + �a2)

]

− a3

3(1 + M0 + �a2)
3
2

, (18)

C =
(−�

a

)
1√

(−�a2 − M0)(1 + M0 + �a2)
, (19)

R =
√

a2(−�a2 − M0)

1 + M0 + �a2 . (20)

Using Eqs. (6) and (16), we express the total mass M(a) bounded within the boundary
surface a as

M(a) = a2

2
(
a2 + R2

) − �a2

2
= 1

2
(1 + M0). (21)

Now, for appropriate signature of the metric functions we must have −M0 −�a2 > 0,
i.e., a >

√−M0/� which puts a lower bound on M0 such that M0 = 0. The values
of �, M0 and a should be so chosen that the above condition is satisfied. Noting that
M0 < −�a2, for a given set of values of � and a, the upper limit on the mass may
be written as

M(a)max <
1

2
(1 − �a2). (22)

From Eq. (21), the compactness of the stellar configuration is obtained as

u = m(r)

r
|r=a = a

2

[
1

a2 + R2 − �

]
. (23)

Accordingly, the surface redshift parameter zs gets the form

zs =
[

1 − a

(
1

a2 + R2 − �

)]− 1
2 − 1. (24)

3.1 Physical acceptability of the model

A physically acceptable model must comply with certain regularity conditions. The
density and pressure should be positive at the interior of the star and both should
decrease monotonically from the centre towards the boundary, i.e., the following con-
ditions should be satisfied: (i) ρ ≥ 0, p ≥ 0, (ii) dρ

dr < 0 and dp
dr < 0. Moreover, for
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microscopic stability we must have dp
dρ

> 0. In our model, from Eqs. (3) and (10), the
central density and central pressure are obtained as

ρ0 = 1

2π

(
1

R2 − �

)
, (25)

p0 = 1

2π

(
R

1
3 R3 + B

+ �

)
. (26)

Therefore, both ρ0 and p0 will be positive if the condition

R

R3/3 + B
> −�, (27)

is satisfied. From Eqs. (3) and (10), we also obtain

dρ

dr
= − 2r R2

π
(
r2 + R2

)3 , (28)

dp

dr
= − r

2π

(
1 + r2

R2

)−1
⎡
⎣

2
3 (r2 + R2) − B√

r2+R2

[ 1
3 (r2 + R2)3/2 + B]2

+ 2√
r2 + R2[ 1

3 (r2 + R2)3/2 + B]

]
. (29)

Obviously, dρ
dr = 0 = dp

dr at r = 0. It can be shown that, for appropriate choices of
the model parameters, the density and pressure are decreasing functions of the radial
parameters r .

From Eqs. (28)–(29), we have

dp

dρ
= (r2 + R2)2

4

⎡
⎣

2
3 (r2 + R2) − B√

r2+R2

[ 1
3 (r2 + R2)3/2 + B]2

+ 2√
r2 + R2[ 1

3 (r2 + R2)3/2 + B]

]
, (30)

which should be positive inside the star.
To check that the model complies with the above mentioned requirements, we

assume a = 3 and M0 = 0.2. In the anti de-Sitter space-time the cosmological
constant is assumed to be negative and, accordingly, we choose � = −0.04 (see
Ref. [12,13]). Eqs. (18)–(20), then determine the constants as R = 1.3093, B =
1.4028 and C = 0.03637. From Eq. (21), the total mass is obtained as M(a) = 0.6.
The compactness is found to be M(a)/a = 0.2 and the corresponding surface red-
shift is obtained as zs = 0.291. In Figs. 1 and 2, we have plotted variations of the
energy density and pressure which clearly indicate their regular behaviour at the stellar
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Fig. 1 Radial variation of energy density (ρ)
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Fig. 2 Radial variation of isotropic pressure (p)

interior. In Fig. 3, the maximum permissible masses for given radii have been shown
for different choices of the constant �. The plot indicates that, for a given radius,
compactness can be increased by lowering the value of the constant �. This has been
shown in a tabular form in Table 1. In Fig. 4, dp/dρ has been plotted against r which
shows that dp/dρ > 0 at all interior points of the star.

4 Discussions

By applying the Finch and Skea [2] ansatz in (2 + 1) dimensions, we have obtained
a class of interior solutions corresponding to the exterior space-time described by
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Table 1 Maximum permissible
mass for a given radius at
different �

a (km) � (km−2) Mmax (M�)

10 −0.04 1.69

10 −0.1 3.73

10 −0.2 7.12
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Fig. 4 dp
dρ

plotted against r

the Bañados, Teitelboim and Zanelli [1] solution. Based on physical grounds, we
have obtained bounds on the model parameters and demonstrated that by suitably
fixing the model parameters, it is possible to develop viable models for the interior
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space-time corresponding to the BTZ exterior. We have obtained an upper bound
on the mass content and also analyzed the impact of cosmological constant on the
compactness of the system. The geometric approach adopted here may be considered
as a complementary to the method prescribed in Ref. [9] and provides an opportunity
to analyze the impact of space-time geometry on the dynamics of a collapsing system.
To achieve this goal, we intend to utilize the static solution to generate models of
evolving systems in (2 + 1) dimensions. Work is in progress in this direction and will
be reported elsewhere.

Acknowledgments We would like to thank the anonymous referee for his useful suggestions. FR, KJ and
RS are thankful to the Inter University Centre for Astronomy and Astrophysics (IUCAA), India, where a
part of this work was carried out under its visiting research associateship programme. FR is also grateful
to UGC, India, for financial support under its Research Award Scheme.

References
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