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Abstract We investigate the matching, across cylindrical surfaces, of static cylindri-
cally symmetric conformally flat spacetimes with a cosmological constant �, satisfy-
ing regularity conditions at the axis, to an exterior Linet–Tian spacetime. We prove that
for � ≤ 0 such matching is impossible. On the other hand, we show through simple
examples that the matching is possible for � > 0. We suggest a physical argument
that might explain these results.
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520 I. Brito et al.

1 Introduction

The Levi-Civita spacetime [1] describes the vacuum field exterior to an infinite cylinder
of matter. In its general form, it contains two independent parameters [2–4], one,
usually denoted by σ , describing the Newtonian energy per unit length, and another
related to the angle defects. At first sight, global considerations in General Relativity
seem to make cylindrical solutions to the Einstein field equations not so physically
relevant: fields with cylindrical symmetry impose infinitely long sources, suggesting a
peculiar physical situation. Nonetheless its importance cannot be underestimated, and
under controlled circumstances, they provide a very good description of systems of
physical interest (see e.g. [5]). Furthermore, Newtonian cylindrical models correspond
well to observations [6–8]. In General Relativity, cylindrical solutions have been used
to study various fields like cosmic strings [9,10], exact models of rotation matched
to different sources [11], and models for extragalactic jets [12–14] and gravitational
radiation [15]. The generalization of the Levi-Civita spacetime to include a nonzero
cosmological constant � was obtained by Linet [16] and Tian [17] and it is shown
by da Silva et al. [18] and Griffiths and Podolsky [19] that it changes the spacetime
properties dramatically. The Linet–Tian (LT) solution has also been used to describe
cosmic strings [17,20,21] and, in [22], static cylindrical shell sources have been found
for the LT spacetime with negative cosmological constant. Considering this extensive
interest in cylindrically symmetric solutions we assume worthwhile to analyze some
further properties of the LT spacetime.

In [23], while being studied conformally flat sources, it is proved a seemingly unex-
pected property that static cylindrical sources matched smoothly to the Levi-Civita
spacetime exteriors do not admit conformally flat solutions. For spherical symmetry,
there is the well known interior isotropic pressure and incompressible Schwarzschild
solution, which is conformally flat [24], matched to the Schwarzschild vacuum exte-
rior spacetime. Senovilla and Vera [25] obtained another disturbing result being the
impossibility of the cylindrically symmetric Einstein-Straus model. In order to prove
this impossibility they show that a Robertson-Walker spacetime, which is conformally
flat, cannot be matched to any cylindrically symmetric static metric across a nonspace-
like hypersurface preserving the symmetry. This result was subsequently generalised
in [26–28]. Another result that might be linked to this trend was obtained by Di
Prisco et al. [15] and is the following: A cylindrically symmetric shear free collapsing
anisotropic fluid can be matched to Einstein-Rosen spacetime as obtained in [15],
however, by considering that the exterior spacetime reduces to the static Levi-Civita
spacetime, it imposes through its matching conditions, that the cylindrical source
must be static.1 We recall that a collapsing cylindrical shear free fluid, if it is isotropic,
reduces to the conformally flat Robertson-Walker spacetime.

Here, we study static conformally flat solutions to an anisotropic fluid distribution
bearing a non-zero cosmological constant and the possibility of matching them to the
exterior LT spacetime.

1 We note that, in [29], a static cylinder of an incompressible fluid has been matched to the Levi-Civita
solution.
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Conformally flat sources for the Linet–Tian spacetime 521

The plan of the paper is as follows. In Sect. 2, we present the field equations for static
anisotropic sources with a non zero cosmological constant. In Sect. 3, the matching
conditions for the interior static anisotropic fluid to the LT exterior spacetime are
given. Section 4, is devoted to conformally flat solutions. The matching conditions
when the interior spacetime is conformally flat and their consequences are analyzed
in Sect. 5. We finish the paper with a conclusion suggesting a physical justification to
our matching results.

We use latin indices a, b, . . . = 0, 1, 2, 3 and use units such that the speed of light
c = 1.

2 Static cylindrically symmetric anisotropic sources with � �= 0

We consider a static cylindrically symmetric anisotropic fluid bounded by a cylindrical
surface S and with energy momentum tensor given by

Tab = (μ + Pr )Va Vb + Pr gab + (Pz − Pr )Sa Sb + (Pφ − Pr )Ka Kb, (1)

where μ is the energy density, Pr , Pz and Pφ are the principal stresses and Va, Sa and
Ka satisfy

V a Va = −1, Sa Sa = K a Ka = 1, V a Sa = V a Ka = Sa Ka = 0. (2)

We assume for the interior to S the general static cylindrically symmetric metric which
can be written

ds2 = −A2dt2 + B2(dr2 + dz2) + C2dφ2, (3)

where A, B and C are C2-functions of r . To represent cylindrical symmetry, we
impose the following ranges on the coordinates

−∞ < t < ∞, 0 ≤ r, −∞ < z < ∞, 0 ≤ φ < 2π, (4)

and φ = 2π is identified with φ = 0. We number the coordinates x0 = t, x1 =
r, x2 = z and x3 = φ and we choose the fluid being at rest in this coordinate system,
hence from (2) and (3) we have

Va = −Aδ0
a, Sa = Bδ2

a, Ka = Cδ3
a . (5)

For the Einstein field equations, Gab = κTab − �gab, where � is the cosmological
constant, with (1), (3) and (5) we have the non zero components,

G00 = −
(

A

B

)2
[(

B ′

B

)′
+ C ′′

C

]
= κμ̄A2, (6)

G11 = A′C ′

AC
+

(
A′

A
+ C ′

C

)
B ′

B
= κ P̄r B2, (7)
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G22 = A′′

A
+ C ′′

C
+ A′

A

C ′

C
−

(
A′

A
+ C ′

C

)
B ′

B
= κ P̄z B2, (8)

G33 =
(

C

B

)2
[

A′′

A
+

(
B ′

B

)′]
= κ P̄φC2, (9)

where μ̄ = μ + �/κ, P̄r = Pr − �/κ, P̄z = Pz − �/κ, P̄φ = Pφ − �/κ and the
primes stand for differentiation with respect to r .

The extension of the expression for the mass of an isolated system proposed by
Tolman [30] and Whittaker [31] to a non isolated system, bearing cylindrical symmetry,
has been obtained by Israel [32]. Other proposals for the mass per unit length exist,
e.g. given by Marder [33] and Vishveshwara and Winicour [34], but they proved to do
not reproduce the expected Newtonian limit [4], while Israel’s does. For this reason,
we use here the expression for mass per unit length obtained by Israel, which is

m = 2π

rS∫
0

(μ̄ + P̄r + P̄z + P̄φ)
√−g dr, (10)

where g is the determinant of the metric. Substituting (3) and (6)–(9) into (10) one
obtains

m = 4π

κ

rS∫
0

(A′C)′dr, (11)

and by considering the following regularity conditions on the axis [35]

A′(0) = B ′(0) = C ′′(0) = C(0) = 0, B(0) = C ′(0) = 1, (12)

Equation (11), at r = rS , becomes

m
S= 4π

κ
A′C, (13)

where
S= denotes equality on S.

Since we are concerned with conformally flat sources for the LT spacetime, we
need, in the sequel, the square of the magnitude of the Weyl tensor C2 = CabcdCabcd ,
which can be written with the aid of the field equations (6)–(9) as

C2 = 2

3

{[
κ(μ̄ + P̄z) + 2

B2 (β − γ )

]2

+
[
κ(μ̄ + P̄φ) + 2

B2 (β − α)

]2

+
[
κ(P̄z − P̄φ) + 2

B2 (α − γ )

]2
}

, (14)

where

A′

A

B ′

B
= α,

B ′

B

C ′

C
= β,

A′

A

C ′

C
= γ. (15)
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3 LT spacetime and matching conditions

In this section, we match the interior spacetime, bounded by the surface S and given by
the metric (3), to an exterior described by the LT spacetime containing the cosmological
constant. The generalized static cylindrically symmetric Levi-Civita metric with non
zero �, given in its usual form by the LT metric [16,17] is

ds2+ = −a2 Q2/3 P−2(1−8σ+4σ 2)/3�dt2 + dρ2 + b2 Q2/3 P−2(1+4σ−8σ 2)/3�dz2

+c2 Q2/3 P4(1−2σ−2σ 2)/3�dφ2, (16)

where � = 1 − 2σ + 4σ 2, and for � < 0,

Q(ρ) = 1√
3|�| sinh(2R), P(ρ) = 2√

3|�| tanh R, (17)

with

R =
√

3|�|
2

ρ, (18)

and a, b, c and σ ≥ 0 are real constants. The case � > 0 is obtained by replacing the
hyperbolic functions by trigonometric ones [16,17]. The coordinates t, z and φ in (16)
can be taken the same as in (3) and with the same ranges (4). The radial coordinates
r and ρ are not necessarily continuous on S as we see below by applying the junction
conditions. The constants a and b can be removed by scale transformations (although
we don’t do this ahead in order to use these constants as free parameters for the
matching), while c cannot be transformed away if we want to preserve the range of φ.
The constant σ represents the Newtonian mass per unit length.

Following Darmois junction conditions [36] we impose that, on the surface S, the
first and second fundamental forms which S inherits from the interior metric (3) and
from the exterior metric (16) are equal, hence we obtain the following two sets of
equations on S,

A
S= a Q1/3 P−(1−8σ+4σ 2)/3�, (19)

B
S= b Q1/3 P−(1+4σ−8σ 2)/3�, (20)

C
S= c Q1/3 P2(1−2σ−2σ 2)/3�, (21)

and2

A′

AB
S=

√ |�|
3

�(cosh2 R − 1) + 3σ

� sinh R cosh R
, (22)

B ′

B2
S=

√ |�|
3

�(cosh2 R − 1) − 3σ(1 − 2σ)

� sinh R cosh R
, (23)

2 In the case � > 0, the hyperbolic functions in (22)–(24) are substituted by trigonometric ones.
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C ′

BC
S=

√ |�|
3

2�(cosh2 R − 1) + 3(1 − 2σ)

2� sinh R cosh R
. (24)

By replacing the matching conditions (19)–(24) in (7) we get, for both cases � < 0
and � > 0, that

P̄r
S= −� or Pr

S= 0, (25)

as expected. The mass per unit length (13) with (19)–(22) and considering the gravi-
tational coupling constant G = 1, then κ = 8π , can be written as

m
S= mLC + abc

3
sinh2 R, (26)

where the mass per unit length for the Levi-Civita metric, with � = 0, is

mLC = abc
σ

�
, (27)

thus showing that the presence of � < 0 increases the mass per unit length. However,
for � > 0 we obtain

m
S= mLC − abc

3
sin2 R, (28)

producing an opposite effect, diminishing the mass per unit length. In the Conclusion
we consider these results as a possible justification for the possibility, or impossibility,
of matching conformally flat interior spacetimes to LT exteriors.

4 Conformally flat interior sources

The conformally flat spacetime solution, where all Weyl tensor components vanish,
Cabcd = 0, for (3) with the regularity conditions (12) satisfied produces [23]

A = a1 cosh(a2r)B, (29)

C = 1

a2
sinh(a2r)B, (30)

where a1 �= 0 and a2 �= 0 are integration constants, and by rescaling t we can assume
a1 = 1.

The interpretation of a2 can be given in the following way. From (29) and (30) we
can write

A′

A
= B ′

B
+ a2 tanh(a2r), (31)

C ′

C
= B ′

B
+ a2 coth(a2r), (32)

and with (14) and (15) it follows,

κ(μ̄ + P̄z) = 2a2

B2

[
tanh(a2r)

B ′

B
+ a2

]
, (33)
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κ(μ̄ + P̄φ) = 2a2

B2 [tanh(a2r) − coth(a2r)]
B ′

B
, (34)

producing

tanh2(a2r) = 2a2
2 − κ(μ̄ + P̄z)B2

2a2
2 + κ(P̄φ − P̄z)B2

. (35)

At the centre of the source, r = 0, considering the regularity conditions (12) we have
from (35)

2a2
2 = κ(μ̄0 + P̄z0). (36)

5 Interior static conformally spacetime matched to exterior LT spacetime

We start by considering the matching on S for � < 0. Then, (32) with (23) and (24)
becomes

a2

B
coth(a2r)

S=
√

3|�|
2�

1 − 4σ 2

sinh R cosh R
. (37)

From the equality of the interior and exterior first fundamental forms on S we have

B2dr2 S= dρ2 which, using (20), leads to the relation

r
S= 1

b

ρS∫
0

dρ

Q1/3 P−(1+4σ−8σ 2)/3�
, (38)

with b > 0. Then, using the equality

2�√
3|�|b

sinh R cosh R

Q1/3 P−(1+4σ−8σ 2)/3�
= 4�

3b

∫
sinh2 R dρ

Q1/3 P−(1+4σ−8σ 2)/3�

+1

b

∫
dρ

Q1/3 P−(1+4σ−8σ 2)/3�
, (39)

at the boundary S, (37) becomes

a2

⎛
⎝r + 4�

3b

ρS∫
0

sinh2 R dρ

Q1/3 P−(1+4σ−8σ 2)/3�

⎞
⎠ coth(a2r)

S= 1 − 4σ 2. (40)

Since the left hand side of (40) is always bigger than 1 this condition can never be
satisfied.

When � = 0, Eq. (40) reduces to

a2r coth(a2r)
S= 1 − 4σ 2, (41)
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obtained in [23] for the case of a Levi-Civita exterior, which again shows the impos-
sibility of matching a cylindrical conformally flat interior spacetime to a Levi-Civita
exterior. Then we can state the following:

It is impossible to match any conformally flat static cylindrically symmetric interior
spacetime (29) and (30) satisfying the regularity conditions (12) to an exterior LT
spacetime, with � < 0, or to an exterior Levi-Civita spacetime, with � = 0, across a
timelike cylindrical hypersurface S.

For � > 0, the corresponding equation to (40) becomes

a2

⎛
⎝r − 4�

3b

ρS∫
0

sin2 R dρ

Q1/3 P−(1+4σ−8σ 2)/3�

⎞
⎠ coth(a2r)

S= 1 − 4σ 2, (42)

and since the left hand side is < 1 it does not discard, a priori, conformally flat sources
matched to the LT spacetime with � > 0.

Now, we give simple examples3 for which a conformally flat interior source can be
matched to an exterior LT spacetime with � > 0.

5.1 P̄r = P̄z or P̄z = P̄φ

In this case, the solution of (6)–(9) with (29) and (30) can be easily demonstrated
to be

B = 1

cosh(a2r)
, (43)

and

P̄r = P̄z = P̄φ = − μ̄

3
= −a2

2

κ
. (44)

By matching this solution on S to the exterior LT spacetime we have from (25),

Pr = Pz = Pφ = 0, μ = 2
�

κ
, (45)

reducing the interior solution to the Einstein static universe.
The junction conditions (19)–(24) for � > 0 and (43) become

1
S= a Q1/3 P−(1−8σ+4σ 2)/3�, (46)

1

cosh(a2r)

S= b Q1/3 P−(1+4σ−8σ 2)/3�, (47)

1

a2
tanh(a2r)

S= c Q1/3 P2(1−2σ−2σ 2)/3�, (48)

3 We note that in [19], the LT spacetime with � > 0 was matched to the toroidal Einstein static universe.
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and

0
S=

√
�

3

3σ − � sin2 R

� sin R cos R
, (49)

a2 sinh(a2r)
S=

√
�

3

3σ(1 − 2σ) + � sin2 R

� sin R cos R
, (50)

a2

sinh(a2r)

S=
√

�

3

3(1 − 2σ) − 2� sin2 R

2� sin R cos R
. (51)

From (49)–(51) we have a2
2 = �, as can be obtained too from (36), and

sin2 R
S= 3σ

�
, sinh2(

√
�r)

S= 4σ(1 − σ)

1 − 4σ
, (52)

where 0 ≤ sin RS ≤ 1 and 0 ≤ sinh(
√

�rS) < ∞ are satisfied by 0 < σ < 1/4.
While (46)–(48) with (52) define the exterior parameters a, b and c in terms of �

and σ .
Hence, it is possible to match a conformally flat static cylindrically symmetric

interior spacetime (29) and (30), satisfying regularity conditions (12), to an exterior
LT spacetime with � > 0, across a timelike cylindrical hypersurface S.

We call attention to the fact that the LT spacetime with � > 0 has, besides the
singularity at ρ = 0 where we placed the source, another singularity at ρ = π/

√
3�

where another source has to be placed. In that case, the matching is still possible by
substituting the cylindrical region by a toroidal one following the methods of [19].

5.2 P̄r = P̄φ

In this case, the solution of (6)–(9) with (29) and (30) is

B = 1

a4[cosh(a2r) − 1] + 1
(53)

where a4 �= 0 is a constant. We note that if a4 = 1, the function B corresponds to the
solution (43). The density and pressures have the following form

μ̄ = 2 a2
2 a4 [(1 − a4) cosh(a2r) + a4 + 1] − a2

2 (54)

P̄r = 2a2
2a4[(a4 − 1) tanh(a2r) sinh(a2r) − 1] + a2

2 (55)

P̄z = 2a2
2a4

[
1 − a4

cosh(a2r)
+ a4 − 3

]
+ 3a2

2 (56)

In this case, the matching conditions (19)–(24) read

cosh(a2r)

a4[cosh(a2r) − 1] + 1
S= a Q1/3 P−(1−8σ+4σ 2)/3�, (57)
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1

a4[cosh(a2r) − 1] + 1
S= b Q1/3 P−(1+4σ−8σ 2)/3�, (58)

sinh(a2r)

a2[a4[cosh(a2r) − 1] + 1]
S= c Q1/3 P2(1−2σ−2σ 2)/3�, (59)

and

a2(1 − a4) tanh(a2r)
S=

√
�

3

3σ − � sin2 R

� sin R cos R
, (60)

a2a4 sinh(a2r)
S=

√
�

3

3σ(1 − 2σ) + � sin2 R

� sin R cos R
, (61)

a2[cosh(a2r)(1 − a4) + a4]
sinh(a2r)

S=
√

�

3

3(1 − 2σ) − 2� sin2 R

2� sin R cos R
. (62)

From (60)–(62) we obtain

sin2 R
S= 3σ

�

[
1 + 2(a4 − 1)(1 − σ)

√
1 − 4σ

a4
√

1 − 4σ 2 − (a4 − 1)
√

1 − 4σ

]
(63)

and

sinh2(a2r)
S= 4σ(1 − σ)

1 − 4σ
, (64)

as well as (which also follows from (25))

a2
2

S= �

[
2a4 − 1 − 2a4(a4 − 1)

4σ(1 − σ)√
(1 − 4σ)(1 − 4σ 2)

]−1

. (65)

The inequality 0 ≤ sin2 RS ≤ 1 in (63) and the positivity of the right hand side of
(65), for any 0 < σ < 1/4, are satisfied if 1/2 ≤ a4 ≤ 1.

We conclude that, in this case, the matching is possible in the following sense:
For any 1/2 ≤ a4 ≤ 1, 0 < σ < 1/4 and � > 0, the parameter a2 is fixed by (65)

while ρS and rS are determined from (63) and (64). In turn, (57)–(59) fix the exterior
parameters a, b and c. If a4 = 1, this solution reduces to the example of the previous
section.

6 Conclusion

The main result obtained here is that it is not possible to match a static interior cylin-
drically symmetric conformally flat spacetime smoothly across a cylindrical surface to
an exterior given by the LT spacetime, when � < 0, or, by the Levi-Civita spacetime
when � = 0. For � > 0, it is possible to perform such matching as we showed with
two examples.
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We also showed, that the mass per unit length is increased by the presence of � < 0,
while it is diminished by � > 0.

The Levi-Civita spacetime does not possess any horizons, which may seem to
indicate, according to our understanding of black hole formation, that there is an
upper limit allowed by the mass per unit length. This limit is always below the critical
linear mass above which horizons may be formed [4,37]. The fact that conformally flat
spacetimes cannot be matched to Levi-Civita might be physically justified from the
fact that sources producing these spacetimes have linear masses higher than this limit.
If this is the case, then the inclusion of � < 0 would further unbalance this limit since,
from (26), the mass per unit length would be further increased. On the other hand, for
� > 0, we see that the matching is possible and, from (28), the corresponding mass
per unit length is diminished as compared to the Levi-Civita linear mass. This fact
might suggest that, in this case, the linear mass is sufficiently diminished as compared
to the critical mass limit.
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