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Abstract In this paper, we investigate the energy conditions (including null, weak,
strong, dominant) in generalized teleparallel gravities including pure F(T ), telepar-
allel gravity with non-minimally coupled scalar field and F(T ) with non-minimally
coupled scalar field models. In particular, we apply them to Friedmann–Robertson–
Walker cosmology and obtain some corresponding results. Using two specific phenom-
enological forms of F(T ), we show that some of the energy conditions are violated.

Keywords Energy conditions · Torsion · Cosmology

1 Introduction

Numerous astrophysical observations [1–6] show that our Universe is undergoing a
period of accelerated expansion and which started in the near past. There are two
broad categories to classify candidates of cosmic acceleration. The first is to consider
an exotic energy with negative pressure, termed ‘dark energy’. The simplest candidate
of dark energy is the cosmological constant satisfying an equation of state w = −1
[7–11]. It, however, suffers from two serious theoretical problems, i.e., the fine tuning
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264 M. Jamil et al.

problem and the cosmic coincidence problem. Also some scalar field models, including
quintessence field [12–15] and phantom energy [16–27], are discussed. For single
scalar field models, it has been shown in the literature that the equation of state cannot
cross the phantom divide line (w = −1). Therefore, models with a combination of
phantom and quintessence commonly termed ‘quintom’ [28], and scalar field models
with scalar-dependent coupling in front of kinetic term [29–31] as well as fluid models
[32] have also been constructed to realize the crossing of the phantom divide line, which
still seems to be allowed by recent observations [33–40].

There are four candidates of the gravitational sector of model: (A) metric compatible
and torsionless (Einstein gravity); (B) Weyl’s type and torsionless (Weyl space); (C)
metric compatible with torsion (Einstein–Cartan space); and (D) Weyl’s type with
torsion (Einstein–Cartan–Weyl theory). A recent version of torsion based gravity is
F(T ) (commonly termed ‘generalized teleparallel gravity’) which is based on the
Einstein–Cartan geometry [41–44], where T is the torsion scalar constructed from
the tetrad. Choosing F(T ) = T , leads to the pure teleparallel gravity [45–47] which
is in good agreement with some standard tests of the general relativity at the solar
system scale [45,46]. Numerous features of theoretical interest have been studied in
this gravity already including Birkhoff’s theorem [48], cosmological perturbations
[49], cosmological attractor solutions [50], generalized second law in F(T ) [51] and
phantom crossing of the state parameter [52]. Moreover, the local Lorentz invariance
is violated which henceforth leads to violation of first law of thermodynamics [53,54].
Also the entropy-area relation in this gravity takes a modified form Bamba et al. [51].
The Hamiltonian structure of F(T ) gravity has been investigated and found that there
are five degrees of freedom [55]. Recently Iorio and Saridakis [56] studied solar system
constraints on the model f (T ) = T + αT 2 and found the bound |α| ≤ 1.8 × 104m2.

Further a T 2 term can cure all the four types of the finite-time future singularities in
f (T ) gravity, similar to that in F(R) gravity [57,58].

In teleparallel gravity, the equations of motion for any geometry are exactly the
same as of general relativity. Due to this reason, the teleparallel gravity is termed as
‘teleparallel equivalent of general relativity’ (TEGR) [59–61]. In teleparallel gravity,
the dark energy puzzle is studied by introducing a scalar field with a potential. If this
field is minimally coupled with torsion, then this effectively describes quintessence
dark energy. However if it is non-minimally coupled with torsion, than more rich
dynamics of the field appears in the form of either quintessence or phantom like, or
by experiencing a phantom crossing [62]. Xu et al [63,64] investigated the dynamics
and stability of a canonical scalar field non-minimally coupled to gravity (arising
from torsion). They found that the dynamical system has an attractor solution and
rich dynamical behavior was found. In the context of general relativity, a scalar field
non-minimally coupled with gravity has been studied in [66].

In this paper, we discuss the energy conditions in generalized teleparallel gravities
including pure F(T ), teleparallel gravity with non-minimally coupled scalar field and
F(T ) with non-minimally coupled scalar field models. In particular, we apply them to
FRW cosmology and obtain some corresponding results. Using two specific phenom-
enological forms of F(T ), we show that some of the energy conditions are violated.
We follow the plan: In Sect. 2 we review the energy conditions in any gravitational
theory. In Sect. 3, we give a review of teleparallel and f (T ) gravity. In Sect. 4, we start
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with the energy conditions for the simplest modified teleparallel gravity. In Sect. 5,
we study energy conditions for a teleparallel gravity non-minimally coupled with a
scalar field. In Sect. 6, we discuss energy conditions for F(T ) theory coupled with a
minimally coupled scalar field. In Sect. 7, we provide conclusion.

2 Energy conditions

The energy conditions are used in different contexts to derive variety of general results
which hold for different situations. Under these conditions, one allows not just gravity
to be attractive but also the energy density to be positive and flows not to be faster
than light [67]. The notion of energy conditions arise from the Raychaudhuri equation,
given by

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνuμuν, (1)

where uμ is a vector field representing the congruence of “timelike geodesics”. Also
Rμν, θ, σμν and ωμν represent Ricci tensor, the expansion parameter, the shear and
the rotation associated with the congruence respectively. Similarly, in the case of
a congruence of “null geodesics” defined by the vector field kμ, the Raychaudhuri
equation becomes

dθ

dτ
= −1

2
θ2 − σμνσ

μν + ωμνω
μν − Rμνkμkν . (2)

From both the Raychaudhuri equations, it is apparent that these are purely geomet-
ric and independent of any gravity theory. The origin of these energy conditions is
independent of any gravity theory and that these are purely geometrical (for a review
on the energy conditions, see the classic text [68]). Using the modified (effective)
gravitational field equations the null energy condition (NEC), weak energy condition
(WEC), strong energy condition (SEC) and the dominant energy condition (DEC) are
given by Garci’a et al. [69] and Gong et al. [70]

NEC ⇐⇒ ρeff + peff ≥ 0. (3)

WEC ⇐⇒ ρeff ≥ 0 and ρeff + peff ≥ 0. (4)

SEC ⇐⇒ ρeff + 3peff ≥ 0 and ρeff + peff ≥ 0. (5)

DEC ⇐⇒ ρeff ≥ 0 and ρeff ± peff ≥ 0. (6)

Note that NEC implies WEC and WEC implies SEC and DEC. In all the subsequent
models we will assume that the regular matter satisfies all the energy conditions sep-
arately i.e. ρm ≥ 0, ρm ± pm ≥ 0, ρm + 3pm ≥ 0. In literature, the f (R) theory has
been tested against the energy conditions [71]. Thus, we need to check the validity of
these conditions for energy density and pressure for different versions of F(T ) gravity.
In addition, the various energy conditions are on a different footing. For instance, the
violation of the strong energy condition is needed to have an accelerating phase, on
the other hand, dark energy with w < −1 violates the NEC.
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3 Teleparallel and modified teleparallel gravity

In the teleparallel (TEGR) formulation of Einstein general relativity (GR), the indepen-
dent dynamical variable is a set of the tetrad fields ei

μ. The Greek indices (holonomic)
denote the local coordinates of the manifold while the Latin indices (anholonomic)
denote the locally Lorentzian frame. We use the same symbol to show the inverse of
ei
μ. Let us define

ei
μeν

i = δν
μ, ei

μeμ
j = δi

j , (7)

where the coordinate free representation of the metric is given by

gμν = ηi j e
i
μe j

ν . (8)

Here ηi j = diag(1,−1,−1,−1) is the standard Minkowski metric, which geometri-
cally plays the role of the tangent space metric. The same metric g is used to do the
“gymnastic” of indices and η for frame indices. In TEGR, there exists a coordinate
system where the metric is globally Minkowskian. In this case the tetrad fields give
rise to a new connection defined by

�σ
μν = eσ

i ∂νei
μ = −ei

μ∂νeσ
i , (9)

which is the so-called assymetric Weitzenböck connection. Clearly, this cannot be the
Levi-Civita connection since its torsion is zero by definition. We define torsion and
contortion by

T σ
μν = �σ

νμ − �σ
μν = eσ

i

(
∂μei

ν − ∂νei
μ

)
, (10)

K μν
σ = −1

2

(
T μν

σ − T νμ
σ − T μν

σ

)
, (11)

respectively. The contortion tensor can also be defined in terms of the Weitzenböck
and Levi-Civita connections. It turns out to be useful to define the totally assymetric
tensor Sμν

σ in the following way

Sμν
σ = 1

2

(
K μν

σ + δμ
σ T ρν

ρ − δν
σ T ρμ

ρ

)
. (12)

It’s straightforward to define the scalar torsion T which is given by

T = Sμν
σ T σ

μν, (13)

In TEGR, T has the same role as R in GR. But there is no trivial interpretation of the
T = cte solutions as a de Sitter solution as R = cte in GR. Indeed, from one simple
checking, we observe, there is no de-Sitter solution in TEGR with the same (exactly
the same) properties as the d(A)S solution in GR.
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Let us consider the modified action in usual convent geometrized units c = G = 1)

S =
∫

e f (T )d4x +
∫

eLmatterd
4x, (14)

where e is the determinant of ei
μ.

To derive the EOMs, by variations of the action with respect to the tetrads ei
μ gives

the field equations of f (T ) modified gravity which are given by

Sμν
i fT T ∂μT + e−1∂μ

(
eSμν

i

)
fT − T σ

μi Sνμ
σ fT − 1

4
eν

i f = −T ν
i , (15)

where Sμν
i = eσ

i Sμν
σ , fT and fT T denote the first and second derivatives of f with

respect to T . Tμν is the energy momentum tensor. Conservation of the energy momen-
tum tensor is ensured by the field equations.

4 Energy conditions in modified teleparallel gravity

The Friedmann equations in effective notation are given by

ρeff = 3H2, peff = −(2Ḣ + 3H2), (16)

where

ρeff = ρm + ρT

= ρm + T fT − f

2
, (17)

peff = pm + pT

= pm + (2Ḣ − T ) fT + 4Ḣ T fT T + f

2
. (18)

To check the viability of this cosmological model, we check the energy conditions
(3)–(6) using (17) and (18):

2Ḣ( fT + 2T fT T ) ≥ 0 (19)

− f + 2T fT ≥ 0 (20)

f + 2T fT + 6Ḣ( fT + 2T fT T ) ≥ 0 (21)

2Ḣ( fT + 2T fT T ) + ( f − 2T fT ) ≤ 0 (22)

Now we use two recently proposed models of f (T ) gravity [73]

f1(T ) = α(−T )n tanh

(
T0

T

)
(Model-I)

f2(T ) = α(−T )n
[

1 − exp

(
−p

T0

T

)]
(Model-II)
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Here T0 = −6H2
0 . These two models are able to give rise to crossing the phantom

divide. In Model-I the exponent n > 3
2 , the parameter of the model [73]

α = − 1 − 
m0 − 
r0(
6H2

0

)n−1
[

2
cosh(1)2 + (1 − 2n) tanh(1)

]

Similarly for Model-II, we know that n > 1
2 and [73]

α =
(
6H2

0

)1−n
(1 − 
m0 − 
r0)

−1 + 2n + ep(1 − 2n + 2p)

Here 
m0,
r0 are the present values of the energy densities of the dark matter and
radiation. Now we examine the energy conditions, based on these two viable models
Fig. 1.

• NEC: First note that the NEC reduces to

−4Ḣ
√−T

d

dT

[√−T fT

]
≤ 0 (23)

For model-I in case Ḣ > 0, the top left figure shows this model does not satisfy
the NEC but in case Ḣ < 0 this model satisfies NEC. For model-II similarly, when
Ḣ > 0 the NEC breaks down but when Ḣ < 0, NEC is valid (top right figure).

• WEC: It is easy to show that we must check the following inequality

d

dT

[
f (T )√−T

]
≤ 0 (24)

For model-I, middle left figure shows that the WEC is satisfied. Also for
model-II, this energy condition will be satisfied as can be seen in middle right
figure.

• SEC: In regime Ḣ > 0, we know from NEC fT + 2T fT T ≥ 0. It remains only to

check whether f +2T fT ≥ 0. Note that f +2T fT = −2
√−T d

dT

(
f
√−T

)
≥ 0.

For models I and II, we observe that this SEC is satisfied as shown in bottom left
and right figures.

• DEC: We can write this condition as

−4Ḣ
√−T

d

dT

(√−T fT

)
− 2

(
− f

2
+ T fT

)
≤ 0.

Note that the last bracket is positive on account of validity of WEC. Also from
NEC, we know that for both models f1 and f2, always d

dT (
√−T fT ) ≥ 0. If

Ḣ > 0 then DEC is satisfied.
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Fig. 1 (Top left) NEC for model 1. (Top right) NEC for model 2. (Middle left) WEC for model 1. (Middle
right) WEC for model 2. (Bottom left) SEC for model 1. (Bottom right) SEC for model 2. The left and right
panel figures correspond to f1 and f2, respectively
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5 Teleparallel gravity with a non-minimally coupled scalar field

As a generalization of pure teleparallel gravity, Xu and collaborators [63,64] added a
canonical scalar field, allowing for a non-minimal coupling with (teleparallel) gravity.
Their proposed action with a little modification is

S =
∫

d4x a3
[

T

2
+ 1

2

(
εφ,μφ,μ + ξT φ2

)
− V (φ) + Lm

]
. (25)

The symbol ε = +1,−1 refer to quintessence and phantom dark energy respectively.
ξ represents the coupling between the scalar torsion and the scalar field. Lm is the
Lagrangian density for the matter component. Recently the present authors have inves-
tigated the more general case of (25) by replaced T with f (T ). The authors showed
that by choosing a cosmologically viable function f (T ), the dynamical system of
equations do not admit any attractor solution, however some evidence of phantom
crossing does appear [65].

In this gravity (25), the effective energy density and effective pressure for a flat
FRW universe is [63,64]

ρeff = ρm + ε

2
φ̇2 + V (φ) − 3ξ H2φ2, (26)

peff = pm + ε

2
φ̇2 − V (φ) + 4ξ Hφφ̇ + ξφ2

(
3H2 + 2Ḣ

)
. (27)

• NEC: εφ̇2 + 4ξ Hφφ̇ + 2ξ Ḣφ2 ≥ 0. We discuss two cases:

Case-1: ε = +1, Ḣ < 0: In this case NEC is obeyed when Ḣ ≥ − 1
2ξφ2

(
φ̇2 +

4ξφφ̇H
)

.

Case-2: ε = −1, Ḣ > 0: In this case NEC is justified when φ̇2 ≤ 4ξ Hφφ̇ +
2ξ Ḣφ2.

• WEC: If ε = +1, V (φ) ≥ 0, 3ξ H2φ2 ≤ ε
2 φ̇2 + V (φ).

If ε = −1, V (φ) ≥ 0, V (φ) ≥ 3ξ H2φ2 + ε
2 φ̇2.

• SEC: We must check whether εφ̇2 − V (φ) + 3ξ H2φ2 + 6ξ Hφφ̇ + 3ξ Ḣφ2 ≥ 0.
Case-1: ε = +1, Ḣ < 0: In this quintessence model, we must have

φ̇ ≥ 1

6ξ Hφ

(
− φ̇2 + V (φ) − 3ξ H2φ2 − 3ξ Ḣφ2

)
.

Case-2: ε = −1, Ḣ > 0: We conclude that φ̇ ≥ 1
6ξφH

(
φ̇2 + V (φ) − 3ξ H2φ2 −

3ξ Ḣφ2
)

.

• DEC: First we check the condition ρeff ≥ 0. It means that ε
2 φ̇2+V (φ)−3ξ H2φ2 ≥

0. We have two special cases
Case-1: ε = +1. In this case φ̇2 ≥ 2(3ξ H2φ2 − V (φ)).
Case-2: ε = −1. Here φ̇2 ≤ 2(3ξ H2φ2 − V (φ)).
Further the condition ρeff ≥ peff we have
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φ̇ ≤ 2V (φ) − 6ξ H2φ2 − 2ξφ2 Ḣ

4ξ Hφ

6 F(T ) model with a minimally coupled scalar field

In a recent paper, we investigated the Noether symmetries of F(T ) cosmology involv-
ing matter and dark energy, the later being represented by a canonical scalar field
with a potential [74]. We showed that F(T ) ∼ T 3/4 and V (φ) ∼ φ2, both of which
are cosmologically viable functions. It was shown that this model closely mimics
the � CDM model and allows phantom crossing. The total action of such a theory
with contributions from torsion, matter and a minimal coupled scalar field component
reads [74]

S =
∫

d4xa3
[

F(T ) − ρm + 1

2
εφ,μφ,μ − V (φ)

]
. (28)

where F(T ) = T + f (T ). The scalar field φ has the potential energy V (φ) and
ρm = ρm0a−3 is the energy density of matter with vanishing pressure and ρm0 is a
constant energy density at some initial time.

The forms of effective energy density and pressure are

ρeff = ρm + ρφ + ρT

= ρm + 1

2
εφ̇2 + V (φ) + T fT − f

2
, (29)

peff = pm + pφ + pT

= pm + 1

2
εφ̇2 − V (φ) + (2Ḣ − T ) fT + 4Ḣ T fT T + f

2
. (30)

The analysis of energy conditions for this model is given below:

• NEC: εφ̇2 +2Ḣ( fT +2T fT T ) ≥ 0. Notice that the last term in bracket is positive
as demonstrated in section A. If ε = +1, then NEC holds but violated otherwise.

• WEC: If ε = +1 and V (φ) > 0, than from section A, we have− f
2 +T fT ≥ 0. Thus

WEC holds. If ε = −1 and V (φ) > 0, then WEC is satisfied if V ≥ φ̇2+ f
2 −T fT .

• SEC: If ε = +1, Ḣ < 0 and V (φ) > 0, than 2φ̇2 + f ≥ 2V (φ)−2T fT −6Ḣ fT .
If ε = −1, Ḣ > 0 and V (φ) > 0, than f + 6Ḣ fT ≥ 2φ̇2 + 2V (φ) − 2T fT .

• DEC: If ε = +1, Ḣ < 0 and V (φ) > 0, than 1
2 φ̇2 + V (φ) ≥ f

2 − T fT . If

ε = −1, Ḣ > 0 and V (φ) > 0, than V (φ) ≥ f
2 − T fT + 1

2 φ̇2.

7 Conclusion

In this paper, we discussed the energy conditions in three different models of gen-
eralized teleparallel gravities. These energy conditions are stronger test to check the
viability of these theories. Here we examined three torsion based models with two
phenomenological forms of f (T ). In the case of pure f (T ) gravity, we showed that
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all the energy conditions can be satisfied for both kind of dark energy models. Then
by adding a non-minimally scalar interaction, we showed that these energy conditions
can be fulfilled for some specific values of the dynamical quantities of the model.
Further we showed that given a minimally coupled dark energy component depending
on the value of interaction, the energy conditions can be valid.

Acknowledgments We very much thank the referee for very enlightening comments on our paper.
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