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Abstract It has been argued that the standard inflationary scenario suffers from a
serious deficiency as a model for the origin of the seeds of cosmic structure: it can
not truly account for the transition from an early homogeneous and isotropic stage to
another one lacking such symmetries. The issue has often been thought as a standard
instance of the “quantum measurement problem”, but as has been recently argued by
some of us, that quagmire reaches a critical level in the cosmological context of inter-
est here. This has lead to a proposal in which the standard paradigm is supplemented
by a hypothesis concerning the self-induced dynamical collapse of the wave function,
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2966 A. Diez-Tejedor et al.

as representing the physical mechanism through which such change of symmetry is
brought forth. This proposal was originally formulated within the context of semiclas-
sical gravity. Here we investigate an alternative realization of such idea implemented
directly within the standard analysis in terms of a quantum field jointly describing the
inflaton and metric perturbations, the so called Mukhanov–Sasaki variable. We show
that even though the prescription is quite different, the theoretical predictions include
some deviations from the standard ones, which are indeed very similar to those found
in the early studies. We briefly discuss the differences between the two prescriptions,
at both, the conceptual and practical levels.

Keywords Inflation · Cosmology · Quantum gravity · Quantum foundations

1 Introduction

Inflation represents one of the central cornerstones of modern cosmology. It was
initially proposed as a solution to the classical naturalness problems of the the big
bang model, but its impact became even more significant when it came to be regarded
as a natural mechanism to account for the seeds of cosmic structure. However, as dis-
cussed in [1] (see also [2]), these claims are not fully justified. The point is that there
is nothing that could account for the transmutation of the homogeneous and isotropic
vacuum characterizing the quantum properties of the early universe, into something
that might be identified with the inhomogeneous and anisotropic state characterizing
the universe at, say, the last scattering surface, from which the cosmic microwave
background (CMB) photons were emitted. At this point we should warn the reader
that our posture in this regard is not shared by all the people working in the field,
and thus we invite him/her to consider the arguments on the two sides of the issue
by him/her-selves. For a sample of works expressing views contrary to ours, please
see the references given in [3–19]. (Note however that different authors in the sample
point to—slightly—different schemes, indicating that each author does not find the
schemes espoused by other colleagues to be fully satisfactory.)

The problem was noted early on in [20] by Padmanabhan, but the issue was high-
lighted in [1], where the first proposal to address it was put forward. More recently,
some books in which the standard picture is presented have mentioned the prob-
lem explicitly (see for instance [21–23] and [24]), while other researchers still claim
that there is no outstanding issue [19]. The detailed analysis of such postures and
the remaining shortcomings have been discussed in [2], and the arguments will not be
reproduced here. However, let us note that most researchers in the field, including those
who acknowledge that there is something missing in the standard picture, are convinced
that this is in a sense “just the standard interpretational problem of quantum mechan-
ics”, and as such, the issue is one of “pure philosophy” without any possible impact
on the predictions of the theory. In fact, the issue is sometimes presented as that of the
“quantum to classical transition”, but this, in our view, hides the seriousness of the real
problem. We need some physical process to account for the passage from a state with a
certain symmetry (homogeneity and isotropy) to another one lacking those symmetries,
in a situation were we can find no physical mechanism that might account for that. The
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The collapse of the wave function 2967

point is that by labelling this issue as just philosophy, what is meant by most physicists
is the belief that the final results do not depend on the details of whatever one envisions
as being behind the process that leads to the emergence of the primordial inhomo-
geneities out of the quantum “fluctuations” (or, more precisely, uncertainties). How-
ever, as we have shown in previous works [1], this is not the case, and particular aspects
of the process could have left some imprints in the distribution of matter and the CMB.

The idea that has been considered in previous works as a possibility to deal with
that problem involves adding to the standard model the hypothesis that the collapse of
the wave function is an actual physical process that occurs independently of external
observers. It was initially proposed in [1], and developed further in [25–31] (see
also [2,32,33]). As discussed in [2], something that effectively might be described in
terms of such a collapse of the wave function could have its origins in the passage
from the atemporal regime of quantum gravity to the classical space-time description
underlining the general theory of relativity. That is, in going from one description to
the other, we might be forced to characterize some aspects of the underlying physics
in terms of sudden jumps which are not compatible with the unitary Schrödinger
evolution, and which modify the state of the universe in an stochastic way, being
therefore capable of transforming a condition that was initially homogeneous and
isotropic into another one that is not (the interested reader can consult the above
mentioned works as those issues are not the focus of this paper).

The point we want to analyze here is to what extend do the general aspects and
details of the results obtained in previous works depend on the specific approach to deal
with the quantum aspects of the problem. The fact is that in all previous treatments we
have relied on what is known as semiclassical gravity. That is, a classical description
for the space-time metric (including its perturbations) coupled to a quantum treat-
ment of the inflaton field. We considered a quantum field evolving in a space-time
background, together with the assumption that the expectation value of the energy
momentum tensor acts as the source of gravity in Einstein’s theory. The collapse has
been assumed to occur at the level of the quantum description of the inflaton field,
while the metric would simply respond to the modification in the expectation value
of the energy momentum tensor leading to a geometry that is no longer homogeneous
and isotropic. We have found in that case that the details of the model of collapse and
the times assumed for the collapse of the various modes have an impact on the details
of the CMB power spectrum [25].

In this work we will consider a similar analysis but implemented within a treatment
that considers simultaneously the metric and the scalar field perturbations (both treated
at the quantum level), while the space-time and inflaton homogeneous and isotropic
background will be treated classically. That is, we will describe the system of interest
in terms of the so called Mukhanov–Sasaki variable [34,35], which will be quantized
in the standard way, as it is now customary on the literature on the subject. However, we
will modify the standard treatment with the inclusion of what we believe is the missing
element, which at the phenomenological level would correspond to a dynamical col-
lapse of the wave function, postulated as reflecting a yet undiscovered aspect of Nature,
perhaps related to quantum gravity as suggested by Penrose [36] and Diósi [37].

Our motivation for this paper is twofold. On the one hand we will present the “self-
collapsing” universe within what today is considered the standard approach to inflation.
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We believe this could made our ideas more accessible to the community. On the other
hand, we will show that some important conclusions regarding the modification of the
power spectrum are present in the two different manners of incorporating the collapse
hypothesis into the formalism. The exact form of the modifications will differ from
one approach to the other, so, in principle, we could use the cosmological observations
to infer which one of the two pictures provides an appropriate effective description for
the gravitational interaction at the quantum-classical interplay: semiclassical gravity
or that proposed by Mukhanov and Sasaki. At this point it is important to emphasize
that the issue of which is the variable that one should quantize is one with physical
consequences. Thus the Mukhanov–Sasaki approach is more than a particular formal-
ism, as it leads to the quantization of a particular combination of metric and scalar field
perturbations. This contrast with the approach based on semiclassical gravity where
only the scalar filed is quantized, and of course this can lead to differences between
the results obtained in this paper and those obtained in previous works by our group.

The manuscript is organized as follows: In Sect. 2 we briefly review the standard
description of cosmological perturbations (both at the quantum and classical level)
in the inflationary scenario. After that, in Sect. 3 we proceed to make the quantum-
mechanical treatment of the field and metric perturbations within the setting of our
proposal, and compare our predictions with the observational results. Finally we dis-
cuss our findings in Sect. 4.

The conventions we will be using include a (−,+,+,+) signature for the space-
time metric and natural units with c = 1. We will use the Planck mass M2

p ≡ h̄2/8πG

and the Planck time t2
p ≡ 8πGh̄, and follow the notation in Ref. [22]. However, we will

work in the “conformal Newtonian gauge” from the beginning (see the expression (1)
bellow). The reader should recall that the corresponding equations coincide (in form)
with those obtained for their “gauge invariant counterparts” in [22] (for a detailed
discussion on our motivation for choosing this particular gauge see the Ref. [26]).

2 The standard approach: a review

At the classical level the inflationary universe is described by Einstein’s theory Gμν =
8πGTμν together with the equations of motion for the matter fields. We shall restrict
ourselves to the simplest inflationary model, with a single scalar field with the standard
kinetic and potential terms, the inflaton φ. We will be only interested in those config-
urations very close to a homogeneous and isotropic Robertson–Walker cosmology.

The study of the seeds of cosmic structure depends essentially on the scalar sector
of the perturbations. Ignoring for simplicity the so called vector and tensor modes, we
can choose a coordinate system in which the space-time metric simplifies to

ds2 = a2(η)
[
−(1 + 2ψ)dη2 + (1 − 2ψ)δi j dxi dx j

]
, with ψ(η, x) � 1. (1)

This choice corresponds to the “conformal Newtonian gauge”, with ψ an analogue to
the Newtonian potential and η the cosmological time in conformal coordinates. The
spatial coordinates xi are the usual “co-moving spatial coordinates”. Note that ψ = 0
corresponds to a spatially flat homogeneous and isotropic Robertson–Walker universe.
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We shall restrict our attention to a universe that is very close to a de Sitter solution,
and we will not concern ourselves with the question of how this concrete realization
was obtained from a particular potential term. One then focuses on the background
universe (ψ = 0), which is characterized in terms of the conformal expansion rate
H ≡ ȧ/a (related to the standard Hubble parameter through H = aH ) and the so-
called slow-roll parameter ε ≡ 1 − Ḣ/H2. Here the “dot” denotes a derivative with
respect to the conformal time. For practical reasons we will often work up to the lowest
non-vanishing order in ε, taken it as a small positive constant, i.e. 0 ≤ ε � 1. For
ε = 0 we recover a de Sitter universe, ad S(η) = −1/Hη, with −∞ < η < 0 and H
constant.

In order to proceed one decomposes the scalar field into a homogeneous and
isotropic part φ0(η) plus a small perturbation, φ(x) = φ0(η) + δφ(η, x). Working
up to the first order in ψ and δφ and defining the new fields

u ≡ aψ

4πGφ̇0
, v ≡ a

(
δφ + φ̇0

Hψ

)
, (2)

the 00 and the 0i components of the Einstein equations (the Hamiltonian and momen-
tum constraints) can be casted in the form:

	u = z

(
v

z

)·
and v = 1

z
(zu)·, with z ≡ aφ̇0

H . (3)

These two constraints can be combined with the dynamical equations resulting in a
single equation involving only the field v and the (given) background universe:

v̈ − ∇2v − z̈

z
v = 0. (4)

Using Friedmann’s equation H2 − Ḣ = 4πGφ̇2
0 and the definition of ε we can

re-express z as z = a
√
ε/4πG, thus z̈/z � ä/a provided we are in the slow-roll

regime. At this level the new field v(η, x) contains all the information about the
perturbed universe: the perturbations in the metric and the scalar field can be read
from that field using the constraints (3) and the definitions given in (2). For practical
reasons it will be more convenient to work with periodic boundary conditions over a
box of size L . We shall take the limit L → ∞ at the end of the calculations. We can
then use a Fourier decomposition and write

v(η, x) = 1

L3/2

∑
k 
=0

vk(η) eik·x, (5)

where kn = 2π jn/L , jn = 0,±1,±2, . . ., and n = 1, 2, 3. Note that the zero mode
has been removed from the perturbed fields. Recall that we are working in co-moving
coordinates, where the k’s are fixed in time (and related to their physical values through
k/a). In terms of this decomposition the dynamical equation for each mode vk(η) takes
the form

123



2970 A. Diez-Tejedor et al.

v̈k +
(

k2 − z̈

z

)
vk = 0. (6)

In what follows, and as it is usual in the field, we will consider a classical description
for the background universe. However, we shall quantize the field v(x) characterizing
the small perturbations around the previous symmetric solution. That field can be
described in terms of the canonical (first order) action

S = 1

2

∫
dη d3x

(
v̇2 + v	v + z̈

z
v2

)
. (7)

(see Section 10 in Ref. [18] for more details.) Recall that we are working to the linear
order inψ and δφ, so the interaction terms have not been retained here. At the quantum
level the field v(x) and its conjugate momentum π(x) = v̇(x) should be promoted to
field operators acting on a Hilbert space H . These operators must satisfy the standard
equal time commutation relations

[v̂(η, x), π̂(η, y)] = i h̄δ(x − y), [v̂(η, x), v̂(η, y)] = [π̂(η, x), π̂(η, y)] = 0. (8)

The standard way to proceed now is to decompose v̂(x) in terms of the time-
independent creation and annihilation operators

v̂(x) = 1

L3/2

∑
k 
=0

v̂k(η)e
ik·x, (9)

with v̂k(η) ≡ âkvk(η) + â†
−kv

∗
k (η) belonging to a set of normal modes satisfying

the classical equation of motion (6) and orthonormal with respect to the symplectic
product

vk(η)v̇
∗
k (η)− v̇k(η)v

∗
k (η) = i h̄. (10)

With these definitions the commutators (8) translate into

[âk, â†
k′ ] = δkk′ , [âk, âk′ ] = [â†

k, â†
k′ ] = 0, (11)

and the Fock space can be constructed in the standard way starting with the vacuum
state (i.e. the state defined by âk|0〉 = 0 for all k).

The quantum theory is specified by an appropriate choice for the set of functions
vk(η). However, the Eqs. (6) and (10) do not fix that set unequivocally. Following the
standard literature on the subject we will assume the Bunch–Davies (BD) construction,
based on functions vk(η) that in the asymptotic past contain only “positive energy
solutions”, i.e. for −kη → ∞, v̇k = −iωkvk with ωk > 0. For a universe close to
a de Sitter solution and working to the lowest non-vanishing order in the slow-roll
parameter one obtains
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vk(η) =
√

h̄

2k

(
1 − i

kη

)
e−ikη. (12)

For that simple construction the state |0〉 is known as the BD vacuum.1 After a few
“e-folds” of inflation, this is expected to accurately characterize the state of the inflaton
field, and its quantum fluctuations (uncertainties). As we have indicated these are
supposed to represent the seeds of cosmic structure. However, it is easy to see that
this state is perfectly homogeneous and isotropic.2 Thus, a universe characterized
by that state will be homogeneous and isotropic not only at the classical, but also
at the quantum level. Indeed, this is not a surprising result: if the initial state have
a symmetry, and the dynamical evolution preserves that symmetry,3 the state of the
system will be symmetric at any time, and there is nothing (e.g., decoherence, horizon
crossing, etc.) that the standard unitary evolution of the quantum theory could do to
avoid that conclusion. Of course, the standard accounts need to bypass this no-go
result in some way or another. However, as it has been argued in detail in [2], all those
attempts fail to provide a satisfactory answer to the question: what is the physical
mechanism whereby the initial symmetry was lost?

3 Beyond the standard quantum theory

We believe that something beyond the standard quantum theory, and which we have
previously called “the collapse”,

|symmetric〉 → |non − symmetric〉, (13)

seems to be required in order to break the “initial” symmetry characterizing the BD
vacuum. That process is thought to represent some novel aspect of physics, connected
perhaps with otherwise unexpected properties of quantum gravity, as has been pre-
viously suggested by Diósi and Penrose (see also the discussion in Sect. 4). In fact,
we should mention that there is a long history of studies about proposals involving
something like a collapse of the wave function, emerging basically from the commu-
nity working in foundations of quantum theory (see for instance [38] and references
therein). However, those had never been considered in the present context before the
work [1].

For the purposes of this paper we will concentrate on the simplest possible case,
where there is only one collapse per mode k (of course there is no reason a priori to
consider that there could not be more than one collapse per mode k, but this is not

1 Strictly speaking that state is not the BD vacuum, simply because as the result of a slow-rolling inflaton
field the space-time background cannot be exactly de Sitter. But here we will ignore that issue and refer to
the state |0〉 as the BD vacuum, as it is often done. The relevant issue is that this state is as homogeneous
and isotropic as the true BD vacuum.
2 It is invariant under spatial translations T̂ (di ) = exp[i P̂i di ] and rotations R̂x (θi ) = exp[i L̂(x)i θi ],
with P̂i and L̂(x)i the linear and the angular momentum operators, and di and θi parameters labelling the
transformations.
3 It is straightforward to see that the evolution Hamiltonian commutes with the operators T̂ (di ) and R̂x (θi ).
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going to affect our findings, as has been discussed in [27]). We want to consider each
of the modes of the field individually, and will be assuming that at ηc

k the mode k
suffers a collapse, |0k〉 → |�k〉, with |�k〉, in principle, some arbitrary state chosen
from a suitable subset of Hk.4 That is, in principle, we will allow the collapsing
time ηc

k to vary from mode to mode. These collapses will be assumed to take place
according to certain specific rules which we will present in more detail shortly and
which, as we will see, will depend on the particular “collapse scheme” considered.
Each one of the collapses will thus induce a change in the expectation value of the
operator ψ̂k(η). The point is that after the collapse of the mode k, the universe will
be no longer homogeneous and isotropic (in general) at that particular corresponding
scale (or more precisely, in regards to that mode).

At this point we must face the relation between the quantum and classical descrip-
tions. In this particular setting we will focus our attention to the Newtonian potential,
that is, the scalar metric perturbation ψ determining the small anisotropies in the tem-
perature of the CMB radiation on the celestial two-sphere (see the expression (19)
bellow). We must relate that perturbation with the field operator ψ̂ provided by the
quantum theory in the previous discussion.5 The connection will be made by taking
the view that the classical description is only relevant for those particular states for
which the quantity in question is sharply peaked, and that the classical description
corresponds to the expectation value of said quantity. We can think for instance in the
wave packet of a free particle where the wave function is sharply peaked around some
position, and that in such a case we could naturally say that the particle’s position is
well defined and corresponds to the expectation value of the position operator in that
wave packet state. In other words, we will be using the identification

ψ(x) = 〈�|ψ̂(x)|�〉, (14)

with |�〉 a state of the quantum field v̂(x) characterizing jointly the metric and field
perturbation, which of course will be meaningful only as long as the state corresponds
to a sharply peaked one in the associated variable ψ̂(x). As we have noted, if we
consider that the relevant state is the BD vacuum, as it is usually done, we would have
a serious problem simply because 〈0|ψ̂(x)|0〉 = 0. This illustrates why one is lead to
introduce the collapse hypothesis. ay that is detailed enough to allow us to compute the
above quantities. In order to emphasize the dependence of the Newtonian potential on
the quantum state we will often write ψ�(x) (in fact, we will generalize this notation
to any operator, O� ≡ 〈�|Ô|�〉). From the first equation in (3) we obtain (in Fourier
space):

4 In an abuse of notation we will be writing H = ∏
k Hk , although technically the fact that we are working

with an infinite number of degrees of freedom requires a construction known as the Fock space. The point
is that, despite not being totally precise, this way of presenting things is more transparent.
5 If we had relied on semiclassical gravity this issue did not arise at this point. There the Newtonian
potential is a classical quantity and the classical to quantum connection occurs at the level of the Einstein
equations, where one side is the classical Einstein tensor while the other side is the expectation value of the
quantum energy-momentum operator, i.e. Gμν = 8πG〈T̂μν 〉.
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ψ�k (η) ≡ 〈�|ψ̂k(η)|�〉 = −
√

4πGεH

k2

(
π�k (η)− ż

z
v�k (η)

)
. (15)

This is a relation between expectation values of mode operators. We will be assuming
that at time ηc

k a collapse in the state of the mode k has occurred, resulting in a state
characterized (in part) by the expectation values of the operators v̂k(η) and π̂k(η) at
that particular time. We can then make use of the Ehrenfest’s theorem to relate those
values to the expectation values of said operators at any future time (assuming there
are no additional collapses for that mode). In the present case those relations take the
form

π�k (η) = Ak(η, η
c
k)π

�
k (η

c
k)+ k Bk(η, η

c
k)v

�
k (η

c
k), (16a)

v�k (η) = k−1Ck(η, η
c
k)π

�
k (η

c
k)+ Dk(η, η

c
k)v

�
k (η

c
k), (16b)

with Ak(η, η
c
k), Bk(η, η

c
k),Ck(η, η

c
k) and Dk(η, η

c
k) some dimensionless functions

depending on kη and kηc
k. They are not very revealing so we will not write them here

explicitly. The interested reader can find these functions in “Appendix”. Using the
expressions above and the fact that for the situation of interest ż/z = −(1 + ε)/η, we
can re-express ψ�k (η) to the lowest non-vanishing order in ε in the relatively simple
form

ψ�k (η) = −
√

4πGεH

k2

{
π�k (s

c
k)

[
cos	c

k + sin	c
k

sc
k

]

+v�k (sc
k)k

[
cos	c

k

sc
k

+
(

1

(sc
k)

2 − 1

)
sin	c

k

]}
. (17)

Here we have defined s ≡ kη, sc
k ≡ kηc

k and 	c
k ≡ s − sc

k. Note that, by definition
−∞ < s, sc

k < 0, with sc
k < s, and then 	c

k positive definite.
In order to make contact with the observations we shall relate the expression (17)

for the Newtonian potential (only valid during inflation) to the small anisotropies
observed in the temperature of the CMB radiation, δT (θ, ϕ)/T0. They are considered
as the fingerprints of the small perturbations pervading the universe at the time of
decoupling, and undoubtedly any model for the origin of the seeds of cosmic structure
should account for them. These data can be described in terms the coefficients αlm of
the multipolar series expansion

δT

T0
(θ, ϕ) =

∑
lm

αlmYlm(θ, ϕ), αlm =
∫
δT

T0
(θ, ϕ)Y ∗

lm(θ, ϕ)d�. (18)

Here θ and ϕ are the coordinates on the celestial two-sphere, with Ylm(θ, ϕ) the spher-
ical harmonics (l = 0, 1, 2 . . . and −l ≤ m ≤ l), and T0 � 2.725K the temperature
average. The different multipole numbers l correspond to different angular scales; low
l to large scales and high l to small scales. At large angular scales (l ≤ 20) the Sachs–
Wolfe effect is the predominant source to the anisotropies in the CMB. That effect
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relates the anisotropies in the temperature observed today on the celestial two-sphere
to the inhomogeneities in the Newtonian potential on the last scattering surface,

δT

T0
(θ, ϕ) = 1

3
ψ(ηD, xD). (19)

Here xD = RD(sin θ sin ϕ, sin θ cosϕ, cos θ), with RD the radius of the last scat-
tering surface, RD � 4000 Mpc, and ηD is the conformal time of decoupling. The
Newtonian potential can be expanded in Fourier modes leading to ψ(ηD, xD) =∑

k ψk(ηD) eik·xD/L3/2. Furthermore, using that eik·xD = 4π
∑

lm il jl(k RD)Ylm

(θ, ϕ)Y ∗
lm(k̂), the expression (18) for αlm can be rewritten in the form

αlm = 4π i l

3L3/2

∑
k

jl(k RD)Y
∗
lm(k̂)Tk(ηR, ηD)ψ

�
k (ηR), (20)

with jl(k RD) the spherical Bessel function of order l. Here we have included the trans-
fer function Tk(ηR, ηD) in order to evolve the perturbation in the Newtonian potential
from the end of inflation to the last scattering surface,ψk(ηD) = Tk(ηR, ηD)ψ

�
k (ηR),

with ηR the reheating time. We will be ignoring this aspect from this point onward,
despite the fact that this transfer function is behind the famous acoustic peaks, the
most noteworthy feature of the CMB power spectrum. The point is that they relate
to aspects of plasma physics that are well understood and thus uninteresting for our
purposes here. This will mean that the observational power spectrum would have such
features removed before comparing with our results (this is in the same spirit that one
removes the imprint of our galaxy, or the dipole associated with our peculiar motion).
This would be equivalent to assume that the observations fits well with a nearly flat
Harrison–Zel’dovich spectrum.

Note that the expression (20) has no analogue in the usual treatments of the sub-
ject, providing us with a clear identification of the aspects of the analysis where the
“randomness” is located. In this case it resides in the randomly selected values for
ψk(ηD), i.e. in the randomly selected values for ψ�k at the collapsing time, see (16)
above. Here we also find a clarification of how, in spite of the intrinsic randomness,
we can make any prediction at all. The individual complex quantities αlm correspond
to large sums of complex contributions, each one having a certain randomness, but
leading in combination to a characteristic value in just the same way as a random walk
made of multiple steps. Nothing like this can be found in the most popular accounts,
in which the issues we have been focusing on here are hidden in a maze of often
unspecified assumptions and unjustified identifications [2]. More precisely, all the
modesψk(ηD) contribute to αlm with a complex number, leading to what is in effect a
sort of “two-dimensional random walk” whose total displacement corresponds to the
interesting aspect of the observational quantity (this will be more evident next when
we specify the collapse scheme). It is therefore clear that, as in the case of any random
walk, such quantity can not be evaluated, and the only thing that can be done is to
calculate the most likely (ML) value for such total displacement, with the expectation
that the observed quantity will be close to that value. That is, we need to estimate the
ML value of
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|αlm |2 = 16π2

9L3

∑
k,k′

jl(k RD) jl(k
′ RD)Y

∗
lm(k̂)Ylm(k̂′)ψ�k (ηR)ψ

�
k′

∗
(ηR). (21)

As it is now standard in our treatments, we do this with the help of an imaginary
ensemble of universes (each one corresponding to a possible realization of the col-
lapse), and the identification of the ML value |αlm |2ML with the ensemble’s mean value.
The spread of the corresponding values within such ensemble corresponds to what is
usually known as the cosmic variance.6 It is precisely at this point where there appears
the link between the statistics of the quantum theory (we will be assuming that the col-
lapses are guided by the quantum uncertainties) and the statistics over an ensamble of
classical inhomogeneous universes. (In the standard approach all the evolution is uni-
tary and then deterministic.) Under this assumption we obtain that all the information
regarding the “self-collapsing” universe will be codified in the quantity7

ψ�k (ηR)ψ
�∗
k′ (ηR), (23)

with the over-bar making reference to the ensemble average: the relevant quantities for
the analysis of the seeds of cosmic structure are those characterizing the statistics of
the collapse. We will further identify this quantity with the value of the corresponding
limit −kηR → 0, which can be expected to be appropriate when restricting interest
on the modes that are “outside the horizon” at the end of inflation, since these are the
modes that give a major contribution to the quantities of observational interest. Let us
note that the function ψ�k (η) in (17) depends on the time of collapse, so it is expected
that the expression (23) will also depend (in general) on the values of sc

k. As we shall
see that will affect the theoretical values of the quantities of interest, and in particular
the form of the power spectrum (see for instance the expression (31) bellow). A simple
and direct connection with the form of the standard results would be obtained if we
had

lim−kηR→0
ψ�k (ηR)ψ

�∗
k′ (ηR) = 2π2

k3 Pψ(k)δkk′, with Pψ(k) = ε
t2
p H2

8π2 , (24)

6 As such this quantity can not be measured, and is normally just estimated for the related quantity Cl ≡
1

2l+1
∑

m |αlm |2 to be given by the corresponding Gaussian value of Cl/
√

l + 1/2.
7 In the standard approach the n-point correlation function for the field operator ψ̂(x) is identified (without
any apparent reason, see for instance the Refs. [1,2]) with the average over an ensemble of classical
anisotropic universes of the same correlation function, now for the Newtonian potential ψ(x). That is the
reason for which they identify the expression (23) with

lim−kηR→0
〈0|ψ̂k(ηR)ψ̂

†
k′ (ηR)|0〉 = ε

t2
p H2

4k3 δkk′ . (22)

Note that in the corresponding expressions we have an ensemble average of the product of two 1-point
functions in contrast with the 2-point function found in the usual approach.
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(see Eq. (22) in footnote). Here tp is the Planck time, H the scale of inflation, and
Pψ(k) the power spectrum for the Newtonian potential.8 However, in general, we will
not obtain that simple relation. This is because the dependence of (23) on sc

k will break
the scale independence of the primordial perturbations, i.e. Pψ(k) 
= const.

In order to see that, let us illustrate our findings with a very simple model for
the collapse. As we want our collapse process to be closely related, or more pre-
cisely, to mimic the ordinary measurements in standard quantum mechanics, we
describe the former in terms of hermitian operators. Thus, we decompose the oper-
ators v̂k(η) and π̂k(η) in their real and imaginary parts, v̂k(η) = v̂R

k (η) + i v̂I
k(η)

and π̂k(η) = π̂R
k (η) + i π̂ I

k(η), with v̂
R,I
k (η) = (vk(η)â

R,I
k + v∗

k(η)â
R,I†
k )/

√
2,

π̂
R,I
k (η) = (πk(η)â

R,I
k + π∗

k (η)â
R,I†
k )/

√
2, and

âR
k = 1√

2

(
âk + â−k

)
, âI

k = −i√
2

(
âk − â−k

)
. (25)

With these definitions v̂R,I
k (η) and π̂R,I

k (η) are Hermitian operators (i.e. v̂R,I
k (η) =

v̂
R,I†
k (η) and π̂R,I

k (η) = π̂
R,I†
k (η)), but the commutation relations between âR

k and âI
k

are non-standard,

[
âR

k , âR†
k′

]
= (δk,k′ + δk,−k′),

[
âI

k, âI†
k′

]
= (δk,k′ − δk,−k′), (26)

with all the other commutators vanishing. Note that, according to (26), the modes k
and −k in the previous decomposition are not independent. This will have important
consequences later. Now, since v̂R,I

k (η) and π̂R,I
k (η) are Hermitian operators, they are

susceptible of “being measured”: we will assume, in analogy with standard quantum
mechanics, that the collapse is somehow analogous to an imprecise measurement of
the operators v̂R,I

k (η) and π̂R,I
k (η), and that the final result of the collapse will be guided

by the quantum uncertainties,

〈π̂R,I
k (ηc

k)〉� = λπ xR,I
k,π

√
〈0| [	π̂k(η

c
k)

]2 |0〉 = λπ xR,I
k,π√
2

∣∣πk(η
c
k)

∣∣ , (27a)

〈v̂R,I
k (ηc

k)〉� = λvxR,I
k,v

√
〈0| [	v̂k(η

c
k)

]2 |0〉 = λvxR,I
k,v√
2

∣∣vk(η
c
k)

∣∣ , (27b)

8 The standard amplitude for the power spectrum is usually presented as proportional to V/(εM4
P ) ∝

H2t2
p/ε, where V is the inflaton’s potential. The fact that ε is in the denominator leads, in the standard

picture, to a constraint scale for V . However, in (24) the slow-roll parameter ε is in the numerator. This
is because we have not used (and in fact we will not) explicitly the transfer function Tk (ηR , ηD). In the
standard literature it is common to find the power spectrum for the quantity ζ(x), a field representing the
curvature perturbation in the co-moving gauge. This quantity is constant for modes “outside the horizon”
(irrespectively of the cosmological epoch), thus it avoids the use of the transfer function. The quantity ζ
can be defined in terms of the Newtonian potential as ζ ≡ ψ+ (2/3)(H−1ψ̇+ψ)/(1+ω), with ω ≡ p/ρ.
For large-scale modes ζk � ψk [(2/3)(1 + ω)−1 + 1], and during inflation 1 + ω = (2/3)ε. For these
modes ζk � ψk/ε and the power spectrum is Pζ (k) = Pψ(k)/ε2 ∝ H2t2

p/ε ∝ V/(εM4
P ), which contains

the usual amplitude. For a detailed discussion regarding the amplitude within the collapse framework see
Ref. [26].
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with xR,I
k,π and xR,I

k,v taken to be a collection of independent random numbers selected
from a Gaussian distribution centered at zero with unit-spread, and λπ and λv two
real numbers (usually 0 or 1) that allow us to specify the collapse proposal we want
to consider. The mode k of any possible realization of the universe will be described
in terms of the specific numerical values of xR,I

k,π and xR,I
k,v . On the other hand, we will

be using the values for λπ and λv to characterize the different collapse schemes: (i)
λv = 0, λπ = 1 (corresponding to what was called the “Newtonian scheme” in the
setting of semiclassical gravity), (ii) λv = λπ = 1 (which was called the “symmetric
scheme”), or even (iii) λv = 1, λπ = 0 (a scheme suggested to us by Prof. R. M.
Wald). Introducing the expressions for 〈π̂R,I

k (ηc
k)〉� and 〈v̂R,I

k (ηc
k)〉� given in (27) into

(17) and (23) and taking the limit when −kηR goes to zero we obtain

εt2
p H2

4k3/2k′3/2
[

Mk Mk′(xR
k,vxR

k′,v + x I
k,vx I

k′,v)+ Nk Nk′(xR
k,π xR

k′,π + x I
k,π x I

k′,π )
]
,

(28)

with

Mk ≡ λv

[
1 + 1

(sc
k)

2

] 1
2
[

cos sc
k

sc
k

−
(

1

(sc
k)

2 − 1

)
sin sc

k

]
, (29a)

Nk ≡ λπ

[
1 − 1

(sc
k)

2 + 1

(sc
k)

4

] 1
2
[

cos sc
k − sin sc

k

sc
k

]
. (29b)

Here we have made use of the independence among the four sets of random variables
xR

k,v, x I
k,v, xR

k,π and x I
k,π . However, we need to recall that, within each set, the variables

corresponding to k and −k are not independent. This will be reflected by setting

xR
k,i xR

k′,i = δk,k′ + δk,−k′ and x I
k,i x I

k′,i = δk,k′ − δk,−k′ (here i = π, v), in accordance
with the commutators (26). Writing all these expressions together we conclude

lim−kηR→0
ψ�k (ηR)ψ

�∗
k′ (ηR) = ε

t2
p H2

4k3 (M
2
k + N 2

k)δkk′ . (30)

Comparing (30) with (24) we obtain a power spectrum of the form

Pψ(k) ≡ ε
t2
p H2

8π2 C(sc
k), (31a)

with the definition

C(sc
k) ≡ λ2

π

(
1 − 1

(sc
k)

2 + 1

(sc
k)

4

) [
cos sc

k − sin sc
k

sc
k

]2

+λ2
v

(
1 + 1

(sc
k)

2

) [
cos sc

k

sc
k

−
(

1

(sc
k)

2 − 1

)
sin sc

k

]2

. (31b)
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Fig. 1 The function C(sc
k) defined in (31b) for sk ∈ [−20, 0) using the symmetric scheme λv = λπ = 1

Note that, in general, the power spectrum is not flat, i.e. it depends on k through the
previously defined quantity sc

k ≡ kηc
k. That is, the dependance on k in the spectrum

is given by the function C(sc
k) (see for instance Fig. 1 for the particular case with

λv = λπ = 1). We will obtain a flat power spectrum if sc
k = const, that is, if the times

of collapse satisfy ηc
k = Ak−1, with A a (dimensionless) negative definite constant.

This is a non-trivial relationship which could be taken as providing clues about the
Nature of the mechanism behind the collapse. In Ref. [1], for instance, it was shown
that a simple generalization of a proposal by R. Penrose (involving aspects of what
he believes should be some features of quantum gravity) would lead exactly to this
simple rule for the times of collapse. Without that, we do not obtain the standard
Harrison–Zel’dovich shape of the power spectrum in any of the simple recipes for the
collapse scheme considered, i) λv = 0, λπ = 1, ii) λv = λπ = 1, or even iii) λv = 1,
λπ = 0. In fact, it is easy to see that in the absence of such specific pattern for the
collapsing time, it is impossible to adjust λv and λπ in order to recover an exactly flat
power spectrum, i.e. to adjust those values in a way that the expression (31b) becomes
independent of sc

k. In other words, a constant function (i.e. independent of sc
k) and the

functions appearing as coefficients accompanying λ2
v and λ2

π form a set of linearly
independent functions. However, we will see that in certain cases a nearly flat power
spectrum is possible, even with general patterns for the collapsing time, as long as
they occur well outside the Hubble radius, see expressions (33) and (34) bellow.

On the other hand, we do not presume that a collapse theory involving stochastic
components will lead to decay times that precisely follow the pattern ηc

k = Ak−1, and
therefore, it is natural to expect some deviations from the spectra found in standard
treatments. In order to illustrate the nature of these deviations we will consider a
simple modification from the above mentioned pattern which we parameterize here by
ηc

k = A/k+β, where β a constant with dimensions of length such that −∞ < sc
k < 0.

When β = 0 we recover a flat spectrum. For the sake of exploring the dependance on
k in the power spectrum as given by (31), it is convenient to define the dimensionless
quantity x ≡ k RD (recall that RD � 4000 Mpc). If we assume that the time of
collapse of each mode is given by ηc

k = A/k + β, then sc
k(x) ≡ kηc

k = A + Bx ,
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with B ≡ β/RD . In this way A, B and x are dimensionless quantities. It is important
to note that the multipoles l in the observed angular power spectrum cover the range
2 ≤ l ≤ 2600, which corresponds to the modes with 10−3 Mpc−1 ≤ k ≤ 1 Mpc−1,
that is, the range of observational interest for x is 1 ≤ x ≤ 103. Furthermore, for
the modes which the Sachs–Wolfe effect is dominant, the corresponding range of x is
given by 1 ≤ x ≤ 20.

Once we have chosen a particular form for ηc
k, we can compute the value of the

scale factor at the collapse time ac
k ≡ a(ηc

k), and compare it with the traditional value
of the scale factor at the time of “horizon crossing” during the inflationary regime,
aH

k ≡ a(ηH
k ), where ηH

k is the conformal time of horizon crossing for a mode k during
inflation. The horizon crossing occurs when the length corresponding to the mode k
has the same value as the Hubble radius, H−1

I , i.e. when k = aHI for comoving
modes; therefore, aH

k = k/HI (we recall that during the inflationary stage HI can
be considered as a constant). Thus, the ratio of the value between the scale factor at
horizon crossing for a mode k (during the inflationary regime) and its value at the time
of collapse for the same mode is

aH
k

ac
k

� k

HI

( −1

HIη
c
k

)−1

= k|ηc
k| = |A + Bx | = |sc

k|. (32)

Thus, for every mode k, we can read directly from this equation and our parame-
trization for the collapses (in terms of A, B and x), the relationship between the scale
factor at collapse and at horizon crossing.

It is interesting to note that we can recover a nearly flat power spectrum if we
demand that, within the symmetric scheme λv = λπ = 1, the collapses take place at
sc

k → −∞. In that case (and up to the first order in 1/sc
k) the expression (31a) takes

the form

Pψ(k)sc
k→−∞ ≡ ε

t2
p H2

8π2

[
1 + O2

(
1

sc
k

)]
. (33)

That is, in contrast to what is often assumed in the standard approach to the problem,
this option would correspond to the collapses (the process that breaks the initial sym-
metry, usually considered as tied to the “the quantum to classical transition”) taking
place when the modes are “well inside the Hubble radius” see (32) above. This situ-
ation is illustrated in Fig. 2 for some special values of the parameters A and B, and
assuming the symmetric collapse scheme. This is one case where no deviation from a
flat power spectrum is observed.

It is also convenient to analyze the limit sc
k → 0, corresponding to the opposite case

in which the collapses take place well outside the Hubble radius (this could correspond,
for instance, to the reheating time).9 In this case the expression (31a) takes the form

Pψ(k)sc
k→0 = ε

t2
p H2

8π2

[
λ2
π

(
1

9
+ O2(sc

k)

)
+ λ2

v

(
2

3
+ O2(sc

k)

)]
. (34)

9 We thank Prof. R. M. Wald for pointing this out.
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Fig. 2 The function C(x) in the interval x ∈ [1, 50], with A = −0.01, B = −100 and λv = λπ = 1. In
this case aH

k = |sc
k|ac

k with |sc
k| ∈ [100.01, 5000.01], i.e. ac

k � aH
k

Fig. 3 The function C(x) in the interval x ∈ [1, 50], with A = −0.01, B = −0.001 and λv = λπ = 1. In
this case aH

k = |sc
k|ac

k with |sc
k| ∈ [0.011, 0.06], i.e. ac

k � aH
k

This case is illustrated in Fig. 3, and corresponds to another case where no deviation
from a flat power spectrum is observed. Thus, even though sc

k may have a non-trivial k
dependence, the spectrum becomes independent of k, up to small corrections of order
sc

k � 1.
We also present the behavior of the function C(x) within the symmetric scheme in

some intermediate cases: Figs. 4, 5 and 6. It is interesting to point out that in Fig. 4, the
function C(x) would induce a pattern in the power spectrum similar to that usually
described in terms of a spectral index ns , i.e. so that the power spectrum is proportional
to kns−1, with ns 
= 1. Meanwhile, in Figs. 5 and 6, we observe that the collapse of
the wave-function would affect only to the large scale modes x = k RD ≤ 20 in both
cases (a similar result, in a different context, was found in [30]). The door is clearly
open for a more thorough investigation of the observationally allowed ranges, which
requires direct comparison with data. In order to do that one must include the effects
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Fig. 4 The function C(x) in the interval x ∈ [1, 50], with A = −0.01, B = −0.01 and λv = λπ = 1. In
this case aH

k = |sc
k|ac

k with |sc
k| ∈ [0.02, 0.51], i.e. ac

k > aH
k

Fig. 5 The function C(x) in the interval x ∈ [1, 50], with A = −1, B = −0.1 and λv = λπ = 1. In this
case aH

k = |sc
k|ac

k with |sc
k| ∈ [1.1, 6], i.e. ac

k < aH
k

Fig. 6 The function C(x) in the interval x ∈ [1, 50], and A = −1, B = −1 and λv = λπ = 1. In this case
aH

k = |sc
k|ac

k with |sc
k| ∈ [2, 51], i.e. ac

k < aH
k
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of the plasma acoustic oscillations, and a detailed analysis similar to that carried out
in [31], which is beyond the scope of the present work.

We should point out that the results we present here should be relevant irrespective
of the views one takes on our collapse proposals. The point is that, even if one follows
the standard views on the matter, but does so in a self-consistent way, one would come
at the end to essentially the predictions above regarding the form of the spectrum. Let
us assume that one chooses to ignore the shortcomings of the standard accounts and
accepts that, say decoherence, addresses (somehow) the issue at hand (i.e. evades the
conceptual problems discussed in Sect. 1 and the Refs. [1,2]), and that the mystery
lies only in the question concerning the precise mechanism that lies behind the fact
that, from the “options” one finds in the decoherence analyses (i.e. those displayed
in the reduced density matrix), a single particular one seems to be selected for “our
branch”. Within this point of view, one would be assuming that the initial symmetry has
been lost—at least for practical purposes (i.e. in our branch) as the relevant situation
would not longer be described by the full fledged superposition of inhomogeneous
and isotropic states (that make up the DB vacuum) but by the state corresponding to
our branch, as presumably one would be advocating when adopting such position.
That is, we would need to focus on a particular state that corresponds to the particular
realization or actualization (represented by a particular element in the density matrix).
Thus, it seems clear that for the sake of self-consistency, when studying aspects of
the anisotropies in the CMB, one should consider that state corresponding to such
“selected option”, and not the entire vacuum state which describes the homogeneous
and isotropic state of affairs previous to the “selection”.10 In following such views, the
discussion that we are presenting in this paper would have to be taken to represent the
effective description corresponding to “our perceived universe” (in a context where
one puts together something like the many-worlds interpretation with the arguments
based on decoherence). Although we definitely do not adhere such view for the reasons
explained in [2], it is clear that an effective description such as the one presented here
is what would have to be contemplated when dealing with the issues within any view
which pretends to allow one to deal with the details characterizing the inhomogeneities
and anisotropies in the cosmic structure and its imprints in the CMB that we do observe.

Finally, it is worth mentioning that in the collapse model introduced in [1], where
the collapse was considered within the framework of semiclassical gravity, one could
also obtain a similar expression for the power spectrum to that given in Eq. (31). In
that case only the matter fields were quantized, with the space-time metric considered
to be an effective (classical) description of gravity. Using semiclassical gravity one
obtains

10 The selection of course refers to the fact that, according to the standard arguments, the resulting density
matrix, after becoming essentially diagonal due to decoherence, represents an ensemble of universes, and
our particular one corresponds to one of them. That one can be considered as selected by Nature to become
realized. Alternatively, one might take the view that these other universes are also realized, and thus they
also exits in realms completely inaccessible to us. In that case the selection corresponds to that universe in
which we happen to exist.
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Pψ(k) = ε
t2
p H2

8π2

[
λ2

1

(
1 + 1

(sc
k)

2

)
sin2 sc

k + λ2
2

(
cos sc

k − sin sc
k

sc
k

)2
]
, (35)

with λ1 and λ2 two real numbers analogous to those given in λπ and λv . Again,
assumingλ1 = λ2 = 1 and taking the limit when sc

k → −∞ we arrive to an expression
of the form (33). However, taking the limit sc

k → 0 in (35) we obtain

Pψ(k)sc
k→0 = ε

t2
p H2

8π2

{
λ2

1

[
1 + O2(sc

k)
]

+ λ2
2

[
O4(sc

k)
]}
. (36)

Note that expression (36) exhibits a distinct behaviour from (34). That is, if the collapse
scheme is such that λ1 = 0 and λ2 = 1 (referred to as the Newtonian scheme in [1]),
then the shape of the spectrum is not flat but proportional to terms of order (sc

k)
4. This

contrasts with the behaviour of (34), where regardless of the values of λv and λπ , the
spectrum is always flat plus small corrections of order (sc

k)
2.

In other words, the predictions regarding the shape of the spectrum depend strongly
on what is the variable that characterizes the collapse, and the times at which the
collapse of each mode takes place. The effect becomes substantially reduced if the
collapse is tied to the Mukhanov–Sasaki variable, in the approach investigated in this
work, or if it is tied to the field variable, in the approach studied in previous works,
while the effects would be generically very large in the case where the collapse is tied
to the momentum conjugate field variable in that approach. On the other hand, the
spectrum would become close to the standard one if the collapse takes place always
with very small values of sc

k.
The point is that, even if the appropriate treatment of the situation at hand involves

either a collapse in the Mukhanov–Sasaki variables, or a collapse in the inflaton field,
we face the prospect of important deviations (from the flat one) in the predictions of the
primordial power spectrum. The fact is that in any scheme thought to be controlled by
essentially stochastic rules, one would not expect any relationship—like that requiring
the collapse to occur always for very small values of sc

k, or in a way that this quantity
was always independent of k—to hold exactly for all the modes involved, and thus
interesting departures from the standard predictions are to be expected. Needless is to
say that the effects might be much more important in the event that the collapse was
more appropriately treated with the Newtonian scheme (in which the collapse occurs
in the momentum conjugate to inflaton field modes). The discussion above shows
how the parameters characterizing the different collapse schemes lead to predictions
which can, in principle, be compared with the observational data, and are different
from the standard ones even when we followed the standard approach in quantizing
the gravitational sector of the cosmological perturbations.

4 Discussion

In this paper we have analyzed to what extend do the general properties and details of
the results obtained in previous works (e.g. see [1,25]) depend on the specific approach
one takes to deal with the quantum aspects of the problem. In those original treatments
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the analysis of the collapse had relied on what is commonly known as semiclassical
gravity: a classical description for the space-time metric (including its perturbations)
coupled to a quantum treatment of the inflaton field. The collapse was assumed to affect
the state of the inflaton field, while the metric simply “back-reacts” to the change in
the expectation value of the energy-momentum tensor, leading to a geometry that is no
longer homogeneous and isotropic. In the present work we implemented the collapse
hypothesis on a variable that simultaneously characterizes the metric and the scalar
field perturbations at the quantum level, the so called Mukhanov–Sasaki variable. That
is, we simply incorporated the collapse hypothesis into the standard treatment found on
the literature on the subject, as a way to deal with the basic issue of the transition from
the homogeneous and isotropic situation to another one lacking those symmetries,
and thus containing the seeds of cosmic structure. We have seen that confronting
this issue leads one to results indicating that one can generically expect deviations
from the flat primordial spectrum. We have also argued that even if one decides to
ignore its shortcomings and adopt the standard posture in which decoherence plus
the many world interpretation is taken to address the emergence of inhomogeneity
and anisotropy, simple self-consistency would lead one to find essentially the same
deviations in the form of the power spectrum as we have found here.

Going back to the present work, the point of view taken here a contrast with that
of our previous studies in the specific variable one takes for the realization of the
collapse hypothesis. In both types of treatments (the previous ones relying on semi-
classical gravity and the present one relying on the joint quantization of metric and
inflaton perturbations) we have found that the details of the specific model for the
collapse do have an impact on the CMB power spectrum. We have found that sim-
ilar results are obtained in both approaches if one assumes that the collapse occurs
always for very small values of sc

k, and one avoids the purely Newtonian scheme of
our previous works. On the other hand, it is easy to see that one of the most impor-
tant differences between the two approaches refers to the predictions on the existence
(or lack) of primordial tensor modes generated by the exact same mechanism (and
thus at comparable magnitude level) as the scalar ones. This leaves an important open
question: which one of the two is the most appropriate treatment of the subject?

We conclude by briefly discussing our current views on this issue (the interested
reader is directed to Section 8 of Ref. [2]). Let us consider how can the “collapse of the
wave function” fit into our general understanding of physical theory. The basic con-
stituents of our world, as far as we understand them now, are the matter fields described
by the standard model of particle physics (augmented to incorporate the masses of
neutrinos and the inflaton), the still mysterious dark matter and dark energy, and the
gravitational sector. Of these, the standard fields (including the electroweak and strong
interactions, as well as the quarks and leptons, and the inflaton) seem to fit quite nicely
into a framework incorporating quantum field theory on any reasonable background
space-time. The dark matter is likely to be described by some other fields with a simi-
lar structure as that given for the ordinary matter (although perhaps involving distinct
novel aspects like supersymmetry), and dark energy seems to be most economically
described by a cosmological constant (although certainly naturalness and other kinds
of issues are still outstanding). However, the component of our world which seems
hardest to fit with the general paradigms offered by quantum theory is gravitation.
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There exist a very extensive literature on this subject and we will not even attempt to
describe all the problems, either technical or conceptual, found in this road. However,
it seems quite clear that conceptually there is room for large differences from the usual
cases to arise when considering the incorporation of the quantum aspects of Nature in
the gravitational context. According to general relativity, gravitation reflects the struc-
ture of space-time itself, whereas quantum theory seems to fit most easily in contexts
where this structure is a given one. That is, quantum states are associated with objects
that “live” in space-times. For instance, the standard Schrödinger equation specifies
the time evolution of a system, the quantum states of fields characterize the system
in connection to algebras of observables associated with predetermined space-time
regions, and so forth. It is clear that mayor conceptual modifications are in order if
we want to describe the space-time itself in a quantum language. This issue appears
in various guises in the different approaches now available to quantum gravity, most
conspicuously as the problem of time which afflicts all attempts to deal with the subject
following a canonical approach. It seems thus natural to speculate that it is precisely in
this setting where something that departs as dramatically from the quantum orthodoxy
as the dynamical collapse of the wave function might find its origin. That is, it seems
plausible that in dealing with such conceptual problems, fundamental obstacles might
prevent the emergence of the usual quantum theory as the full effective description
when gravity is concerned. Lingering aspects of that more fundamental description
would take the form of deviations from the standard unitary evolution that characterize
quantum theory as we know it. In fact, there are already indications about such devia-
tions in analysis that attempt to recover time, in a relational setting, by using some vari-
ables of the theory to play the role of physical clocks (see for instance the Refs. [39,40]).

In other words, it seems natural to conjecture that the departure form the standard
paradigm, that we have considered here as described effectively by the “collapse of
the wave function”, corresponds to lingering features of the fundamental timeless (and
probably spaceless) theory of quantum gravity. If that is the case, the emergence of
space-time itself would be tied to the incorporation of such effective quantum descrip-
tion of matter fields living on space-time, and evolving approximately according to
standard quantum field theory on curved spaces, with some small deviations which
might include our hypothetical collapse. In that context it seems clear that space-time
itself would be nothing but an effective description of the underlying quantum gravity
reality. Ideas of this sort regarding emergent gravity have been indeed considered pre-
viously, for instance in [41,42]. This suggests that in the context where we consider
the collapse of the wave function the space-time itself must be regarded as an approx-
imate phenomenological description, and thus as something that can not be subjected
to quantization. Let us imagine for a moment that we want to consider the propagation
of heat in a medium. It is well known that this can be described by the heat equation
∂T/∂t − ∇2T = S, where S represents the heat sources. It is quite clear that despite
the fact that this looks like a standard type of equation for some field, it would be mean-
ingless to quantize it. Moreover, we can imagine some situation in which the source
of heat requires a quantum mechanical treatment, so that S becomes some quantum
operator. Under such conditions it seems reasonable that to the extent that the tem-
perature description is still relevant and of interest, the right hand side of the equation
above should be replaced by something like 〈Ŝ〉. Of course there will be situations that
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are so far removed from the context where the heat equation was derived that even the
notion of temperature itself would become meaningless. We equally expect that in the
quantum gravity theory we will be able to find many situations where the semiclas-
sical Einstein’s equations would be completely inappropriate, but in following with
our line of thought and simple analogy above, it seems quite likely that those would
correspond to situations where the concept of space-time itself becomes meaningless.

Of course all these arguments above are filled with “educated” guesses and
conjectures, and we can not take them as more than a guidance. Then, it is impor-
tant to determine to what extent our predictions depend on the precise way to imple-
ment our ideas: semiclassical gravity or the Mukhanov–Sasaki approach. The study
of this question was the main purpose of the analysis we have carried out in this man-
uscript. We have found that the predictions made by our proposal (i.e. the collapse)
are generically different from the standard ones, and can be directly confronted with
observations. (Indeed, as it has been argued in this paper, and was previously noticed
in [1,2], the standard treatment do not make any prediction at all). On the other hand,
the predictions found in this paper (and which were obtained following the standard
approach of quantizing the perturbations in the geometry but with the additional ingre-
dient we called the self-induced collapse hypothesis) are very similar to those obtained
in previous works (using the semiclassical approach) as far as the scalar perturbations
are concerned. This strongly suggests that it is not the manner in which we treat the
gravitational interaction (truly fundamental or as in an effective theory) that leads to
predictions different to the standard ones, but the collapse hypothesis itself, which was
introduced into the treatment in order to deal with the more fundamental issues we
touched at the Introduction regarding the origins of the primordial perturbations.
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Appendix: Ak(η, ηkc), Bk(η, ηk
c), Ck(η, ηk

c) and Dk(η, ηk
c) in Eq. (16)

In a universe close to de Sitter the functions Ak(η, η
c
k), Bk(η, η

c
k),Ck(η, η

c
k) and

Dk(η, η
c
k) in Eq. (16) take the form

Xk(η, η
c
k) = X (1)k (η, ηc

k) cos	c
k + X (2)k (η, ηc

k) sin	c
k. (37)

Here X denotes A, B,C or D, with the different X (i)k (η, ηc
k) given by

A(1)k = 1 − 1

s
C (1)

k , A(2)k = 1

sc
k

− 1

s
C (2)

k , (38a)
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B(1)k = −C (1)
k C (2)

k , B(2)k = −1 + 1

s2 + 1

sc 2
k

− 1

ssc
k

C (2)
k , (38b)

C (1)
k = 1

s
− 1

sc
k
, C (2)

k = 1 + 1

ssc
k
, (38c)

D(1)
k = 1 + 1

sc
k

C (1)
k , D(2)

k = −1

s

(
1 − s

sc
k

C (2)
k

)
. (38d)

Remember that we are using s ≡ kη, sc
k ≡ kηc

k and 	c
k ≡ s − sc

k.
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