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Abstract Applying the 1 + 3 formalism we write down the full set of equations
governing the structure and the evolution of self-gravitating cylindrically symmetric
dissipative fluids with anisotropic stresses, in terms of scalar quantities obtained from
the orthogonal splitting of the Riemann tensor (structure scalars), in the context of
general relativity. These scalars which have been shown previously (in the spherically
symmetric case) to be related to fundamental properties of the fluid distribution, such
as: energy density, energy density inhomogeneity, local anisotropy of pressure, dissi-
pative flux, active gravitational mass etc, are shown here to play also a very important
role in the dynamics of cylindrically symmetric fluids. It is also shown that in the static
case, all possible solutions to Einstein equations may be expressed explicitly through
three of these scalars.
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2646 L. Herrera et al.

1 Introduction

In a recent series of papers [1–4] a set of scalar functions obtained from the orthogonal
splitting of the Riemann tensor and referred to as structure scalars, were introduced
in the discussion about the structure and evolution of spherically symmetric fluid dis-
tributions. Such scalars (five in the spherically symmetric case) were shown to be
endowed with distinct physical meaning.

In particular they control inhomogeneities in the energy density [1], and the evo-
lution of the expansion scalar and the shear tensor [1–4]. Also in the static case all
possible anisotropic solutions are determined by two structure scalars [1].

Furthermore, the role of electric charge and cosmological constant in structure
scalars has also been recently investigated [5].

It is our purpose in this work to carry on a study on cylindrically symmetric fluid
distributions based on structure scalars. The motivation to undertake such an endeav-
our is provided on the one hand by the conspicuous physical meaning of such scalar
quantities, and on the other hand by the instrinsec interest of cylindrically symmetric
systems in general relativity (see [6–19] and references therein).

For doing so we shall apply the 1 + 3 formalism developped in [20–24]. However
we shall not follow a frame formalism but a coordinate basis approach in which the
orthonormal frame is only used to identify frame components of proper vectors as
scalars that can have a covariant interpretation.

We shall first define the structure scalars corresponding to a general cylindrically
symmetric fluid distribution, then we shall deploy the full set of equations governing
the structure and evolution of such a system and express them in terms of the above
mentioned scalars. A systematic though non exhaustive study of these equations is car-
ried out, including the coupling of the generalized “Euler” equation with a transport
equation.

Besides the structure scalars, we shall also introduce a set of scalars describing the
shear tensor and the magnetic and electric parts of Weyl tensor.

A subset of our system of equations will be shown to exhibit the role of structure
scalars on the evolution of the expansion scalar and the shear tensor. Another subset
will relate the shearfree condition, the dissipative flux and the magnetic part of the
Weyl tensor, while the last four equations of our system determine the inhomogeneity
factor and its evolution.

The static case shall be considered in detail. In general it will be shown that any
static solution is defined by a triplet of structure scalars.

Finally all results will be discussed in some detail in the last section, and a list of
issues deserving further attention will be presented.

2 Collapsing anisotropic dissipative fluid cylinders: basic definitions
and notation

We shall start by introducing basic definitions and notation to be used throughout the
text. We shall closely follow the notation of Di Prisco et al. [14] except for the fact
that we are now considering a dissipative fluid. We assume the general time dependent
diagonal non rotating cylindrically symmetric metric
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Cylindrically symmetric relativistic fluids 2647

ds2 = −A2(dt2 − dr2) + B2dz2 + C2dφ2, (1)

where A, B and C are functions of t and r . To represent cylindrical symmetry, we
impose the following ranges on the coordinates

− ∞ ≤ t ≤ ∞, 0 ≤ r, −∞ < z < ∞, 0 ≤ φ ≤ 2π, (2)

where we assume C = 0 at r = 0 which is a non-singular axis. We number the
coordinates x0 = t, x1 = r, x2 = z and x3 = φ.

Next, let us consider a collapsing cylinder filled with anisotropic and dissipative
fluid. Our study concerns either bounded or unbounded (cosmological) configurations,
in the former case we should further assume that the fluid is bounded by a timelike
cylindrical surface �.

Thus, the energy momentum tensor is given by

Tαβ = (μ + P)VαVβ + Pgαβ + qαVβ + qβ Vα + �αβ, (3)

where

�αβ = �s

(
Sα Sβ − 1

3
hαβ

)
+ �k

(
Kα Kβ − 1

3
hαβ

)
, (4)

hαβ = gαβ + VαVβ, (5)

qα = q Lα, (6)

and scalars �s,�k and q, are functions of t and r .
Alternatively, we may write the energy momentum tensor in the form

Tαβ = (μ + Pr )VαVβ + Pr gαβ + q(LαVβ + Lβ Vα)

+(Pz − Pr )Sα Sβ + (Pφ − Pr )Kα Kβ, (7)

where

(Pz − Pr ) ≡ �s, (Pφ − Pr ) ≡ �k,

P ≡ Pφ + Pz + Pr

3
. (8)

The unitary vectors V α, Lα, Sα, K α form a canonical orthonormal tetrad. V α is a
hypersurface orthogonal 4-velocity vector, Sα, K α are tangent to the orbits of the 2-
dimensional group that defines cylindrical symmetry and Lα is orthogonal to these
orbits and to V α . With the above definitions it is clear that μ is the energy density
(the eigenvalue of Tαβ for eigenvector V α), qα is the radial heat flux, whereas P is the
isotropic pressure.

We choose the fluid to be comoving in this coordinate system, hence

Vα = −Aδ0
α, Lα = Aδ1

α, Sα = Bδ2
α, Kα = Cδ3

α. (9)
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2648 L. Herrera et al.

Now, in order to avoid misunderstandings, the following remark is in order: It is well
known that the choice of the vector V α is not unique, we could for example choose a
“tilted” congruence and therefore the splitting of the energy-momentum tensor would
be different of course. In this sense our study is related to the congruence of observers
which are at rest at each point with respect to the corresponding fluid element, i.e. a
congruence for which the four velocity of the fluid is V α given by (9).

With the notation above we can write nonvanishing components of the Einstein
equations (see Appendix 1).

2.1 Kinematical variables

Since we are considering nonrotating fluid distributions, there are only three kinemat-
ical variables: the expansion 	, the four acceleration aα and the shear σαβ which as
usual are defined by:

	 = V α;α, (10)

aα = Vα;β V β. (11)

σαβ = V(α;β) + a(αVβ) − 1

3
	hαβ. (12)

Using (1), (10) and (12) we obtain for the expansion,

	 = 1

A

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
, (13)

and for the non zero components of the shear,

σ11 = A

3

(
2

Ȧ

A
− Ḃ

B
− Ċ

C

)
, (14)

σ22 = B2

3A

(
2

Ḃ

B
− Ȧ

A
− Ċ

C

)
, (15)

σ33 = C2

3A

(
2

Ċ

C
− Ȧ

A
− Ḃ

B

)
, (16)

where overdots and primes stand for partial differentiation with respect to t and r
respectively.

We can also express the shear tensor as

σαβ = σs

(
Sα Sβ − 1

3
hαβ

)
+ σk

(
Kα Kβ − 1

3
hαβ

)
, (17)

with

σs = 1

A

(
Ḃ

B
− Ȧ

A

)
, (18)
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Cylindrically symmetric relativistic fluids 2649

σk = 1

A

(
Ċ

C
− Ȧ

A

)
, (19)

and

σαβσαβ = 2

3

(
σ 2

s − σsσk + σ 2
k

)
. (20)

Observe that unlike the spherically symmetric case, the shear depends now on two
nonvanishing independent scalars. Finally, for the four acceleration aα we obtain

aα = aLα with a = A′

A2 . (21)

Before ending this section it should be recalled that in the case of bounded config-
urations, junction conditions (Darmois) should be satisfied on the boundary surface
in order to exclude the presence of thin shells. Such conditions shall not be deployed
here since we shall not use them but the reader may found a detailed discussion on
this point in [14,17].

3 The orthogonal splitting of Riemann tensor and structure scalars

In order to introduce the structure scalars corresponding to our problem, let us first
recall that the Riemann tensor may be expressed trough the Weyl tensor Cρ

αβμ, the
Ricci tensor Rαβ , and the scalar curvature R.

The electric (Eαβ ) and magnetic (Hαβ ) parts of the Weyl tensor Cαβγ δ , are defined
as usual by

Eαβ = CανβδV νV δ,

Hαβ = 1

2
ηανερC ερ

βδ V νV δ , (22)

where ηανερ is the Levi–Civita tensor and εαβρ = ηναβρV ν .
Calculating (22) for the metric (1) we obtain

Eαβ = Es

(
Sα Sβ − 1

3
hαβ

)
+ Ek

(
Kα Kβ − 1

3
hαβ

)
, (23)

with

Es = 1

A2 B2 C0202 − 1

A4 C0101,

Ek = 1

A2C2 C0303 − 1

A4 C0101, (24)

and

Hαβ = H(Sα Kβ + Sβ Kα), (25)
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with

H = − C0313

A2C2 , (26)

where the explicit expressions for the Weyl tensor components (computed for the
orthonormal “canonical tetrad”) may be found in the Appendix 2.

It is worth observing that now, unlike the spherically symetric case, the magnetic
part of the Weyl tensor does not vanish (in general) and the electric part depends on
two independent scalar functions.

Now, the orthogonal splitting of the Riemann tensor is carried out by means of three
tensors Yαβ, Xαβ and Zαβ defined as (see [1,25,26] for details)

Yαβ = RανβδV νV δ, (27)

Xαβ = 1

2
η ερ

αν R�
ερβδV νV δ, (28)

and

Zαβ = 1

2
εαερ R ερ

δβ V δ, (29)

where R�
αβνδ = 1

2ηερνδ R ερ
αβ .

Using the decomposition of the Riemann tensor in terms of the matter variables and
the electric and magnetic parts of Weyl tensor (see [1,27]) and (23) (27), we obtain:

Yαβ = 1

3
YT hαβ + Ys

(
Sα Sβ − 1

3
hαβ

)

+Yk

(
Kα Kβ − 1

3
hαβ

)
, (30)

with

YT = κ

2
(μ + Pz + Pφ + Pr ), (31)

Ys = Es − κ

2
(Pz − Pr ), (32)

Yk = Ek − κ

2
(Pφ − Pr ). (33)

In a similar way the tensor Xαβ can be written as:

Xαβ = 1

3
XT hαβ + Xs

(
Sα Sβ − 1

3
hαβ

)

+Xk

(
Kα Kβ − 1

3
hαβ

)
, (34)
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Cylindrically symmetric relativistic fluids 2651

with

XT = κμ, (35)

Xs = −Es − κ

2
(Pz − Pr ), (36)

Xk = −Ek − κ

2
(Pφ − Pr ). (37)

Finally, from (22), (25) and (29) we obtain

Zαβ = Hαβ + 1

2
κqρεαβρ. (38)

From (38) two scalar functions may be defined as follows:

Z H = 2H = (
Sα K β + Sβ K α

)
Zαβ, (39)

Zq = κq = (
Sβ K α − Sα K β

)
Zαβ. (40)

Thus the full set of structure scalars are now defined by the eight quantities:
YT , Ys, Yk, XT , Xs, Xk, Z H , Zq . The corresponding expressions of these scalars in
terms of the metric functions are given in the Appendix 3.

Before ending this section it would be useful to introduce a relevant quantity defined
in terms of tensors Yαβ, Xαβ, Zαβ . This is the super-Poynting vector defined by

Pα = εαβγ

(
Y γ

δ Zβδ − Xγ
δ Z δβ

)
, (41)

in our case the above expression becomes

Pα = 2H(Ek − Es)Sβ K γ εαβγ + κ2

2
(μ + Pr )qα. (42)

This four-vector describes the flux of superenergy and, as it is apparent from (42),
it embodies two contributions: one from the dissipative flux and the other from a term
which represents gravitational radiation [28,29], this last term being proportional to
the magnetic part of the Weyl tensor.

4 Basic equations

In this section we shall deploy the relevant equations for describing a dissipative self-
gravitating locally anisotropic, cylindrically symetric fluid. In spite of the fact that not
all these equations are independent (for example the field equations and the conserva-
tion equations (Bianchi identities)) we shall present them all, since depending on the
problem under consideration, it may be more advantageous using one subset instead
of the other. As mentioned in the Introduction these equation are obtained applying
the 1+3 formalism to cylindrical symmetry [20–24] (for the specific case of spherical
symmetry see [30]).
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4.1 Conservation laws

The conservation law T αβ

;β = 0 leads to the following couple of equations

Dtμ + 	

[
μ + 1

3
(Pr + Pz + Pφ)

]
+ ∇q + q

[
2a + 1

A

(
B ′

B
+ C ′

C

)]

+1

3
(Pz − Pr )(2σs − σk) + 1

3
(Pφ − Pr )(2σk − σs) = 0, (43)

∇ Pr + Dt q − 1

A

[
(Pz − Pr )

B ′

B
+ (Pφ − Pr )

C ′

C

]
+ (μ + Pr )a

−1

3
(σs + σk − 4	)q = 0, (44)

where Dt f = f,αV α and ∇ f = f,α Lα .

4.2 Ricci identities

From the Ricci identities for the vector Vα the following evolution equations for the
expansion (the Raychaudhuri equation) and the shear tensor, as well as some constraint
equations are obtained:

Dt	 − ∇a−a2−a
1

A

(
B ′

B
+ C ′

C

)
+ 1

3
	2+ 2

3
(σ 2

s −σsσk + σ 2
k )=−YT , (45)

a
1

A

(
2

B ′

B
− C ′

C

)
− a2 − ∇a − Dt (2σs − σk) + 1

3
(σ 2

k − 2σ 2
s + 2σsσk)

−2

3
	(2σs − σk) = 2Ys − Yk, (46)

2∇a + 2a2 − a
1

A

(
B ′

B
+ C ′

C

)
+ Dt (σs + σk) + 1

3
(σ 2

s + σ 2
k − 4σsσk)

+2

3
	(σs + σk) = −(Ys + Yk), (47)

1

3
∇ (2	 + σs + σk) + σs

B ′

AB
+ σk

C ′

AC
= Zq , (48)

Z H = ∇(σk − σs) +
(

σk
C ′

AC
− σs

B ′

AB

)
, (49)

4.3 Differential equations for the Weyl tensor derived from Bianchi identities

The Bianchi identities, using the Einstein equations, lead to the following equations:

−∇(Ys + Yk − Xs − Xk) − 3(Ys − Xs)
B ′

AB
− 3(Yk − Xk)

C ′

AC
− 6H(σs − σk)

=κ∇(2μ + Pr + Pz + Pφ)+3κ(μ + Pr )a + 2κq(	−σs −σk) + 3κ Dt q (50)
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Cylindrically symmetric relativistic fluids 2653

∇(2Ys −Yk −2Xs + Xk)+3(Ys −Xs)
B ′

AB
+ 3a(Ys −Yk − Xs + Xk)+6H(	−σk)

+6Dt H =−κ∇(μ − Pr − Pz + 2Pφ)−3κ(Pφ − Pr )
C ′

AC
+κq(	 − σs + 2σk),

(51)

σs(−Ys + 2Yk + Xs − 2Xk)+σk(2Ys − Yk − 2Xs + Xk)+	(Ys + Yk −Xs −Xk)

+Dt (Ys + Yk − Xs − Xk) − 6H

(
B ′

AB
− C ′

AC

)

= κ(μ + Pr )(	 − σs − σk) + κ Dt (μ + 2Pr − Pz − Pφ) + 3κ∇q + 6κqa, (52)

σs(2Ys − Yk − 2Xs + Xk) − σk(Ys + Yk −Xs −Xk)−	(2Ys − Yk − 2Xs + Xk)

−Dt (2Ys − Yk − 2Xs + Xk) − 6H
C ′

AC
− 6∇H − 12Ha

= κ(μ + Pz)(	 + 2σs − σk) + κ Dt (μ − Pr + 2Pz − Pφ) + 3κq
B ′

AB
. (53)

We shall next proceed to analyze different problems using different subsets of the
equations above.

5 Dynamical equation, transport equation and thermoinertial effect

We shall now elaborate on (44) (the generalized “Euler” equation) as follows.
By analogy with the spherically symmetric case let us first define the “velocity”

U = Ċ

A
= Dt C, (54)

then using (126) we get

DtU = a
C ′

A
− κ Pr C − C

A2

(
B̈

B
− Ȧ Ḃ

AB
+ ḂĊ

BC
− B ′C ′

BC
− A′B ′

AB

)
, (55)

that can be also written down as (see Appendix 1)

DtU = a
C ′

A
− κ Pr C + C

B2

(
R0202

A2 − R2323

C2

)
. (56)

Solving the above equation for the a term and feeding this back into (44) we obtain

(μ + Pr )DtU = −(μ + Pr )

[
κ Pr C − C

B2

(
R0202

A2 − R2323

C2

)]

+C ′

A

[
−∇ Pr + (Pz − Pr )

B ′

AB
+ (Pφ − Pr )

C ′

AC

]

+C ′

A

[
−Dt q + 1

3
(σs + σk − 4	)q

]
, (57)
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The equation above has the “Newtonian” form

Force = Mass densi ty × Acceleration.

Indeed, the term on the left is the inertial mass (density) multiplied by the proper
time derivative of the “velocity” U . On the right hand we have three different terms:
the first one is just the “gravitational force” term (see below), the second one includes
hydrodynamic force terms (presure gradient plus the anisotropic contributions), finally
the last term represent the contribution from dissipative processes.

Now, before proceeding further, let us identify the first term on the right of (57)
as the “gravitational force”. For doing that, let us consider the static vacuum case
(Levi-Civita). From Einstein Eqs. (124–128) it follows that the metric (1) in this case
has components:

B = α

rβ
, (58)

C = r (β+1)

α
, (59)

A = rβ(β+1)

α
, (60)

with α, β constant.
Then, the term

− C

B2

(
R0202

A2 − R2323

C2

)
, (61)

becomes

C

A2

β

r2 (β + 1)2. (62)

Now in the weak field limit the gravitational potential of an infinite line with mass
per unit of length σ is

� = 2σ ln r + constant. (63)

Therefore in that limit we have

β2 + β = 2σ, (64)

implying

β = −1 + √
1 + 8σ

2
, (65)
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Cylindrically symmetric relativistic fluids 2655

since in the weak field limit σ � 1 then

β ≈ 2σ. (66)

Thus (62) becomes in the weak field limit

C

A2

2σ

r2 , (67)

but in that limit C ≈ r, A ≈ 1 and the term above is just the gravitational force exerted
by the infinite line.

5.1 Thermoinertial effect

Let us now get back to our Eq. (57). In order to obtain an expression for the Dt q
term we have to resort to a transport equation. We shall need a transport equation
derived from a causal dissipative theory (e.g., the Müller-Israel-Stewart second order
phenomenological theory for dissipative fluids [31–34]).

Indeed, as it is already well known the Maxwell-Fourier law for radiation flux
leads to a parabolic equation (diffusion equation) which predicts propagation of per-
turbations with infinite speed (see [35–38] and references therein). This simple fact
is at the origin of the pathologies [39] found in the approaches of Eckart [40] and
Landau [41] for relativistic dissipative processes. To overcome such difficulties, var-
ious relativistic theories with non-vanishing relaxation times have been proposed in
the past [31–34,42,43]. Although the final word on this issue has not yet been said,
the important point is that all these theories provide a heat transport equation which is
not of Maxwell-Fourier type but of Cattaneo type [44], leading thereby to a hyperbolic
equation for the propagation of thermal perturbations (see [45] for a recent discussion
on this issue).

A key quantity in these theories is the relaxation time τ of the corresponding dissi-
pative process. This positive-definite quantity has a distinct physical meaning, namely
the time taken by the system to return spontaneously to the steady state (whether of
thermodynamic equilibrium or not) after it has been suddenly removed from it. There-
fore, when studying transient regimes, i.e., the evolution from a steady-state situation
to a new one, τ cannot be neglected.

Sometimes in the past it has been argued that dissipative processes with relaxation
times comparable to the characteristic time of the system are out of the hydrodynamic
regime. However, the concept of hydrodynamic regime involves the ratio between the
mean free path of fluid particles and the characteristic length of the system. Therefore
that argument can be valid only if the particles making up the fluid are the same ones
that transport the heat. However, this is never the case. Specifically, for a neutron star,
τ is of the order of the scattering time between electrons (which carry the heat) but this
fact is not an obstacle (no matter how large the mean free path of these electrons may
be) to consider the neutron star as formed by a Fermi fluid of degenerate neutrons.
The same is true for the second sound in superfluid Helium and solids, and for almost
any ordinary fluid. In brief, the hydrodynamic regime refers to fluid particles that not
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necessarily (and as a matter of fact, almost never) transport the heat. Therefore large
relaxation times (large mean free paths of particles involved in heat transport) does not
imply a departure from the hydrodynamic regime (this fact has been stressed before
[46], but it is usually overlooked).

Thus, the transport equation reads

τhαβ V γ qβ;γ + qα = −K hαβ
(
T,β + T a

) − 1

2
K T 2

(
τ V β

K T 2

)
;β

qα, (68)

where K and T denote thermal conductivity and temperature respectively, and whose
only component in our case is

τ Dtq + q = −K (∇T + T a) − 1

2
K T 2q Dt

( τ

K T 2

)
− 1

2
τq	. (69)

Then feeding back (69) into (57), we obtain

(μ+Pr )

[
1− K T

τ(μ + Pr )

]
DtU =−(μ + Pr )

[
1− K T

τ(μ+Pr )

] (κ

2
Pr C3 + m

) 1

C2

+C ′

A

[
−∇ Pr + (Pz − Pr )

B ′

AB
+ (Pφ − Pr )

C ′

AC

]
+ C ′

A

[
1

2

K T 2

τ
q Dt

( τ

K T 2

)

+q

τ
+ K∇T

τ
+ 1

3
(σs + σk)q − 5

6
q	

]
, (70)

where the function m is defined by

m = −κ Pr C3

2
− C3

B2

(
R0202

A2 − R2323

C2

)
. (71)

Equation (70) indicates how inertial thermal effects reduce the effective inertial mass.
This effect and its consequences, first reported in [47], has been extensively discussed
in the past (see [48–55] and references therein).

6 Evolution of the expansion scalar and the shear: the geodesic case

Let us now turn to Eqs. (45), (46) and (47). The former is just the evolution equation
for the expansion scalar (Raychaudhuri equation) for the cylindrically symmetric case
whereas the latter describes the evolution of the shear. For simplicity we shall restrict
ourselves to the geodesic case (a = 0).

First of all observe that the evolution of the expansion scalar is fully controlled by
the scalar YT (as in the spherically symmetric case). For the shear however we have
two equations (for the two independent components of the shear tensor). Introducing
the variables:

σI ≡ σs + σk; σI I ≡ 2σs − σk, (72)
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YI ≡ Ys + Yk; YI I ≡ 2Ys − Yk, (73)

(46) and (47) become (in the geodesic case)

DtσI = −YI − 1

9
(2σ 2

I I − σ 2
I − 2σI σI I ) − 2

3
	σI (74)

DtσI I = −YI I + 1

9
(2σ 2

I − 2σI σI I − σ 2
I I ) − 2

3
	σI I . (75)

The two equations above describe the evolution of the shear tensor, which is fully
controlled by the scalars YI and YI I (Ys, Yk). If we assume that the fluid is initially
(t = 0) shearfree and scalars YI and YI I vanish for a timelike interval (t1 > t ≥ 0),
then it follows at once from (74) and (75) that the fluid remains shearfree in that
interval. However, even small deviations from the vanishing condition of the above
mentioned scalars would produce deviations from the shearfree condition. In other
words, all the information about the stability of the shearfree condition is encoded in
YI and YI I (for a discussion on this problem in the spherically symmetric case see
[3]).

7 The link between shearfree condition, dissipative flux and the magnetic part
of the Weyl tensor

We shall now try to extract some of the information contained in (48) and (49).
First of all observe that (48) implies that under the shearfree condition the inho-

mogeneity of the expansion scalar ∇	 is controlled by Zq . Also from (49) it follows
at once that the shearfree condition implies that the magnetic part of the Weyl tensor
vanishes, this last result was known for perfect fluids [56].

Now, the remaining relevant question is: what can we infer about the shear from
the vanishing of H and q? We were unable to elucidate this question in the general
case, therefore in what follows, we shall restrict to the geodesic case (a = 0). Under
this latter condition

a = A′

A2 = 0 ⇒ A = A(t). (76)

Then assuming qα = Hαβ = 0, and taking into account (76), we obtain from (125)
and (26)

Ḃ ′

B
+ Ċ ′

C
− Ȧ

A

(
B ′

B
+ C ′

C

)
= 0, (77)

H = − 1

2A2

[
Ḃ ′

B
− Ċ ′

C
+ Ȧ

A

(
− B ′

B
+ C ′

C

)]
= 0. (78)

Combining and integrating the Eqs. (77) and (78) we obtain

B(t, r) = A(t)b(r) + α(t), (79)
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C(t, r) = A(t)c(r) + β(t), (80)

where b, c, α, β are arbitrary functions of their argument.
Next, from the regularity condition C(t, 0) = 0 and redefining the function c(r)

we may write

C(t, r) = A(t)c(r). (81)

From the above equation and (19) it follows that σk = 0, then (48) and (49) become

∇(2	 + σs) + 3σs
B ′

AB
= 0, (82)

∇σs + σs
B ′

AB
= 0. (83)

Integrating (83) we obtain

σs = f (t)

B
. (84)

where f (t) is an arbitrary integration function. However since we have σs(t, 0) = 0
we must put f (t) = 0 implying that σs = 0 too. Also, from (82) ∇	 = 0.

Inversely, if the fluid is shearfree and geodesic then it is necessarily nondissipative.
Indeed, if the fluid is shearfree this condition can be integrated (in general, not only
in the geodesic case) to obtain (see [14] for details)

B = Ab(r) and C = Ac(r). (85)

where b and c are arbitrary functions of r .
Then, feeding back the above expressions for B and C into (13) and taking into

account (76) it follows that the expansion scalar is homogeneous (∇	 = 0), implying
because of (48) that geodesic shearfree fluid is necessarily non-dissipative.

Thus we have proved that for the geodesic fluid, qα = Hαβ = 0 ⇔ σαβ = 0.
Whereas in the general case we have stablished that σαβ = 0 ⇒ 2

3∇	−κq = Hαβ =0.

8 The inhomogeneity factor and its evolution

In the spherically symmetric case it has been shown that in the absence of dissipation
the necessary and sufficient condition for the vanishing of the (invariantly defined)
spatial derivative of the energy density is the vanishing of the scalar associated to
the trace free part of Xαβ . For obvious reasons such a quantity was called the inho-
mogeneity factor. In other words, the inhomogeneity factor (say �) is that combina-
tion of physical and geometric variables, such that its vanishing is a necessary and
sufficient condition for the homogeneity of energy density (if dissipation is present
then additional terms including dissipative flux appear [57]).
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The extension of such a definition to situations where there is only one relevant
spatial coordinate (as in the case considered here) is rather obvious:

� = 0 ⇔ ∇μ = 0.

The two Eqs. (50) and (51) determine the inhomogeneity factor, whereas (52) and
(53) describes its evolution.

Nevertheless, in the present case the situation is much more complicated (than in the
spherically symmetric case) due to the fact that not only the tensor Xαβ is expressed in
terms of three structure scalars (instead of two in the spherically symmetric case) but
also due to the fact that the magnetic part of Weyl tensor is in general not vanishing
and appears as a possible source of energy density inhomogeneity.

Because of the above reasons, we were unable (in the general case) to identify
explicitly the inhomogeneity factor. The very simplified cases where this was possible
are not very interesting and therefore we shall not include them here.

9 All static anisotropic cylinders

We shall show in this section that all possible solutions of the static case are completely
determined by a triplet of structure scalars. This is a reminiscence of the spherically
symmetric case, where all possible static solutions are determined by a couple of
structure scalars [1].

In the static case the field equations read:

− B ′′

B
− C ′′

C
+ A′

A

(
B ′

B
+ C ′

C

)
− B ′

B

C ′

C
= κμA2, (86)

A′

A

(
B ′

B
+ C ′

C

)
+ B ′

B

C ′

C
= κ Pr A2, (87)

A′′

A
+ C ′′

C
−

(
A′

A

)2

= κ Pz A2, (88)

A′′

A
+ B ′′

B
−

(
A′

A

)2

= κ Pφ A2. (89)

Then introducing the auxiliary variables

ω = A′

A
, ξ = B ′

B
, ζ = C ′

C
, (90)

we can write the field equations as:

−ξ ′ − ξ2 − ζ ′ − ζ 2 + ωξ + ωζ − ξζ = κμA2, (91)

ωξ + ωζ + ξζ = κ Pr A2, (92)

ω′ + ζ ′ + ζ 2 = κ Pz A2, (93)

ω′ + ξ ′ + ξ2 = κ Pφ A2, (94)
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or,

ω′ + ωξ + ωζ = YT A2, (95)

ω′ + ξ ′ + ξ2 − ωξ − ωζ − ξζ = κ(Pφ − Pr )A2, (96)

ω′ + ζ ′ + ζ 2 − ωξ − ωζ − ξζ = κ(Pz − Pr )A2, (97)

ξ ′ + ξ2 − ζ ′ − ζ 2 = κ(Pφ − Pz)A2. (98)

The scalars Es y Ek take the form

Es = 1

2A2

(
−ω′ + ζ ′ + ζ 2 + ωξ − ωζ − ξζ

)
, (99)

Ek = 1

2A2

(
−ω′ + ξ ′ + ξ2 − ωξ + ωζ − ξζ

)
. (100)

Then, using (32), (33), (96), (97), (99) and (100) we can write

Ys A2 = −ω′ + ωξ, (101)

Yk A2 = −ω′ + ωζ. (102)

Integrating (101) we obtain

A = α exp
∫

B

(∫ −Ys A2

B
dr

)
dr , (103)

where α is a constant. Thus for any given Ys , we obtain from (103) a relationship
between A and B,

B = B(A) ⇒ ω = ω(ξ). (104)

Next, from (102)

A = γ exp
∫

C

(∫ −Yk A2

C
dr

)
dr , (105)

where γ is a constant. Therefore, giving Yk we obtain a relationship between A and
C ,

C = C(A) ⇒ ω = ω(ζ ). (106)

Then from (104) and (106) we can express any of (ω, ξ, ζ ) in terms of the other two.
Therefore in (98) we can express ξ and ζ in terms of ω, obtaining a differential equa-
tion for ω. This can be solved for a given Pφ − Pz and once ω is obtained, we can get
ξ and ζ from (104) and (106).
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Alternatively we may use (96) or (97) in which case we should provide either
Pφ − Pr or Pz − Pr . Once the metric functions are found we can obtain physical
variables from field equations.

Now, from (33) and (37) it follows

κ(Pφ − Pr ) = −(Yk + Xk), (107)

and from (32) and (36)

κ(Pz − Pr ) = −(Ys + Xs). (108)

Therefore any static anisotropic solution is determined by a triplet of scalars
(Yk, Ys, Xk) or (Yk, Ys, Xs).

We shall next consider some special cases.

9.1 Isotropic cylinders

In this case Pr = Pz = Pφ = P and field Eqs. (87–89) become:

A′

A

(
B ′

B
+ C ′

C

)
+ B ′

B

C ′

C
= κ P A2, (109)

+ A′′

A
+ C ′′

C
−

(
A′

A

)2

= κ P A2, (110)

+ A′′

A
+ B ′′

B
−

(
A′

A

)2

= κ P A2. (111)

Then, from (110) and (111) we obtain

C ′′

C
= B ′′

B
, (112)

which in terms of the auxialiary variables introduced before, read

ζ ′ + ζ 2 = ξ ′ + ξ2, (113)

which is a Ricatti equation for ζ ( or ξ ).
The general solution of (113) takes the form

ζ = ξ + 1

k(r)
, (114)

with

k(r) = e2
∫

ξdr
(∫

e−2
∫

ξdr dr + α

)
. (115)
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Turning back to B and C we can integrate (114), to obtain

C = βBe

∫ 1

B2
(∫ dr

B2 +α

) dr

, (116)

where β is a constant. From regularity conditions we must impose that C(t, 0) = 0
for any acceptable solution.

9.2 Conformally flat solutions

In the static case we obtain from (24)

Es = 1

2A2

[
A′

A

(
B ′

B
+ A′

A
− C ′

C

)
− B ′

B

C ′

C
− A′′

A
+ C ′′

C

]
, (117)

Ek = − 1

2A2

[
A′

A

(
B ′

B
− A′

A
− C ′

C

)
+ B ′

B

C ′

C
+ A′′

A
− B ′′

B

]
. (118)

Then, defining two functions c(r) and b(r) such that C = Ac(r) and B = Ab(r) the
conformal flatness condition (Es = Ek = 0) implies

c′′ = b′

b
c′, (119)

and

b′′ = c′

c
b′. (120)

From (120) we get c′ = γ b′ (where γ is a constant) and feeding this back into (119)
we obtain

b(r) = β cos (εr), (121)

where ε and β are constants, and the regularity condition c(0) = 0 has been used.
In the isotropic case we obtain from (109–111)

A = constant; μ = −3P = constant. (122)

All these, conformally flat, solutions have been described in detail in [58], including
the discussion on junction (Darmois) conditions on the boundary surface.

10 Discussion and summary of results

A comprehensive study on cylindrically symmetric relativistic fluids by means of
structure scalars have been carried out.
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We have first defined the complete set of such scalars corresponding to our problem.
It turns out that there are eight structure scalars (XT , Xk, Xs, YT , Ys, Yk, Zq , Z H ) in
contrast with the spherically symmetric case where there are only five. Besides, two
scalars defining the shear tensor (σk, σs) and three scalars defining the electric and
magnetic parts of Weyl tensor (Ek, Es, H ) were also introduced.

Next we have stablished a set of equations governing the structure and evolution of
the system under consideration and brought out the role of structure scalars in those
equations, in order to exhibit the physical relevance of the former.

We have first considered the dynamical Eq. (44) derived from conservation laws.
We have next coupled the above mentioned equation with a transport equation derived
from a causal dissipative therory. The resulting equation exhibits the decreasing of the
effective inertial mass term due to thermal effects.

Next, we have brought out the relevance of structure scalars. Our main results in
this respect can be summarized as follows:

• Three of them Zq , Z H and XT , have an evident physical meaning, and therefore
do not require further discussion.

• YT has been shown to control the evolution of the expansion scalar through the
Raychaudhuri Eq. (45), whereas Ys and Yk control the evolution of the shear
through (46) and (47).

• A very tight link between the shearfree condition, Zq and Z H appears from Eqs.
(48) and (49). Thus, it has been shown in the geodesic case that necessary and
sufficient conditions for the fluid to be shearfree are Zq = Z H = 0. In the general
case it has been shown that the shearfree condition implies the vanishing of the
magnetic part of the Weyl tensor and a direct relationship between the inhomoge-
neity of the expansion scalar and the dissipative flux. The former result explains the
absence of gravitational radiation in the shearfree case already commented in [14].

• The two Eqs. (50) and (51) relates Xs, Xk, Ys, Yk with energy density inhomo-
geneity and therefore should provide a definition of the inhomogeneity factor(s)
in terms of some structure scalars. In the same order of ideas Eqs. (52) and (53)
describe the evolution of such factor(s). Unfortunately, in the general case, we
were unable to isolate them (it was possible only in very simplified situations).

• We have next considered the static case. The main result from this section is the
obtained procedure allowing to determine any possible solution in terms of a triplet
of structure scalars (Yk, Ys, Xk) or (Yk, Ys, Xs). Particular subcases such as isotro-
pic or conformally flat cylinders were studied, obtaining specific restrictions about
the existence of solutions satisfying regular conditions on the symmetry axis.

As expected, in a general study as the one presented here, a great deal of questions
remains unanswered. Thus before ending we would like to present a partial list of
issues that should be addressed in the future:

• From (42) it follows that the “gravitational” term vanishes not only if H = 0 but
also if Ek = Es . Why? What else does this latter condition imply?

• We have seen that the shearfree condition implies the vanishing of the magnetic
part of the Weyl tensor. What are the implications on the shear of the vanishing
of the magnetic part of the Weyl tensor in the general case?

• Are there purely magnetic solutions?
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• Could it be possible to find the exact solution corresponding to nondissipative
dust with shear (the analog of the Lemaitre–Tolman–Bondi solution)? Would this
solution have a nonvanishing magnetic part of Weyl tensor?

• We have identified the subset of equations which should determine the inhomo-
geneity factor and its evolution, but we were unable to isolate such a factor in the
general case. Is this possible?
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Appendix 1

The nonzero components of the Einstein equations

Gαβ = κTαβ, (123)

are

G00 = Ȧ

A

(
Ḃ

B
+ Ċ

C

)
+ Ḃ

B

Ċ

C
− B ′′

B
− C ′′

C

+ A′

A

(
B ′

B
+ C ′

C

)
− B ′

B

C ′

C
= κμA2, (124)

G01 = − Ḃ ′

B
− Ċ ′

C
+ Ȧ

A

(
B ′

B
+ C ′

C

)

+
(

Ḃ

B
+ Ċ

C

)
A′

A
= −κq A2, (125)

G11 = − B̈

B
− C̈

C
+ Ȧ

A

(
Ḃ

B
+ Ċ

C

)
− Ḃ

B

Ċ

C

+ A′

A

(
B ′

B
+ C ′

C

)
+ B ′

B

C ′

C
= κ Pr A2, (126)

G22 =
(

B

A

)2
[
− Ä

A
− C̈

C
+

(
Ȧ

A

)2

+ A′′

A
+ C ′′

C

−
(

A′

A

)2
]

= κ Pz B2, (127)

G33 =
(

C

A

)2
[
− Ä

A
− B̈

B
+

(
Ȧ

A

)2

+ A′′

A
+ B ′′

B

−
(

A′

A

)2
]

= κ PφC2. (128)
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Appendix 2

The non null components of the Weyl tensor Cαβγ δ for (1) are

C0101 = − A2

6

[
2

Ä

A
− B̈

B
− C̈

C
− 2

(
Ȧ

A

)2

+ 2
Ḃ

B

Ċ

C
− 2

A′′

A
+ B ′′

B
+ C ′′

C

+2

(
A′

A

)2

− 2
B ′

B

C ′

C

]
= −

(
A2

BC

)2

C2323, (129)

C0202 = B2

6

[
Ä

A
− 2B̈

B
+ C̈

C
−

(
Ȧ

A

)2

+ 3 Ȧ

A

(
Ḃ

B
− Ċ

C

)
+ Ḃ

B

Ċ

C

− A′′

A
− B ′′

B
+ 2C ′′

C
+

(
A′

A

)2

+ 3A′

A

(
B ′

B
− C ′

C

)
− B ′

B

C ′

C

]

= −
(

B

C

)2

C1313, (130)

C0212 = − B2

2

[
Ḃ ′

B
− Ċ ′

C
− Ȧ

A

(
B ′

B
− C ′

C

)
−

(
Ḃ

B
− Ċ

C

)
A′

A

]
=−

(
B

C

)2

C0313,

(131)

C0303 = C2

6

[
Ä

A
+ B̈

B
− 2

C̈

C
−

(
Ȧ

A

)2

− 3
Ȧ

A

(
Ḃ

B
− Ċ

C

)
+ Ḃ

B

Ċ

C

− A′′

A
+ 2

B ′′

B
− C ′′

C
+

(
A′

A

)2

− 3
A′

A

(
B ′

B
− C ′

C

)
− B ′

B

C ′

C

]

= −
(

C

B

)2

C1212. (132)

The two components of the Riemann tensor appearing in (56) are

R0202 = −B2
(

B̈

B
− Ȧ

A

Ḃ

B
− A′

A

B ′

B

)
, (133)

R2323 =
(

BC

A

)2 (
Ḃ

B

Ċ

C
− B ′

B

C ′

C

)
. (134)

Appendix 3

From their definition it is not difficult to express structure scalars through metric
functions and their derivatives, these expressions are:

XT = 1

A2

(
Ȧ Ḃ

AB
+ ȦĊ

AC
+ ḂĊ

BC
− B ′′

B
− C ′′

C
+ A′ B ′

AB
+ A′C ′

AC
− B ′C ′

BC

)
, (135)
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Xs = 1

A2

(
ȦĊ

AC
− ḂĊ

BC
− C ′′

C
+ A′C ′

AC
+ B ′C ′

BC

)
, (136)

Xk = 1

A2

(
Ȧ Ḃ

AB
− ḂĊ

BC
− B ′′

B
+ A′B ′

AB
+ B ′C ′

BC

)
, (137)

YT = 1

A2

(
− Ä

A
− B̈

B
− C̈

C
+ Ȧ2

A2 + Ȧ Ḃ

AB
+ ȦĊ

AC
+ A′′

A
− A′2

A2 + A′B ′

AB
+ A′C ′

AC

)
,

(138)

Ys = 1

A2

(
Ä

A
− B̈

B
− Ȧ2

A2 + Ȧ Ḃ

AB
− A′′

A
+ A′2

A2 + A′B ′

AB

)
, (139)

Yk = 1

A2

(
Ä

A
− C̈

C
− Ȧ2

A2 + ȦĊ

AC
− A′′

A
+ A′2

A2 + A′C ′

AC

)
. (140)
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