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Abstract We study the existence and properties of wormhole throats in modified
f (R) gravity theory. Specifically, we concentrate on the cases where the lapse is
not necessarily constant, and hence are not limited to the zero tidal force scenar-
ios. In the class of theories whose actions are generated by Lagrangians of the form
f (R) = ∑

αn Rn we find parameters which allow for the existence of energy con-
dition respecting throats, which do not exist in Einstein gravity. We also consider the
effect of the modified action on the anisotropy of the models, and find that modified
gravity can minimize the amount of anisotropy required to support the existence of a
throat. In both these respects, the sector containing theories with positive n is more
promising than the negative n sector in comparison to Einstein gravity alone, with
large n being most favorable.

Keywords Modified gravity · Anisotropy · Wormholes

A. DeBenedictis (B)
Department of Physics, Simon Fraser University, Burnaby,
BC, Canada
e-mail: adebened@sfu.ca

A. DeBenedictis
The Pacific Institute for the Mathematical Sciences, Simon Fraser University,
Burnaby, BC, V5A 1S6, Canada

D. Horvat
Department of Physics, Faculty of Electrical Engineering
and Computing, University of Zagreb, Unska 3, 10 000, Zagreb, Croatia
e-mail: dubravko.horvat@fer.hr

123



2712 A. DeBenedictis, D. Horvat

1 Introduction

General relativity is arguably the most successful theory of gravity to date. The theory,
aside from being pleasing on grounds such as diffeomorphism invariance, has passed
all major tests in the solar system. On scales larger than the solar system, general
relativity, supplemented with non-standard matter fields such as dark matter or dark
energy, explains the dynamics of the large-scale structure of the universe rather well.

However, there has long been an interest in extended theories of gravitation, which
possess general relativity in some limit (for example, see [1,2].) These extensions are
mainly motivated by the desire to eliminate the potentially “exotic” non-standard mat-
ter fields mentioned [3,4], or to mimic some low energy quantum gravity effects which
are thought to manifest at very high curvatures [5,6]. Other motivations are perhaps
more academic; we have only been able to study gravity effectively in its weak limit,
and hence cannot be certain that Einstein gravity holds in stronger gravitational fields.
Therefore it is of interest to study gravitational theories which are diffeomorphism
invariant and give Einstein gravity in an appropriate limit, but deviate from Einstein
gravity in some way outside of the realm where gravitational effects have commonly
been observed. This, admittedly, gives us much freedom regarding the types of theories
that may be successful candidates.

Of particular interest are the class of theories known as f (R) gravity. These theories
consider gravitational fields generated by actions of the form [7]:

S = 1

2κ

∫ √−g f (R) d4x +
∫ √−g Lmat(g) d4x , (1)

where f (R) is some function of the Ricci scalar, R and Lmat(g) is the matter
Lagrangian density. The equations of motion are generated via varying this action
with respect to the metric, and demanding that this variation vanish. These equations
of motion are:

∂ f (R)
∂ R Rμ

ν − 1

2
f (R) δμ

ν − ∇μ∇ν
∂ f (R)
∂ R + δμ

ν � ∂ f (R)
∂ R = κ T μ

ν , (2)

where as usual T μ
ν is the stress-energy tensor of the matter field which comes from

varying the matter action.
A number of earlier generalizations to Einstein gravity fall within the paradigm of

f (R) theories. For example, theories with f (R) = R + α2 R2 have long been studied
(called “R-squared” gravity. See, for example, [8–14]). The Starobinsky inflationary
theory [15] may be the most popular application of R-squared gravity theory. In the
opposite regime, where curvature is low, there has been less interest in modifying
Einstein gravity. However, it is worth mentioning that f (R) theory with inverse pow-
ers of the Ricci scalar has been considered as a possible candidate to explain the
observed accelerated expansion of the universe [16–24]. Inverse Ricci terms may also
appear in certain sectors of string/M theory (see [25,26] for example). The vacuum
state for inverse-R theories is not Minkowski space-time, but is instead either deSitter
or anti-deSitter space-time. Admittedly, these inverse theories are highly constrained
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On wormhole throats 2713

from stability considerations or solar system tests but may not be completely ruled
out. (See [27–36] and references therein for a discussion of the restrictions.) For gen-
erality we also include this sector in our study. A thorough study of solutions in Rn

cosmology may be found in [37] as well as [38] and a complete discussion of f (R)

modifications to aid acceleration may be found in [39]. Outside of cosmology, and
perhaps more relevant here, studies have been performed that have more bearing to
stellar physics [40–48]. In another popular extension, namely that of f (T ) gravity
where T is the torsion scalar, such solutions have also been studied [49,50].

Given that integer powers of R have arguably generated the most interest in f (R)

extensions, we propose here to study the properties of wormhole throats in gravity
theories given by

f (R) =
∑

n

αn Rn , (3)

with the αn constants. This is quite general as any f (R) analytic in R may be expanded
as such a power series (in the positive n sector) such as exponential gravity [51]. For
completion, we allow for both positive and negative powers of R in the action (hence
extending to f (R) expandable in negative powers as well). Of course, this series
includes the n = 1 term (Einstein term) and can include n = 0 (cosmological con-
stant).

The wormhole is of interest as it may provide a simple model for the space-time
foam thought to be manifest at very high energies, where the corrections to Einstein
gravity due to higher curvature terms may be important in encompassing some quan-
tum gravity effects. As well, exhaustive studies have been performed on wormhole
geometries in Einstein gravity and their properties (mainly in the static cases with
spherical and axial symmetry) are now well known in Einstein gravity. For example,
it is an interesting property that static wormhole throats necessarily must violate the
weak/null energy conditions in Einstein gravity [52,53] and, furthermore, must be
anisotropic. It has been of much interest in wormhole physics to find either some-
what realistic matter models which can meet these slightly exotic conditions in a way
required to support a wormhole throat, or else to consider alternative gravitational the-
ories which may allow for energy condition respecting matter. In the latter vein, due
to the complexity of the resulting equations, the zero tidal force class of wormholes
is most often studied (gtt = const.). Even then, analytic models are hard to come by
and one often resorts to numerics. The zero tidal force models are interesting due to
their tractability, which allows one to study important properties of these geometries.
However, they may not be very realistic from a physics perspective though, as they
yield a constant frequency shift in inhomogeneous structures possessing a preferred
center and, in the weak-field limit, a constant Newtonian potential.

In this work we study wormhole throats and without the restriction of zero tidal
force, although we do consider the zero tidal force cases as well for completion.
The consideration of the throat is in many ways more general than considering the
asymptotics, as the most salient features of a wormhole occur in the throat region.
For example, in Einstein gravity, the necessary violation of energy conditions in static
spherically-symmetric wormholes occurs in the neighborhood of the throat, regardless
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of asymptotics. In fact, in the Einstein gravity scenarios, if the matter field falls off
sufficiently fast, or is patched to a vacuum or other solution, the properties far from
the throat do not generally differ greatly from similar systems with trivial topology.
As well, it has been argued (for example in [53]) that the global topology is too limited
a tool to study wormholes, and a local geometric analysis near the throat is generally
more useful in discerning interesting properties of wormholes. In such cases, the throat
does not necessarily coincide with the common definition of a wormhole, which relies
on global properties, and is viewed as an interesting object in its own right, capable
of describing more general scenarios than just wormholes. We therefore now concen-
trate on the near throat region and study the properties in this vicinity. Admittedly, in
some cases, demanding flatness at infinity would place extra restrictions on the prop-
erties of the wormhole [54,55] but, as the asymptotics of the universe are not exactly
known, and we are interested in the existence of throats only, we will not consider
such restrictions here.

In Sect. 2 we briefly review some background material and present a non-standard
coordinate gauge that is more suited for wormhole analysis than the standard spherical
coordinate chart. We discuss the mathematical construction of the throat in this chart.
This is followed by a study, which is analytic when possible but otherwise numerical,
of various scenarios depending on the terms present in the gravitational action. Of
special importance, due to their physical relevance, are the non-zero tidal force mod-
els, which we examine in some detail. We particularly concentrate on the properties
of energy conditions as well as the degree of anisotropy. In general, we find that the
parameter space of Einstein gravity supplemented with terms where n is positive is
more favorable in both these respects than Einstein gravity alone for a large range of
parameters. Supplements with negative n have either a very small parameter space
where they improve the energy conditions, or else tend to worsen the situation when
compared to Einstein gravity alone. Finally, in Sect. 3, we conclude the study.

2 The models

As is common in wormhole studies in Einstein gravity, we will utilize here an aniso-
tropic fluid source whose stress-energy tensor is given by:

T μ
ν = (ρ + pt )u

μuν + pt δμ
ν + (pr − pt )s

μsν . (4)

Here ρ, pt and pr are the energy density, the perpendicular (to the inhomogeneous
direction) pressure, and the parallel pressure respectively as measured in the fluid ele-
ment’s rest frame. The vector uμ is the fluid 4-velocity and sμ is a space-like vector
orthogonal to uμ. These vectors satisfy:

uμuμ = −1, sμsμ = +1, uμsμ = 0. (5)

Since we are interested in the properties of the actual material generating the gravita-
tional field, we do not transform the system into an effective scalar-tensor system but
instead keep the geometry and the material properties explicit.
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On wormhole throats 2715

We impose spherical symmetry and hence may write the metric as

ds2 = −e�(r) dt2 + e	(r) dr2 + r2 dθ2 + r2 sin2(θ) dϕ2 , (6)

= −e�(r) dt2 +
{

1 + [∂r P(r)]2
}

dr2 + r2 dθ2 + r2 sin2(θ) dϕ2 ,

where the function P(r) describes the profile of the three geometry for fixed θ and ϕ

(see below for details). In this chart the Ricci scalar is given by

R = 1

2r2
[
1 + (P ′)2]2

[
4(P ′)4 − 4r(P ′)2�′ − 4r�′ + 8r P ′ P ′′ + 2r2 P ′ P ′′�′

+ 4(P ′)2 − 2r2(P ′)2�′′ − r2(P ′)2(�′)2 − 2r2�′′ − r2(�′)2
]
, (7)

where the prime denotes differentiation with respect to r . Although the above is the
most common form of metric system to locally describe spherically symmetric gravi-
tational fields, this coordinate system is not ideal for studies of wormhole throats and
hence we use a different chart, which we now present.

2.1 Wormholes

We consider here static throats, which must be anisotropic in Einstein gravity, in the
class of modified gravities given by f (R) = ∑

n
αn Rn for both positive and negative n.

As mentioned previously, it is common in the literature on wormholes to consider zero
tidal force models via the condition gtt (r) = constant. However here we relax this
restriction and study more general scenarios. As well, although the spherical coordi-
nate chart of (6) can be utilized for wormhole throats if care is taken, it is not optimal,
as grr (r) → ∞ as r → r0 (see Fig. 1 and Eq. (6)), and the most interesting properties
of wormholes are arguably found near the throat region. Therefore, we use a different
chart for the study of wormholes which essentially involves tilting the standard spher-
ical chart by π/2. The wormhole throat is then given via the creation of a surface of
revolution of the profile curve, r = Q(x), as shown in Fig. 1 (also see figure caption).
In this new chart, the space-time metric’s line element may be written as

ds2 = −e�(x) dt2 +
{

1 + [∂x Q(x)]2
}

dx2 + Q2(x) dθ2 + Q2(x) sin2(θ) dϕ2. (8)

Note that in this new chart the metric is analytic at the throat since ∂x Q(x) → 0,
and hence gxx (x) → 1 as one approaches the throat (x = 0)1. Also, only one chart is
required now to cover the wormhole, as opposed to two charts in the standard spherical
coordinates. The function Q(x) must possess the following properties:

i) Q0 := Q(0) > 0,

1 As an aside, in this coordinate system the exterior Schwarzschild metric is given by Q(x) = 2M + x2

8M .
The horizon is located at x = 0.
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Fig. 1 a In the standard spherical chart the wormhole throat is generated by the surface of revolution
created by rotating the profile curve x = P(r) = P−(r)

⋃
P+(r) but this leads to a metric singularity at

the throat (r = r0) where ∂r P(r) → ∞. A new chart is created in b via rotating the coordinates by π/2,
and the surface of revolution (inset) is generated by rotating the curve r = Q(x) = P−1(x). This does not
have the metric singularity at the throat (x = 0). Also, a single chart can now cover both regions

ii) Q′
0 := Q′(x)|x=0 = 0,

iii) Q′′(x) > 0 in some neighborhood of the throat2.

Aside from the above properties we make the mild assumption that Q(x) is analytic
in some nonzero domain about x = 0.

In the above coordinate chart, the Ricci scalar is given by

R = 1

2Q2
[
1 + (Q′)2]2

[
4 − 4Q(Q′)3�′ + 4(Q′)2 − 8Q Q′′ − 4Q Q′�′

+ 2Q2 Q′Q′′�′ − 2Q2�′′ − Q2(�′)2 − 2Q2(Q′)2�′′ − Q2(Q′)2(�′)2
]
, (9)

where here and subsequently the prime denotes differentiation with respect to x . We
do not expect any serious pathologies (such as infinite tidal forces) in our analysis as,
in the domain of validity of the coordinate chart (which is larger than the “r” chart, and
covers the throat) the metric and its derivatives are well behaved and hence we expect
the orthonormal Riemann tensor components to also be well behaved. We show later
that the function Q(x) describing the spatial geometry, is C∞ and that �(x) is also
very smooth.

One issue which is of great interest in wormhole physics is the study of energy
condition violation of the matter supporting the wormhole. It is known that in
Einstein gravity energy conditions must be violated by static wormholes somewhere
in the vicinity of the throat [52,53]. It is possible that in more complicated gravi-
tational theories one may circumvent this issue and possess a throat region which
respects energy conditions. An analysis in this vein was performed in [56] where

2 More precisely, if Q’s first non-zero derivative (higher than first order) at x = 0 is of even order, the
function attains a local minimum if this derivative is positive, and hence we have a wormhole throat. If its
first non-zero derivative is of odd order, it is a point of inflection and therefore does not describe a wormhole
throat.
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Fig. 2 Einstein gravity, gtt decreasing, throat radius = 0.05, varying flare-out x0. a gtt (x), b ρ̃(x), c ρ̃+ p̃r ,
d ρ̃ + p̃t

the analysis was limited to n = −1 and n = 2 extensions only. A very complete
analysis may be found in [57,58]. In the above cited studies, however, due to the
complications involved, the zero tidal force assumption was made. This simplifica-
tion eliminates some of the complications but still allows one to glean a number of
the interesting properties that f (R) wormholes possess. However, constant redshift,
and constant weak-field Newtonian potential from various regions of an inhomoge-
neous gravitating object may not be particularly realistic and we wish to remove this
assumption and allow for a non constant �(x) function. This can alter the physical
properties of the throat significantly, as we shall see below. Aside from yielding more
complicated equations, a non-constant �(x) now presents us with the problem of
how to prescribe this function. For this we appeal to some physical considerations.
It is more physical to demand some realistic properties on the matter fields than it
is to blindly prescribe �(x), although the former is much more difficult than the
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latter, as one needs to solve a complicated differential equation for �(x). With this
in consideration, what we initially do is prescribe some reasonable energy density
profiles, ρ(x), for the matter field (eg. large positive energy density with zero slope
at the throat and monotonically decreasing outward towards the surface or infinity,
using parameters where this is possible) and numerically solve for �(x) using the
numerical code COLSYS [59]. This will then give us an idea of what a realistic �(x)

function should look like, and we use similar functions for subsequent studies. (The
spatial geometry must also be prescribed, and this poses no problem as we apriori
know that, spatially, we are dealing with a spherically symmetric wormhole.) We
simply use this method to provide an idea of what the functions �(x) should look
like in realistic scenarios and then use similar functions for our studies. It should
be noted that the function �(x) controls the presence of event horizons. We avoid
horizons by ensuring that �(x) does not approach −∞ anywhere in the domain of
study.

In the following analysis we wish to discern how the various terms in the action
affect the wormhole solution. In the case of f (R) = ∑

αn Rn , each term in the sum
contributes independently to the left-hand side of the field equations, and hence also
contribute separately in determining the properties of T μ

ν . Therefore, it is sufficient
to study individual terms in the power series of f (R) separately to see how they each
contribute individually to the matter field. Note that in this approach, αn is simply
an overall multiplicative constant, and hence we set it equal to one. One may see the
effect of changing αn by simply rescaling the results below by whatever value of αn

one chooses (with the exception of the anisotropy studies, for which we study the
effects of varying αn). Negative values of αn also reflect the graphs about the z = 0
plane.

2.1.1 n = 1

This case, of course, corresponds to Einstein gravity. It is worthwhile presenting this to
summarize the results of Einstein gravity in this coordinate chart, and for comparison
with other powers of n later. Regardless of the powers present in the full action, it is
expected to have an n = 1 term. We summarize the n = 1 results as follows:

ρ̃ := κ ρ = −κ T 0
0 = 1 + (Q′)2 − 2Q Q′′

Q2
[
1 + (Q′)2]2 , (10i)

p̃r := κ pr = κ T 1
1 = �′Q Q′ − 1

Q2
[
1 + (Q′)2] , (10ii)

p̃t := κ pt = κ T 2
2 = 1

4Q
[
1 + (Q′)2]2

[
4Q′′+2Q′�′+2(Q′)3�′+Q(Q′)2(�′)2

−2Q Q′Q′′�′ + 2Q(Q′)2�′′ + Q(�′)2 + 2Q�′′] . (10iii)
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Fig. 3 Einstein gravity, gtt decreasing, x0 = 1, varying throat radius. a gtt (x), b ρ̃(x), c ρ̃ + p̃r , d ρ̃ + p̃t

There are also the following combinations which occur in the energy conditions:

ρ̃ + p̃r = Q′�′ + (Q′)3�′ − 2Q′′

Q
[
1 + (Q′)2]2 , (11i)

ρ̃ + p̃t = 1

4Q2
[
1 + (Q′)2]2

[
4 + 4(Q′)2 − 4Q Q′′ + 2Q Q′�′ + 2Q(Q′)3�′

+Q2(Q′)2(�′)2 − 2Q2 Q′Q′′�′ + 2Q2(Q′)2�′′ + Q2(�′)2 + 2Q2�′′] .

(11ii)

The above expressions, though not overly complicated, do not shed much insight
into the behavior of the matter fields near the throat, where we are most interested
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Fig. 4 Anisotropy of throat region in Einstein case, gtt decreasing, x0 = 1, varying throat radius

in. We therefore expand the relevant expressions in a Taylor series about the throat
(x = 0):

ρ̃ = 1

Q0

[
1 − 2Q0 Q′′

0

] − 2
Q′′′

0

Q0
x + 1

Q3
0

[
4Q2

0(Q′′
0)

3 − Q′′
0 − Q2

0 Q′′′′
0

]
x2 + O(x3) ,

(12i)

ρ̃ + p̃r = −2
Q′′

0

Q0
+ 1

Q0

[
Q′′

0�
′
0 − 2Q′′′

0

]
x + 1

Q2
0

[
4Q0(Q′′

0)
3 − Q0 Q′′′′

0

+ 1

2
Q0 Q′′′

0 �′
0 + Q0 Q′′

0�
′′
0 + (Q′′

0)
2
]
x2 + O(x3) , (12ii)

ρ̃ + p̃t = 1

4Q2
0

[
4 + Q2

0(�
′
0)

2 − 4Q0 Q′′
0 + 2Q2

0�
′′
0

]
+ 1

Q0

[
Q0�

′
0�

′′
0

− Q0(Q′′
0)

2�′
0 + Q0�

′′′
0 − 2Q′′′

0 + Q′′
0�

′
0

]
x + O(x2). (12iii)

where the zero subscript indicates that the quantity is evaluated at x = 0.
From the (12i), it can be seen that the energy density in the throat region may be

made positive. Regarding (12ii), if Q′′
0 is non-zero it must be positive (as the throat

is a local minimum) and (12ii) must therefore be negative near the throat. If Q′′
0 is

zero, then the condition for a local minimum implies that Q′′′
0 is also zero, and hence

the lowest order term which would contribute near the throat is the fourth derivative
term, Q′′′′

0 . Since this fourth derivative must then be positive under the condition of a
minimum, and it appears with a negative sign in (12ii), this contribution is negative.
In such a scenario energy conditions are (barely) met at the throat, but are violated
as one moves away from the throat. Similar arguments apply to higher derivatives in
case the fourth derivative vanishes at the throat (although one needs to study higher
order terms in the expansion, which for brevity we did not write). It is in this way

123



On wormhole throats 2721

–2

–1.8

–1.6

–1.4

–1.2

g_
tt

–4 –2 0 2 4
x

(a)

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

386

388

390

392

394

396

398

~r
ho

(b)

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

–8

–7

–6

–5

–4

–3

–2

–1

rh
o+

p_
r

(c)

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

390

392

394

396

398

rh
o+

p_
t

(d)

Fig. 5 Einstein gravity, gtt increasing, throat radius = 0.05, varying flare-out x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

that energy conditions must be violated in the vicinity of a static wormhole throat in
Einstein gravity.

For comparison with some of the modified gravity results to follow, which, due to
the complicated expressions they yield, must be studied via computational methods,
we choose a spatial geometry governed by

Q(x) = A cosh

(
x

xo

)

, (13)

as this function possesses all the salient properties to describe a throat. The parameter
A represents the radius of the throat and x0 represents the degree of “flare-out” of the
wormhole. Both these parameters are strongly related to the degree of energy condi-

123



2722 A. DeBenedictis, D. Horvat

–2

–1.8

–1.6

–1.4

–1.2

g_
tt

–4 –2 0 2 4

x

(a)

0.4

0.6

0.8

1

1.2

A

–0.1

–0.05

0

0.05

0.1

x

–1

0

1

2

3

4

_r
ho

0.4

0.6

0.8

1

1.2

A

–0.1

–0.05

0

0.05

0.1

x

–2

–1.99

–1.98

–1.97

–1.96

rh
o+

p_
r

0.4

0.6

0.8

1

1.2

A

–0.1

–0.05

0

0.05

0.1

x

0

1

2

3

4

rh
o+

p_
t

(b)

(c) (d)

Fig. 6 Einstein gravity, gtt increasing, x0 = 1, varying throat radius. a gtt (x), b ρ̃(x), c ρ̃ + p̃r , d ρ̃ + p̃t

tion violation, and hence we pay particular attention to these quantities. For all cases
studied in this work, when an explicit form of Q(x) is required, we use the form in
(13).

For the function �(x) we appeal to physical considerations (with the aid of the
numerical code COLSYS, as mentioned previously). For positive n we expect �(x)

to slowly asymptote to a constant value far away from the throat, where the geometry is
expected to approach Minkowski space-time. For negative n (and for generality, for all
n) the asymptotic value should approach the deSitter or anti-deSitter value. As we are
interested in the near-throat region only it is not crucial that the asymptote is manifest
in the domain of consideration, but an indication of such an asymptote is desirable. We
consider both scenarios where gtt = −e�(x) smoothly increases towards the asymp-
tote, as well as scenarios where gtt smoothly decreases towards the asymptote. (One
cannot necessarily rule out one scenario over the other in extended gravity theories.)
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Fig. 7 Anisotropy of throat region in Einstein case, gtt increasing, x0 = 1, varying throat radius

Specifically, we choose fitting functions of the form

gtt (x) =A0
B0 + x2

1 + x2 − C0 for concave-down gtt , (14a)

gtt (x) = − A0 + B0x2

C0 + x2 for concave-up gtt , (14b)

Where A0, B0 and C0 are fitting constants to fit generally to the COLSYS numerical
results. Since the wormhole profile chosen in (13) is symmetric about the throat, we
also make similar symmetry demands on gtt . There is no great loss of generality in
doing this since if one wishes to model a non-symmetric throat, the solution presented
can be viewed as being valid only on one side of the throat, and a different solution
can be patched to the other side. The forms of (14a), (14b) are used throughout this
manuscript in the analysis of non-zero tidal force models.

In the figures below (Figs. 2, 3, 4, 5, 6, 7) we display the results of Einstein theory
(n = 1) for the spatial geometry governed by (13). The first set of figures (Fig. 2a–d)
show the behavior of gtt , along with the energy conditions (10i) (11i) and (11ii) as
a function of the flare-out parameter, x0. Although the energy density is positive (as
is ρ̃ + p̃t ), the other energy condition is not positive. We can also see here the well-
known situation that the greater the degree of flare-out (equivalent to small x0) the
more severe the energy condition violation in Einstein gravity.

Figure 3 displays the behavior of gtt , along with the energy conditions (10i) and
(11i), (11ii) as a function of the throat radius, A. Note that although the energy density
can be made positive near the throat if the throat is not too large, the quantity (11i) is
negative in the throat vicinity, confirming the analytic analysis above.

In Fig. 4 we display the anisotropy, p̃t − p̃r , as a function of throat radius. Note
that larger throats require less anisotropy (i.e. are “more isotropic”).

123



2724 A. DeBenedictis, D. Horvat

–0.9

–0.8

–0.7

–0.6

–0.5

g_
tt

–4 –2 0 2 4

x

(a)

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

312000

314000

316000

318000

320000

_r
ho

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

–100

0

100

200

300

400

rh
o+

p_
r

0.6
0.8

1
1.2

1.4
1.6

1.8
2

xo

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x

605000

610000

615000

620000

625000

630000

635000

rh
o+

p_
t

(b)

(c) (d)

Fig. 8 R2 contribution, gtt decreasing, throat radius = 0.05, and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r , d
ρ̃ + p̃t

In Figs. 5, 6 and 7 we present a similar analysis as above, except that in these
figures, gtt is concave-up. Note the similarity of these results to the previous analysis.

2.1.2 n = 2

We now study the n = 2 contribution. Adding an α2 R2 term to the gravitational action
is arguably the most popular supplement to the Einstein-Hilbert action (see [8–14]).
For example, this modification has been utilized to drive inflation purely from the grav-
itational sector (the Starobinsky inflationary theory [15]) or to capture some low-order
quantum corrections [5].

As mentioned earlier, since in the theory given by the action (1) each term in the
series contributes to the energy conditions separately, it is more instructive to look
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Fig. 9 Minimum anisotropy region: R + α2 R2 contribution, gtt decreasing, throat radius = 0.05, x0 = 1,
and varying α2
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Fig. 10 R2 contribution for x0 = 1, gtt decreasing and varying throat radius. For negative α2 the graphs
should be flipped around the plane z = 0. a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

at this contribution on its own, to see whether it helps or hinders with respect to the
energy conditions. For the anisotropy analysis, we add the Einstein term to it as well
to see if the modification can make the system more or less isotropic compared to
Einstein gravity alone. We consider zero and non-zero tidal force cases.

Zero tidal force: In the case of zero tidal force (�(x) = const.) we can get a handle
on the behavior of the energy conditions at the throat by performing a series expansion
as was done in the Einstein case. The results are summarized as:

ρ̃ = 2α2

Q4
0

[
1 + 4Q3

0 Q′′′′
0 − 16Q3

0(Q′′
0)

3 + 4Q2
0(Q′′

0)
2
]

+ 8α2

Q2
0

[
Q0 Q′′′′′

0 − 25Q0(Q′′
0)

2 Q′′′
0 + 3Q′′

0 Q′′′
0

]
x + O(x2) , (15i)

ρ̃ + p̃r = 8α2

Q2
0

[
Q0 Q′′′′

0 − 4Q0(Q′′
0)

3 + 2(Q′′
0)

2
]
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Fig. 11 R2 contribution, gtt increasing, throat radius = 0.05, and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

+ 8α2

Q2
0

[
Q0 Q′′′′′

0 − 25Q0(Q′′
0)

2 Q′′′
0 + 3Q′′

0 Q′′′
0

]
x + O(x2) , (15ii)

ρ̃ + p̃t = 4α2

Q4
0

[
1 + 2Q2

0(Q′′
0)

2 − 3Q0 Q′′
0

]
+ 12α2

Q3
0

Q′′′
0

(
2Q0 Q′′

0 − 1
)

x + O(x2).

(15iii)

For α2 > 0, which is the more physical sector [1], it can be seen that the above can
all be made positive at the throat (for example, by considering models where Q′′

0 = 0
and Q′′′′

0 > 0). By analyticity in a non-zero neighborhood, in such scenarios there
therefore must be a non-zero domain about the throat for which the functions are
non-negative. Therefore, in this class of models, throats (and we stress again here
that we are not considering asymptotics at infinity) are allowed which respect energy
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Fig. 12 Minimum anisotropy region: R + α2 R2 contribution, gtt increasing, throat radius = 0.05, x0 = 1,
and varying α2
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Fig. 13 R2 contribution for x0 = 1, gtt increasing, and varying throat radius. For negative α2 the graphs
should be flipped around the plane z = 0. a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

conditions. This will remain true even when adding the Einstein term to the action,
as in the Einstein case the near-throat violation of energy conditions may be made
arbitrarily small [60,61] independently of the α2 parameter.

Non-zero tidal force: Unfortunately, for non-zero tidal force the analytic expressions
with a general Q(x) and �(x) are very long and complicated, even as a near throat
expansion, and not very revealing. We must therefore specify these functions in order
to perform numerical studies. For this purpose we choose the same function as in the
Einstein case so that comparisons may be easily made. That is, we choose the pro-
file Q(x) as given in (13) since, to reiterate, this function possesses all the required
properties to describe a throat. Recall that the parameter A represents the radius of
the throat and x0 represents the degree of “flare-out” of the wormhole. We also use
similar �(x) functions as presented in the Einstein case.

As mentioned previously, we set α2 = 1, as all results here can be rescaled by
whatever value of α2 one wishes to study, including negative values, which result in
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Fig. 14 R3 contribution, gtt decreasing, throat radius = 0.05 and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

a reflection about the horizontal planes in the graphs. As mentioned above, it should
be noted that α2 > 0 is the preferred model. The first set of results are summarized in
Fig. 8 (also please refer to figure captions for details).

Note that like the zero tidal-force case, there is a large region of the parameter space
where all energy conditions can be respected. In fact, for positive α2, a large flare-out
(small x0) actually helps the condition ρ̃ + p̃r > 0 near the throat.

Also of interest is the anisotropy. Namely, can the presence of the extra terms in
f (R) gravity lessen the amount of anisotropy required to support a throat, compared
to Einstein gravity alone. To study this we present Fig. 9 where the anisotropy, defined
here as p̃t − p̃r , is presented for the Lagrangian R +α2 R2 and is plotted in the vicinity
of the minimum anisotropy curve. Note from this figure that anisotropy is a minimum
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Fig. 15 Minimum anisotropy region: R +α3 R3 contribution, gtt decreasing, throat radius = 0.05, x0 = 1,
and varying α3
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Fig. 16 R3 contribution for x0 = 1, gtt decreasing, and varying throat radius. For negative α3 the graphs
should be flipped around the plane z = 0. a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

for α2 < 0, and not for the Einstein case (α2 = 0), although the minimum curve is
very close to α2 = 0.

In Fig. 10 we present another non-zero tidal force analysis (with the same gtt (x) as
in the previous case) where, instead of allowing x0 to vary, we vary the throat radius.
This study is interesting as even in Einstein gravity the size of the throat affects the
amount of energy condition violation. We find that, generally, smaller throat radius is
more favorable for respecting energy conditions. (This result is reversed for α2 < 0.)

Next we consider non-zero tidal force models where gtt (x) is increasing instead of
decreasing. The Figs. 11 and 12 summarize the results for varying x0 and α2. Note that
in Fig. 11 the graphs mimic the previous scenario with decreasing gtt (x), indicating
insensitivity to the form of the lapse function. Therefore, in this scenario, again energy
conditions can be respected for the more physical sector of positive α2. We also present
the anisotropy in Fig. 12 for the full Lagrangian of R + α2 R2. Anisotropy is again
minimized for α2 �= 0 and in the negative sector.

Finally for this sub-section, we present the results for the increasing gtt (x) but
where the throat radius is allowed to vary. These results are summarized in Fig. 13.
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Fig. 17 R3 contribution, gtt increasing, throat radius = 0.05, and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

Note that again smaller throat radius is more favorable for energy conditions than
larger throat radius if α2 is positive. (The result is reversed for negative α2.) Param-
eters exist where energy conditions may again be satisfied, even when adding these
results to the energy condition violating Einstein gravity terms.

2.1.3 n = 3

The n = 3 scenarios are also of interest and it has been shown in a cosmological
setting how this case can be transformed to a system consisting of Einstein gravity
and a scalar field with a self-coupling proportional to α3φ

4 [62].

Zero tidal force: Again for the �(x) = const. scenario we present an analytic expansion
about the throat, although, due to the complexity of the coefficients, we produce only
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Fig. 18 Minimum anisotropy region: R + α3 R3 contribution, gtt increasing, throat radius = 0.05, x0 = 1,
and varying α3
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Fig. 19 R3 contribution for x0 = 1, gtt increasing, and varying throat radius. For negative α3 the graphs
should be flipped around the plane z = 0. a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

Table 1 Summary of α3 R3 contributions

Parameter studied Zero tidal-force gtt (x) concave-down gtt (x) concave-up

x0 Possible to make energy
conditions positive

Tendency to make positive
contribution to all energy
conditions for all range of
x0 studied near the throat
for positive α3, and nega-
tive contribution for nega-
tive α3

Tendency to make positive
contribution to all energy
conditions for positive α3,
and negative contribution
for negative α3. Shows
insensitivity to form of
gtt (x)

Throat radius Possible to make energy
conditions positive

Energy conditions more
positive for small throat
radius (with α3 > 0.
Reverse reported results
for α3 < 0)

Energy conditions more
positive for small throat
radius (with α3 > 0.
Reverse reported results
for α3 < 0)

Minimum anisotropy
for R + α3 R3

Not studied α3 < 0 minimizes anisot-
ropy

α3 < 0 minimizes anisot-
ropy
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Fig. 20 R−1 contribution, gtt decreasing, throat radius = 0.05, and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

the lowest order term. The results are:

ρ̃ = 4α3
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ρ̃ + p̃t = 12α3

Q6
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[
1 − 5Q0 Q′′

0 + 8Q2
0(Q′′
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2 − 4Q3

0(Q′′
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]

+ O(x). (16iii)
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Fig. 21 Anisotropy of throat region: R+α−1 R−1 contribution, gtt decreasing, throat radius = 0.05, x0 = 1,
and varying α−1
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Fig. 22 R−1 contribution for x0 = 1, gtt decreasing, and varying throat radius. For negative α−1 the
graphs should be flipped around the plane z = 0. The region around the singularity has been omitted. a
ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

Here, in the case of positive α3, (16i)–(16iii) can in principle be made positive. The
simplest models obeying energy conditions would again be those where Q′′

0 = 0
(which, due to the condition for a minimum, also requires Q′′′

0 = 0) and Q′′′′
0 > 0, as

was the case for the corresponding situation in n = 2. Note that if Q′′
0 = 0, the contri-

butions from Einstein gravity, from (12i) – (12iii), exactly at the throat are non-negative
(although (12ii) becomes negative in some neighborhood away from the throat), and
hence with the addition of these α3 R3 contributions, f (R) = R + α3 R3 gravity can
be made to obey energy conditions (and therefore, including the previous analysis,
f (R) = R + α2 R2 + α3 R3 gravity can also be made to obey energy conditions).

Non-zero tidal force: The analysis of the non-zero tidal forces proceeds in a similar
order as the n = 2 case. Due to the interest in keeping the paper of reasonable length,
we present all the graphs (Figs. 14, 15, 16, 17, 18, 19) for this case first, and then
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Fig. 23 R−1 contribution, gtt increasing, throat radius = 0.05, and varying x0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r ,
d ρ̃ + p̃t

briefly comment on the results afterward in Table 1. (Please refer to figure captions
for details.)

We summarize the results for n = 3 in Table 1.

2.1.4 n = −1

Zero tidal force: Again we begin with an analytic analysis of the zero tidal-force
model. The results are summarized as:

ρ̃ = α−1 Q2
0

4
(
2Q0 Q′′

0 − 1
)4

[
1 − 2Q0 Q′′

0 + 4Q3
0 Q′′′′

0 + 24Q4
0(Q′′′

0 )2 + 4Q2
0(Q′′

0)
2

−24Q3
0(Q′′

0)
3 − 8Q4

0 Q′′′′
0 Q′′

0 + 32Q4
0(Q′′

0)
4
]

+ O(x), (17i)
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Fig. 24 Anisotropy of throat region: R+α−1 R−1 contribution, gtt increasing, throat radius = 0.05, x0 = 1,
and varying α−1
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Fig. 25 R−1 contribution for x0 = 1, gtt increasing, and varying throat radius. For negative α−1 the
graphs should be flipped around the plane z = 0. The region around the singularity has been omitted. a
ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

Table 2 Summary of α−1 R−1 contributions

Parameter studied zero tidal-force gtt (x) concave-down gtt (x) concave-up

x0 Respecting energy condi-
tions seems difficult at best

Little sensitivity very near
the throat on variations of
x0

Little sensitivity very near
the throat on variations of
x0

Throat radius Respecting energy condi-
tions seems difficult at best

Possible to respect energy
conditions near singular
region for negativeα−1 for
a small section of param-
eter space. (Only on one
side of the singular region)

Seems possible to make
small positive contribution
to all energy conditions
(see general n section)
for very small region of
parameter space

Minimum anisotropy
for R + α−1 R−1

Not studied Magnitude of anisotropy
larger than corresponding
pure Einstein case regard-
less of α−1

Magnitude of anisotropy
larger than corresponding
pure Einstein case regard-
less of α−1
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Fig. 26 R−2 contribution, gtt decreasing, throat radius = 0.05, and varying x0. For negative α−2 the graphs
should be flipped around the plane z = 0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r , d ρ̃ + p̃t

ρ̃ + p̃r = α−1 Q3
0

2
(
2Q0 Q′′

0 − 1
)4

[
3Q′′

0 + 2Q2
0 Q′′′′

0 + 12Q3
0(Q′′′

0 )2 − 8Q0(Q′′
0)

2

−4Q2
0(Q′′

0)
3 − 4Q3

0 Q′′
0 Q′′′′

0 + 16Q3
0(Q′′

0)
4
]

+ O(x), (17ii)

ρ̃ + p̃t = α−1 Q2
0

4
(
2Q0 Q′′

0 − 1
)2

[
Q0 Q′′

0 − 1
] + O(x). (17iii)

Here it can be seen that with inverse powers of R a peculiar singularity occurs. The
singularity occurs when 2Q Q′′ = 1 and corresponds to the vanishing of the Ricci
scalar at these points. This is not unexpected and it is not a curvature singularity,
but does herald a problem with the equations of motion when R = 0. One com-
mon way to attempt remedy this situation in studies of inverse-R gravity is to pos-
tulate that the (gravitational) vacuum state of the theory is not Minkowski space-
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Fig. 27 Anisotropy of throat region: R+α−2 R−2 contribution, gtt decreasing, throat radius = 0.05, x0 = 1,
and varying α−2
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Fig. 28 R−2 contribution for x0 = 1, gtt decreasing, and varying throat radius. For negative α−2 the
graphs should be flipped around the plane z = 0. The region around the singularity has been omitted. a
ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

time, but is instead deSitter or anti-deSitter space-time [20]. However, when one is
not far away from sources (as in the study here) there can be curves or surfaces in
the space-time on which R = 0 and these must be excluded. Hence the parame-
ter space studied here will not include parameters near these pathologies, which we
excise.

Here the vanishing of Q′′
0 does not yield an energy condition respecting throat,

unlike in the positive n cases. (Either ρ̃ + p̃t < 0 for α−1 > 0 or else ρ̃ + p̃r and
ρ̃ < 0 for α−1 < 0.) Note that in principle it may be possible to respect energy con-
ditions near the throat. One can say that if Q0 Q′′

0 > 1 and furthermore if Q′′′′
0 is large

then it may be possible to respect energy conditions, but the situation is not obvious.
Hence here the numerical results are needed, which we present for the more general
non-zero tidal force scenarios.
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Fig. 29 R−2 contribution, gtt increasing, throat radius = 0.05, and varying x0. For negative α−2 the graphs
should be flipped around the plane z = 0. a gtt (x), b ρ̃(x), c ρ̃ + p̃r , d ρ̃ + p̃t

Non-zero tidal force: If one is considering the region far from the throat, then gtt (x)

should, as mentioned above, asymptote to deSitter or anti-deSitter space-time. Our
choices for gtt (x) can accommodate this, but we are only interested in the near-throat
region, so strictly speaking it is not a requirement.

Again, due to the interest in keeping the length reasonable, we present all the graphs
for this case first (Figs. 20, 21, 22, 23, 24, 25), and then briefly comment on the results
afterward in a summary table (Table 2).

We summarize the results for n = −1 in Table 2.

2.1.5 n = −2

Finally we present here the contribution from α−2 R−2. Much of this scenario mimics
the α−1 R−1 contribution and hence we also summarize the results in a table (Table 3)
after all the graphs (Figs. 26, 27, 28, 29, 30, 31).
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Fig. 30 Anisotropy of throat region: R+α−2 R−2 contribution, gtt increasing, throat radius = 0.05, x0 = 1,
and varying α−2
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Fig. 31 R−2 contribution for x0 = 1, gtt increasing, varying throat radius. For negative α−2 the graphs
should be flipped around the plane z = 0. The region around the singularity has been omitted. a ρ̃(x), b
ρ̃ + p̃r , c ρ̃ + p̃t

Zero tidal force: At the throat, the relevant quantities possess the following values:

ρ̃ = α−2 Q4
0

8
(
2Q0 Q′′

0 − 1
)5

[
56Q3

0(Q′′
0)

3 − 6Q0 Q′′
0 − 12Q3

0 Q′′′′
0 − 96Q4

0(Q′′′
0 )2

−96Q4
0(Q′′

0)
4 + 12Q2

0(Q′′
0)

2 + 24Q4
0 Q′′

0 Q′′′′
0 − 1

]
+ O(x), (18i)

ρ̃ + p̃r = α−2 Q5
0

2
(
2Q0 Q′′

0 − 1
)5

[
8Q2

0(Q′′
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+ O(x), (18ii)

ρ̃ + p̃t = α−2 Q4
0

4
(
2Q0 Q′′

0 − 1
)3

[
1 − Q0 Q′′

0

] + O(x). (18iii)
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Table 3 Summary of α−2 R−2 contributions

Parameter studied zero tidal-force gtt (x) concave-down gtt (x) concave-up

x0 Respecting energy condi-
tions seems difficult at best

Energy condition respect-
ing model possible near
throat. For most of positive
parameter space, small
values are found, which
may be dwarfed by nega-
tive value of Einstein term)

Energy condition respect-
ing model not found near
the throat

Throat radius Respecting energy condi-
tions seems difficult at best

Seems possible to make
positive contribution to
energy conditions for very
small parameter space
near the singular region
for α−2 < 0. (Only on
one side of the singular
region)

Does not seem possible to
respect energy conditions

Minimum anisotropy
for R + α−2 R−2

Not studied Magnitude of anisotropy
larger than corresponding
pure Einstein case regard-
less of α−2

Magnitude of anisotropy
larger than corresponding
pure Einstein case regard-
less of α−2
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Fig. 32 Rn contribution at x = 0 for A = 0.05 and αn = 1, gtt decreasing, and varying x0. In the
far-left graph the plots correspond to n = −3 → 5 (bottom to top). The middle graph corresponds
n = −3, −2, −1, 2, 3, 4, 5 (bottom to top). The right graph corresponds to parameters n = 1, 2, 3, 4, 5
(bottom to top). Values of n not displayed are negative (note though that these would be positive if the sign
of αn was negative). a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

Again it can be noted that the equations of motion become singular where the Ricci
scalar vanishes. As expected, the degree of the singularity has increased in comparison
to the n = −1 case. The situation regarding energy conditions here, like for n = −1,
does not seem promising in the zero tidal force regime.

Non-zero tidal force: The Figs. 26, 27, 28, 29, 30 and 31 display the results of the
non-zero tidal force scenarios.

We summarize the results for n = −2 in Table 3.
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Fig. 33 Rn contribution at x = 0 for x0 = 1 and αn = 1, gtt decreasing, and varying throat radius. In the
far-left graph, the graphs correspond to n = −3 → +5 from bottom to top. In the middle graph, the plots
correspond to n = −3, −2, −1, 3, 4, 5 from bottom to top (the others being either negative or too close
to zero to show on the scale). In the far-right plot, the curves approaching the vertical-axis correspond to
n = 1 → 5 from bottom to top. The curve that does not approach the vertical-axis corresponds to n = −2.
a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t
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Fig. 34 Rn contribution at x = 0 for A = 0.05 and αn = 1, gtt increasing, and varying x0. In the
far-left graph the plots correspond to n = −3 → 5 (bottom to top). The middle graph corresponds
n = 0, −3, −2, −1, 2, 3, 4, 5 from bottom to top. (Note that n = 0 should give a contribution of zero, as
it corresponds to the cosmological constant only scenario. The line at 10−16 ≈ 0 is a numerical artefact.)
The right graph corresponds to parameters n = 0, 1, 2, 3, 4, 5 (bottom to top, again with the n = 0 plot
being a numerical artefact.) Values of n not displayed are negative (note though that these would be positive
if the sign of αn was negative). a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t

2.1.6 General n

Finally, for general n we first quote the throat values in the zero tidal-force case. The
quantities are as follows:

ρ̃ = 2n−1 αn

Q2n
0
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0
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Fig. 35 Rn contribution at x = 0 for x0 = 1 and αn = 1, gtt increasing, and varying throat radius. In the
far-left graph, the graphs correspond to n = −3 → +5 from bottom to top. In the middle graph, the plots
correspond to n = −3, −2, −1, 2, 3, 4, 5 from bottom to top (the others being either negative or too
close to zero to show on the scale). In the far-right plot, the curves intersecting the vertical-axis correspond
to n = 1 → 5 from bottom to top. The curves that do not approach the vertical-axis corresponds to n = −1
(bottom) and n = −3 (top). a ρ̃(x), b ρ̃ + p̃r , c ρ̃ + p̃t
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]n−1 + O(x). (19iii)

These conditions represent the contribution to the energy conditions for a particular
value of (arbitrary) n. The general energy conditions would then constitute the sum
of these conditions summed over the n values which contribute to the gravitational
action.

For the non-zero tidal force scenarios we present the following results in order to
show the trends as n increases. The graphs (32, 33, 34, 35) are plots of the energy
conditions exactly at the throat x = 0 for gtt (x) concave-down and gtt (x) concave-up
respectively. Note that from the analyticity of Q(x) in a neighborhood of the throat,
if a quantity is positive at the throat then there exists a non-zero neighborhood of the
throat where this quantity is positive, and hence the particular energy condition can
be respected. In all the following graphs, only results where the energy conditions are
positive are shown. (Refer to figure captions for details.)

3 Concluding remarks

We have studied the existence of wormhole throats in modified gravity theories with
gravitational actions of the form S = ∫

M4

∑
nαn Rn√

g d4x . This action includes the
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n = 1 contribution of Einstein gravity. Of specific interest to our studies are energy
condition violation and the degree of anisotropy required to support the throat, since
in Einstein gravity alone the existence of throats implies both violation of energy con-
ditions as well as the presence of anisotropy. We studied various terms contributing
to the action separately, in order to discern which terms aid and which terms hinder
the energy conditions. It would also be worthwhile to consider all terms together,
but this would be more computationally involved. We have studied both the zero and
non-zero tidal force solutions. In general, we find that the parameter space for energy
condition respecting solutions is much larger for positive n than negative n, and that
larger n increases the energy conditions. This is due to the fact that f (R) gravity has
an equivalent description as a scalar-tensor theory, where the “scalar field” component
may violate energy conditions. The positive n sector also allows one to minimize the
anisotropy required to support a wormhole throat, whereas the negative n sector tends
to make the required anisotropy much larger when compared to Einstein gravity. It
may be then that if gravitation is governed by such a Lagrangian, or one which is
expandable as such, throats may exist which obey the energy conditions violated by
Einstein gravity alone and require little or perhaps no anisotropy. In light of this, it
may be possible that if the true gravitational action contains higher positive powers
of R, then throats in space-time may be more likely than with no such augmentation
or with negative powers. Since it is unknown (though perhaps unlikely) whether or
not the topology of space-time can change, we cannot say whether throats would be
more likely in the early universe (where higher powers may contribute to inflationary
expansion) than in the late universe (where inverse powers may contribute to late-time
acceleration) (see, for example [63] for an analysis of modified gravity accommodating
early and late-time accelerated expansion). However, it is interesting to speculate on
this.
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