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Abstract We have considered an action of the form T + f (T ) + Lm describing
Einstein’s gravity plus a function of the torsion scalar. By considering an exact power-
law solution we have obtained the Friedmann equation as a differential equation for the
function f (T ) in spatially flat universe and obtained the real valued solutions of this
equation for some power-law solutions. We have also studied the power-law solutions
when the universe enters a Phantom phase and shown that such solutions may exist
for some f (T ) solutions.
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1 Introduction

Recent cosmological observations indicate that our universe is in accelerated expan-
sion. These observations are those which is obtained by SNe Ia [1], WMAP [2], SDSS
[3] and X-ray [4]. These observations also suggest that our universe is spatially flat,
and consists of about 70 % dark energy (DE) with negative pressure, 30 % dust matter
(cold dark matter plus baryons), and negligible radiation. In order to explain why the
cosmic acceleration happens, many theories have been proposed. The simplest can-
didate of the dark energy is a tiny positive time-independent cosmological constant
�, for which ω = −1. However, it is difficult to understand why the cosmological
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constant is about 120 orders of magnitude smaller than its natural expectation (the
Planck energy density). This is the so-called cosmological constant problem. Another
puzzle of the dark energy is the cosmological coincidence problem: why are we living
in an epoch in which the dark energy density and the dust matter energy are compa-
rable? An alternative proposal for dark energy is the dynamical dark energy scenario.
The dynamical nature of dark energy, at least in an effective level, can originate from
various fields, such is a canonical scalar field (quintessence) [5–7], a phantom field,
that is a scalar field with a negative sign of the kinetic term [8–12], or the combination
of quintessence and phantom in a unified model named quintom [13–19]. Recently
another paradigm has been constructed in the light of the holographic principle of
quantum gravity theory, and thus it presents some interesting features of an under-
lying theory of dark energy [20,21]. This paradigm may simultaneously provide a
solution to the coincidence problem [22–30].

It is known that Einstein’s theory of gravity may not describe gravity at very high
energies. The simplest alternative to general relativity is Brans–Dicke scalar-tensor
theory [31]. Modified gravity also provides the natural gravitational alternative for
dark energy [32–37]. Moreover, thanks to the different roles of gravitational terms
relevant at small and at large curvature, the modified gravity presents natural unifica-
tion of the early-time inflation and late-time acceleration. It may naturally describe the
transition from non-phantom phase to phantom one without necessity to introduce the
exotic matter. But among the most popular modified gravities which may successfully
describe the cosmic speed-up is f (R) gravity. Very simple versions of such theory
like 1

R [38–40] and 1
R + R2 [41] may lead to the effective quintessence/phantom late-

time universe (to see solar system constraints on modified dark energy models refer
to [42–44], also general review of reconstruction is given in [45] ). Another theory
proposed as gravitational dark energy is scalar-Gauss–Bonnet gravity f (G) [46–52]
which is closely related with the low-energy string effective action. In this proposal,
the current acceleration of the universe may be caused by mixture of scalar phantom
and (or) potential/stringy effects. On the other hand, a theory of f (T ) gravity has
recently been received attention. Models based on modified teleparallel gravity were
presented, in one hand, as an alternative to inflationary models [53,54], and on the
other hand, as an alternative to dark energy models [55]. In this paper, we show a
cosmological power law solution for the acceleration of the universe based on the
above mentioned modification of the teleparallel equivalent of General Relativity. We
consider T + f (T ) gravity model and reconstruct this theory from the cosmological
power law solution for the scale factor. We know that the power law solutions are
very important in the standard cosmology, because this type of solutions provides a
framework for establishing the behaviour of more general cosmological solutions in
different histories of our universe, such as radiation dominant, matter dominant or
dark energy dominant eras.

2 Field equations for [T + f (T ) + Lm] gravity

The action for the theory of modified gravity based on a modification of the teleparallel
equivalent of General Relativity, namely f (T ) theory of gravity, coupled with matter
Lm is given by Bengochea [55], Linder [56] and Cai [57]
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S = 1

16πG

∫
d4xe [T + f (T ) + Lm], (1)

where e = det (ei
μ) = √−g. The teleparallel Lagrangian T is defined as follows

T = S μν
ρ T ρ

μν, (2)

where

T ρ
μν = eρ

i

(
∂μei

ν − ∂νei
μ

)
,

S μν
ρ = 1

2

(
K μν

ρ + δμ
ρ T θν

θ − δν
ρT θμ

θ

)
,

and K μν
ρ is the contorsion tensor

K μν
ρ = −1

2

(
T μν

ρ − T νμ
ρ − T μν

ρ

)
.

The field equations are obtained by varying the action with respect to vierbein ei
μ as

follows

e−1∂μ

(
eS μν

i

)
(1 + fT ) − e λ

i T ρ
μλS νμ

ρ fT + S μν
i ∂μ(T ) fT T

−1

4
eν

i (1 + f (T )) = 4πGe ρ
i T ν

ρ , (3)

where fT = f ′(T ) and fT T = f ′′(T ). Now, we take the usual spatially-flat metric of
Friedmann–Robertson–Walker (FRW) universe, in agreement with observations

ds2 = dt2 − a(t)2
3∑

i=1

(dxi )2, (4)

where a(t) is the scale factor as a one-parameter function of the cosmological time
t . Moreover, we assume the background to be a perfect fluid. Using the Friedmann–
Robertson–Walker metric and the perfect fluid matter in the teleparallel Lagrangian
(2) and the field equations (3), one obtains

T = −6H2, (5)

H2 = 8πGρ

3
− 1

6
f − 2H2 fT , (6)

Ḣ = − 4πG(ρ + p)

1 + fT − 12H2 fT T
, (7)

where ρ and p denote the matter density and pressure respectively, and the Hubble
parameter H is defined by H = ȧ/a.
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In the FRW universe, the energy conservation law can be expressed as the standard
continuity equation

ρ̇ + 3H(ρ + p) = ρ̇ + 3H(1 + w)ρ = 0, (8)

where ρ is the matter energy density and p = wρ is the equation of state relating
pressure p with energy density.

3 Exact matter dominant power-law solutions

We now assume an exact power-law solution for the field equations

a(t) = a0tm, (9)

where m is a positive real number. From the assumption (9) and the continuity equation
(8), we obtain

ρ(t) = ρ0t−3m(1+w). (10)

Moreover, using the assumption (9), Eq. (5) leads us to the following result

T = −6
m2

t2 < 0. (11)

By using Eqs. (5), (10) and (11) in Eq. (6), we obtain the Friedmann equation

T

3
fT + 1

6
(T − f ) + 8πG

3
ρ0m−3m(1+w)

(
−1

6
T

) 3
2 m(1+w)

= 0. (12)

This is a differential equation for the function f (T ). The general solution of this
equation is obtained as

f (T ) = C1
√

T − 24− 3
2 m(1+w)(3)− 3

2 m(1+w)m−3m(1+w)(−T )
3
2 m(1+w)

3m(1 + ω) − 1
πGρ0 − T,

(13)

where C1 is an arbitrary constant of integration. Because of T < 0, in order to avoid
of imaginary function f (T ), with no loss of generality we may assume the constant
C1 = 0. Hence, the function f (T ) becomes

f (T ) = 24− 3
2 m(1+w)(3)− 3

2 m(1+w)m−3m(1+w)(−T )
3
2 m(1+w)

1 − 3m(1 + ω)
πGρ0 − T . (14)

We note that having a finite real valued solution of f (T ) requires also one of the
followings:
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(1) m > 0 for any value of ω,
(2) m < 0 for −3m(1 + ω) �= half integer,
(3) m = 0,

all subject to the condition 3m(1 + ω) �= 1. While the first case leads to an expanding
universe, the second case describes a contracting universe, and the third case describes
an static universe. Therefore, power law solutions exist for the function (14) subject
to the first and second conditions above.

By inserting (14) in the action (1), we find that the standard Einstein gravity will
automatically be recovered when f (T ) = 0. This happens provided that 3

2 m(1 + w) =
1 and

ρ0 = 3m3m(1+w)

8πG
= 3m2

8πG
, (15)

which guarantees the positivity requirement of ρ0.

4 Exact Phantom phase power-law solutions

One may also study the power-law solutions where the universe enters a phantom phase
leading to a Big Rip singularity. For this case, the general class of Hubble parameters
and cosmological solutions are defined as

H(t) = m

ts − t
, (16)

a(t) = a0(ts − t)−m, (17)

where ts is the so called “Rip time” at future singularity. It is easy to show that all the
results in Sect. 4 follow from Sect. 2 by replacing m by −m.

Demanding a Big Rip during the phantom phase, as the cosmic time t approaches
ts , requires m ≥ 1 in (17). Therefore, power law solutions for the Phantom phase exist
for the corresponding function f (T ).

5 Conclusion

In the present paper we have considered a T + f (T ) + Lm action which describes
Einstein’s gravity plus a function of the torsion scalar. Then, by considering an exact
power-law solution for the field equations we have obtained the Friedmann equation
in spatially flat universe. The Friedmann equation appears as a differential equation
for the function f (T ). We obtained the solution of this equation and showed that our
model with this solution for f (T ) has power-law solution of the type a(t) = a0tm . We
have also studied the power-law solutions when the universe enters a Phantom phase.
By considering such power-law solution for the field equations, the corresponding
Friedmann equation and the solution f (T ) is simply obtained by comparing with the
results obtained in non-Phantom phase and replacing m by −m. It is shown that the
power-law solution of the type a(t) = a0(ts − t)−m also exists in the phantom phase
for this f (T ) solution.
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