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Abstract We investigate the evolution of non-adiabatic collapse of a shear-free
spherically symmetric stellar configuration with anisotropic stresses accompanied with
radial heat flux. The collapse begins from a curvature singularity with infinite mass and
size on an inhomogeneous space–time background. The collapse is found to proceed
without formation of an even horizon to singularity when the collapsing configuration
radiates all its mass energy. The impact of inhomogeneity on various parameters of the
collapsing stellar configuration is examined in some specific space–time backgrounds.

Keywords Gravitational collapse · Heat flux · Einstein’s field equations · Space–time
inhomogeneity

1 Introduction

One of the most fundamental problems in general relativity is the construction of
realistic models describing various evolutionary stages of a star collapsing under its
own gravity. When a star exhausts all its thermonuclear fuel, it cannot withstand
the gravitational pull and starts collapsing. As it contracts appreciably, the density
increases and at a sufficiently high density it produces non-thermal pressure via
degenerate fermions and particle interactions to support it against further collapse and
becomes a ‘compact star’. Stable stellar configurations like neutron stars are the end

R. Sharma (B)
Department of Physics, P. D. Women’s College, Jalpaiguri 735101, India
e-mail: rsharma@iucaa.ernet.in

R. Tikekar
Inter-University Centre for Astronomy and Astrophysics (IUCAA),
Post Bag 4, Ganeshkhind, Pune, India
e-mail: tikekar@gmail.com

123



2504 R. Sharma, R. Tikekar

products of such radiative collapse processes. A massive star, however, can not come
to a stable stage by such processes. In the absence of any mechanism that can withstand
the gravitational pull, the general relativistic prediction is that such a collapse must
terminate into a space–time singularity. In view of the Cosmic Censorship Conjecture
(CCC), such a singularity must be covered within its event horizon of gravity [1]. How-
ever, there are several counter examples where a naked singularity is more likely to be
formed. In fact, there is yet no established theory available governing the formation
of either a black hole or a naked singularity (for a recent review see [2] and references
therein). The physics of evolving dynamical systems, therefore, continues to generate
a great deal of interest in various fields of astrophysics and cosmology even today.

To understand the nature of collapse of a self gravitating body, one needs to pro-
vide an accurate description of the exterior and interior space–times of the collapsing
body. It is also necessary to find out the appropriate boundary conditions joining the
two regions. The theoretical understanding of gravitational collapse was first initiated
by Oppenheimer and Snyder [3] who considered the contraction of a highly ideal-
ized spherically symmetric dust cloud. The exterior space–time of the collapsing dust
cloud was described by the Schwarzschild metric and the interior space–time was rep-
resented by a Friedman-like solution. Later on, the Vaidya [4] metric corresponding
to the exterior gravitational field of a stellar body describing an outgoing null fluid
gave a tremendous impetus in this direction. Making use of the Vaidya [4] solution,
Santos [5] proposed a procedure to obtain the description of the interior space–time of
a spherically symmetric radially shrinking distribution of non-adiabatic fluid. Several
stellar models (see for example, [6–34] and references therein) have been obtained
and examined critically using Santos’s approach. The procedure has been found to be
useful to examine the impact of various factors such as shear, inhomogeneity, anisot-
ropy, electromagnetic field and various dissipative processes on the evolution. In the
absence of any established theory governing the nature of collapse, such investiga-
tions have been found to be very useful to understand the dynamic behaviour of a
gravitationally collapsing system.

The objective of the present work is to formulate a framework to study the nature of
collapse of an inhomogeneously distributed anisotropic source. The dynamical behav-
iour of a gravitating system is expected to be influenced by density inhomogeneity and
anisotropy. Amongst many other issues, these factors have been found to play crucial
role in our theoretical understanding of the nature of singularity and its genericity
(see [1,2,35–39] and references therein). Eardley and Smarr [40] have shown that
inhomogeneous distributions may lead to a naked singularity in contrast to a homo-
geneous distribution where a black hole is more likely to be formed. For a spherically
symmetric dust cloud, Mena et al. [41] have examined the role of inhomogeneity and
anisotropy in Lamaitre–Tolman–Bondi collapse. Hererra et al. [16,18] have examined
the role of various factors contributing to inhomogeneity of matter distribution, its
evolution and development of anisotropy. It has been observed that tidal forces tend
to make a gravitating system more inhomogeneous which may lead to the formation
of a naked singularity while for a homogeneously distributed body it is more likely to
form a black hole. Similar observations may be found in [21] where it has been shown
that if an initially static star undergoing collapse has a homogeneous distribution it
ends up with the formation of a black hole. However, if an anisotropic star contains an
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inhomogeneous distribution of matter before the collapse sets in, then for a shearing
model of collapse, the black hole is never formed as the condition for the formation
of apparent horizon is never satisfied under such a condition [21].

Pressure anisotropy also plays a significant role in the construction of a dynam-
ically evolving system. Elaborate discussions on the microscopic origin of aniso-
tropic stresses in stellar bodies may be found in [14,43]. Amongst many other factors,
electromagnetic field and shear have been found to contribute significantly to the
generation of anisotropic stresses. The effect of charge on non-static models of grav-
itationally bound objects have been investigated by many authors [9,10,12,14,16–
19,24–28,31,33,34,39,42,44,45] and references therein). Shear is also a generator of
anisotropic stresses [28]. Effects of shear and anisotropy in the dynamical behaviour
of a self gravitating system have been analyzed by Govinder et al. [46]. It has been
observed that if a star has isotropic pressure before the collapse sets in, anisotropy
may develop at a later stage due to the presence of shear [20,22].

In our work, we have developed a model describing a spherically symmetric inho-
mogeneous anisotropic fluid configuration radiating away its energy in the form of
radial heat flux and shrinking in size as the collapse proceeds. In our construction, we
have assumed that the collapsing star is charge neutral and the back ground space–
time is shear-free. However, the energy-momentum tensor corresponding to the fluid
distribution filling the interior of the collapsing star has been assumed to be aniso-
tropic, in general. The model developed here is a generalization of an earlier model
presented by Banerjee et al. [48] describing the collapse of a homogeneously distrib-
uted isotropic fluid. Schäfer and Goenner [49] used the Banerjee et al. [48] model to
investigate the collapse of a homogeneously distributed isotropic fluid configuration
and also critically analyzed various features of the model parameters involving the
background space–time. In the Schäfer and Goenner [49] model, the collapse begins
at time t = −∞ with both infinite mass and radius and contracts to a point at time
t = 0 without forming an event horizon. The horizon is never formed in this set up
because the rate of collapse is counter balanced by the rate at which energy is dissipated
to the exterior space–time of the star.

In our construction, we have traced the evolution of the collapse on the background
of space–time obtained by introducing an inhomogeneous perturbation in the Robert-
son-Walker space–time. Inhomogeneity in the geometry of the background space–time
may be interpreted in the following way. We have considered the 3-sub-space of the
4-D manifold as having a geometry of a 3-spheroid rather than a 3-sphere as in [48]. We
have examined the impacts of inhomogeneous nature of background space–time and
anisotropic stresses on the collapse by comparing the behaviour of physical parame-
ters in our set up to the behaviour of corresponding parameters in Banerjee et al. [48]
model, admissible as a special class in our model. We have also explored the thermal
behaviour at the interior of the collapsing star by considering two different space–time
backgrounds. We have not incorporated bulk viscosity and electromagnetic field in our
model as these factors are likely to be absorbed into the anisotropic stresses. We have
also considered a shear-free model so as to keep the governing field equations reason-
ably simple and tractable. Moreover, since the Schäfer and Goenner [49] model was
assumed to be shear-free, this simplifying assumption helps us to examine the impact
of inhomogeneity directly by comparing our results to its homogeneous counterpart.
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The paper has been organized as follows: In Sect. 2, we have presented an inhomo-
geneous generalization of the Banerjee et al. [48] model by introducing a perturbation
in the background space–time for a spherically symmetric anisotropic fluid undergo-
ing non-adiabatic radiative collapse. Stipulating the boundary conditions across the
surface separating the stellar configuration from the Vaidya [4] space–time describing
its exterior filled with outgoing radiation, we have solved the surface equation which
governs the evolution of the collapse. In Sect. 3, we have examined the implications of
inhomogeneity on the collapse by comparing the evolutions of the physical quantities
to the homogeneous model discussed in [49]. Bounds on the model parameters based
on physical requirements and evolution of temperature have been analyzed in this
section. Finally, some concluding remarks have been made in Sect. 4.

2 Interior space–time

The conformally flat space–time metric formulated by Maiti [47], representing a spher-
ically symmetric shear-free and rotation-free fluid with heat flux as source, has the
form

ds2− = −
[

1 + a(t)

1 + k(t) r2

4

]2

dt2 + R2(t)(
1 + k(t) r2

4

)2

[
dr2 + r2d�2

]
. (1)

The line element (1) reduces to Robertson-Walker metric for a(t) = k̇ = 0. Making
use of the metric (1), Banerjee et al. [48] presented a simple model for a collapsing
body with outgoing radiation by assuming a( �= 0) and k as remaining constants during
collapse. The collapsing matter in this set up was assumed to be a homogeneously dis-
tributed isotropic fluid. Various aspects of this model have been extensively examined
by Schäfer and Goenner [49] putting constraints on model parameters complying with
various physical plausibility requirements. Following Schäfer and Goenner [49], we
express the space–time metric of Banerjee et al. [48] model in standard coordinates as

ds2− = −(C −
√

1 − kr2)2dt2 + R2(t)

[
dr2

1 − kr2 + r2d�2
]

, (2)

where, C and k( �= 0) are constants.
To generalize the Banerjee et al. [48] model, we assume that the collapsing con-

figuration is comprised of an inhomogeneous distribution of anisotropic fluid with its
background space–time having the form

ds2− = −A2
0(r)dt2 + R2(t)

[
1 + λkr2

1 − kr2 dr2 + r2d�2
]

. (3)

Here, the metric potential A0(r) and the scale factor R(t) are undetermined metric
functions and λ is a parameter measuring departure from homogeneous geometry.
The t = constant hyper surface of the space–time (3) has a geometry of a 3-spheroid
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[50–54] representing a perturbation from that of a 3-sphere. The energy-momentum
tensor of the fluid with anisotropy in pressure filling the interior of the collapsing body
is written explicitly in the form

Tαβ = (ρ + pt )uαuβ + pt gαβ + (pr − pt )χαχβ + qαuβ + qβuα. (4)

Here ρ represents the energy density, pr is the radial pressure, pt is the tangential
pressure, χα is a unit space like four vector along the radial direction, uα is the
4-velocity of the fluid and qα = qδα

r is the heat flux vector which is orthogonal to the
velocity vector so that qαuα = 0. Einstein’s field equations in view of (3) and (4) lead
to the following system of four independent equations

8πρ = 1

R2

[
1

r2 − 1

r2 B2
0

+ 2B ′
0

r B3
0

]
+ 3Ṙ2

A2
0 R2

, (5)

8πpr = 1

R2

[
− 1

r2 + 1

B2
0r2

+ 2A′
0

r A0 B2
0

]
− 1

A2
0

(
Ṙ2

R2 + 2
R̈

R

)
, (6)

8πpt = 1

R2

[
A′′

0

A0 B2
0

+ A′
0

r A0 B2
0

− B ′
0

r B3
0

− A′
0 B ′

0

A0 B3
0

]
− 1

A2
0

[
2R̈

R
+ Ṙ2

R2

]
, (7)

8πq = − 2A′
0 Ṙ

A2
0 B2

0 R3
, (8)

where,

B0 =
√(

1 + λkr2

1 − kr2

)
. (9)

We have used in above the system of units rendering G = c = 1. Combining Eqs. (6)–
(7), a time-independent differential equation of the form

A′′
0

A0 B2
0

− A′
0

r A0 B2
0

− B ′
0

r B3
0

− A′
0 B ′

0

A0 B3
0

− 1

B2
0r2

+ 1

r2 − δ(r) = 0, (10)

may be obtained if it is assumed that the anisotropy evolves as

8π(pt − pr ) = 
(r, t) = δ(r)

R2(t)
. (11)

By making a transformation x2 = 1−kr2 and using the expression for B0(r), Eq. (10)
may be rewritten as

(1+λk − λkx2)
d2 A0

dx2 +λkx
d A0

dx
+

(
λk(λk + 1) − (1 + λk − λkx2)2δ(r)

k(1 − x2)

)
A0 = 0.

(12)
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In terms of a new dependent variable

�(x) = A0(x)[1 + λk − λkx2]−1/4, (13)

Eq. (12) assumes the form

d2�

dx2 +
[

2λk(λk + 1)(2λk + 1)−(4λk + 7)λ2k2x2

4(1 + λk − λkx2)2 − (1 + λk − λkx2)δ(r)

k(1 − x2)

]
� =0.

(14)

� can be determined from Eq. (14) if the nature of anisotropic parameter δ(r) is
known. We shall examine the effect of inhomogeneity on the evolution of the collapse
using the simple tractable solution

� = C + Dx, (15)

of Eq. (14), obtained by stipulating

δ(r) = k(1 − x2)[2λk(λk + 1)(2λk + 1) − (4λk + 7)λ2k2x2]
4(1 + λk − λkx2)3 . (16)

Note that the anisotropy parameter δ(r) is regular at all interior points of the configura-
tion. In Eq. (15), C and D are arbitrary constants of integration. Combining Eqs. (13)
and (15), the metric function A0(r) is obtained as

A0(r) = (1 + λk2r2)1/4(C + D
√

1 − kr2). (17)

Consequently the space–time of the collapsing shear-free stellar body with anisotropic
stresses is described by metric

ds2− =−(1 + λk2r2)1/2(C + D
√

1 − kr2)2dt2 + R2(t)

[
1 + λkr2

1 − kr2 dr2 + r2d�2
]

.

(18)

The Banerjee et al. [48] model is a sub-class of (18) which follows on setting λ = 0
and D = −1 [49]. We shall examine the impact of the inhomogeneous nature of the
background geometry due to presence of λ without any loss of generality by stipulating
D = −1.

2.1 Determination of R(t)

The evolution of the collapse in the stellar body with interior space–time metric (18)
is governed by the function R(t) which has role of a scale factor in the process.
It is determined by the boundary conditions across the boundary surface � of the
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configuration as it shrinks in size. The space–time outside the collapsing body will be
appropriately described by the Vaidya [4] metric

ds2+ = −
(

1 − 2m(v)

r̄

)
dv2 − 2dvdr̄ + r̄2d�2. (19)

Here v denotes retarded time and m(v) represents the total mass of the collapsing
star which is expected to be a function of the retarded time v. Following the method
presented by Santos [5], we write the matching conditions linking smoothly the inte-
rior and the exterior space–times across the boundary 3-space–time of the evolving
system as

m(v) = (r R(t))Σ
2

[
1 − 1

B2
0

+
(

r Ṙ

A0

)2]
Σ

, (20)

(pr )� = (q R(t)B0)Σ, (21)

From (20) it follows that the mass of matter enclosed within the boundary surface
r < rΣ will be

m(r, t) = r R(t)

2

[
1 − 1

B2
0

+
(

r Ṙ

A0

)2]
. (22)

Equations (6) and (8) and the boundary condition (21) at r = rΣ lead to

R̈ R + 1

2
Ṙ2 − α Ṙ + β = 0, (23)

where, α and β are constants given by

α =
Cλk2rΣ

√
1 − kr2

Σ + krΣ(2 − λk + 3λk2r2
Σ)

2
√

1 + λkr2
Σ(1 + λk2r2

Σ)3/4
, (24)

β =
k(C −

√
1 − kr2

Σ)

2
(
1 + λkr2

Σ

)√
1 + λk2r2

Σ

⎡
⎣C

(
1 + λ − λk + 2λk2r2

Σ + λ2k2r2
Σ

)

− (3 + λ − λk − λkr2
Σ + 5λk2r2

Σ + λ2k2r2
Σ − 3kr2

Σ − λ2k3r4
Σ − 4λk3r4

Σ)√
1 − kr2

Σ

⎤
⎦ .

(25)

A simple solution of Eq. (23) will then be [49]

R(t) = nt, (26)
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where,

n = α ±
√

α2 − 2β. (27)

For collapsing configurations we must have Ṙ < 0. Hence n should be negative
implying

n = α −
√

α2 − 2β. (28)

The constants C , k and λ should be chosen to ensure α2 > 2β and n < 0.

3 Physical analysis

Einstein’s field equations lead to the following explicit expression for the dynami-
cal variables of matter density, the radial and transverse pressures and the heat flux
parameter associated with the collapsing stellar structure

8πρ = k(λ + 1)(3 + λkr2)

n2t2(1 + λkr2)2 + 3

t2(1 + λk2r2)1/2(C − √
1 − kr2)2

, (29)

8πpr = 8πρ − 4

t2(1 + λk2r2)1/2(C − √
1 − kr2)2

, (30)

8πpt = 8πpr + k2r2
[
2λk(1 + λk)(1 + 2λk) − λ2k2(1 − kr2)(4λk + 7)

]
4n2t2(1 + λk2r2)3 , (31)

8πq = −
r
√

1 − kr2
[
Cλk

√
1 − kr2 + (2 − λk + 3λk2r2)

]
n2t3(1 + λkr2)(C − √

1 − kr2)2(1 + λk2r2)5/4
. (32)

These physical parameters have zero values at t → −∞; the density and the two pres-
sures evolve with time as ∼ 1/t2 while the heat flux evolves as ∼ 1/t3. The proper
radius rp = [R(t)r ]Σ = ntrΣ is infinite when collapse begins, positive at any later
instant t and shrinks to zero at t = 0. The mass at any instant t within the boundary
radius rΣ has expression

m(v)
Σ= m(rΣ, t) = nrΣ t

2

⎡
⎣ (1 + λ)kr2

Σ

(1 + λkr2
Σ)

+ n2r2
Σ

(C −
√

1 − kr2
Σ)2(1 + λk2r2

Σ)1/2

⎤
⎦ ,

(33)

which shows that the collapse begins with an infinite mass and size of the configuration
at t → −∞ and it evaporates completely as the epoch t = 0 approaches. As in [56],
the collapsing matter radiates all the mass energy when the singularity is reached as
proper boundary radius of the configuration rp = [r R(t)]Σ = 0 at t = 0.
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3.1 Nature of singularity

To understand the nature of singularity, in general, it is necessary to verify the existence
of radial null geodesics emerging from the singularity. The existence of a naked singu-
larity is characterized by the absence of apparent horizon as the collapse approaches
the central singularity r = 0. However, such a test is not required in our model
since the ratio of (2m(r, t)/r R)Σ is independent of time. One can always suitably
choose the model parameters so that the ratio (2m(r, t)/r R)Σ < 1. The function
1−[2m(r, t)/(r R)]Σ will then remain positive throughout the collapse process which
indicates that the collapse would terminate into a naked singularity. The Ricci curva-
ture, in our model, turns out to be

� = 6r2n2 B2
0 − 2A2

0(B0 − 2r B ′
0) + 2r A0[A′

0 B ′
0 − B0(2A′

0 + r A′′
0)]

r2 A2
0 B2

0 n2t2
, (34)

which show that the curvature diverges as 1/t2. This suggests that it is a weak curvature
singularity.

3.2 Energy conditions

A physically reasonable solution should satisfy certain energy conditions, namely,
(1) the null energy condition (ρ ≥ 0); (2) the weak energy condition (ρ − pr ≥ 0,
ρ − pt ≥ 0); and (3) the dominant energy condition (ρ − pr − 2pt ≥ 0).

From Eqs. (29)–(31), it is easy to show that ρ, pr , pt > 0 and ρ′, p′
r , p′

t < 0, if
the conditions λ > 0 and k > 0 are satisfied simultaneously. Equation (30) shows that
ρ > pr . Note that at r = 0, pr = pt and both pr and pt decrease radially outward.
We, therefore, may conclude that the null and weak energy conditions are satisfied
in our model. It is difficult to verify the dominant energy condition unless numerical
techniques are invoked. However, we note that by setting R(t) = 1 in our model, it
is possible obtain an initial static configuration. The t = constant hypersurface of
the initial static configuration describes a space–time geometry which is spheroidal in
nature. The corresponding static configurations have been found to comply with the
energy conditions mentioned above (see [55] and references therein). Since ρ, pr and
pt evolve as 1/t2, it is expected that the fulfillment of the energy conditions will be
sustained throughout the collapse.

3.3 Bounds on model parameters

The rate of expansion, in our model, has the explicit expression

� = uα
α = 3Ṙ

A0 R
= 3

t (1 + λk2r2)1/4(C − √
1 − kr2)

, (35)
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and should be negative since our model describes a contracting body. Therefore, during
the whole collapse process from time t = −∞ to t = 0, we must have

(1 + λk2r2)1/4
(

C −
√

1 − kr2
)

> 0. (36)

Equation (36) implies a lower bound on C such that C > 1. Equation (36) also follows
from the requirement A0(r) > 0. The constraints on the model parameters obtained
in view of physical viability are specified below:

(a) From Eq. (29), the central density is obtained as

ρc = 3k(λ + 1)

n2t2 + 3

t2(C − 1)2 . (37)

Therefore, for a positive energy density, we must have k > 0. Moreover, the
requirements ρ, pr , pt > 0 and ρ′, p′

r , p′
t < 0, demand that λ > 0.

(b) For 0 ≤ r ≤ rΣ , the factor
√

1 − kr2 appearing in the metric function A0(r)

will be real if 0 < k ≤ 1/r2
Σ .

(c) As discussed earlier, the lower bound on C is given by C > 1. The upper bound
on C may be obtained by noting that α2 > 2β which ensures that n in Eq. (28)
remains real. Thus, bounds on C may be expressed as

1 < C <
8
√

1 − kr2
Σ + 4

√
1 + λkr2

Σ(1 + λk2r2
Σ)2 + aλ

√
1 − kr2

Σ

4 + bλ
, (38)

where,

a = 4 − 4k + 22k2r2
Σ + 8λk2r2

Σ − 5λk3r2
Σ + 15λk4r2

Σ + 4λ2k4r4
Σ,

b = 4 − 4k + 12k2r2
Σ + 8λk2r2

Σ − 5λk3r2
Σ + 9λk4r4

Σ + 4λ2k4r4
Σ.

(d) For collapsing configurations we must have Ṙ < 0 which implies that n < 0.

Though, more stringent constraints on the model parameters can not be ruled out,
the constraint equations obtained previously by Schäfer and Goenner [49] may be
regained by stipulating λ = 0 in this model. The parameter λ will take on value such
that all the above mentioned conditions are satisfied simultaneously. In Fig. 1, we have
shown the range of values for k and C consistent with the constraints which can ensure
regular behaviour of the physical parameters. Note that the condition (d) yields a more
stringent bound on the parameters as compared to the condition (c).

We have checked the behaviour of the physical parameters like energy density,
radial and tangential pressures by assuming a set of values of λ, k and C consistent
with the above constraints. Figs. 2, 3, 4, 5, 6, and 7 describe the behaviour of various
physical parameters and indicate that they all comply with the requirement of the
regularity. In the figures, we have assumed that the collapsing object has an initial
radius rΣ(t → −∞) = rs = 1 as in [49]. The proper radius rp = R(t)rΣ = ntrΣ ,
shrinks to zero at t = 0 as R(t) = 0 at t = 0. Therefore, a choice of rs is possible
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n 0 : 0, rs 1

n 0 : 5, rs 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

k

C

Fig. 1 Range for the parameters k and C for λ = 0 (blue shaded region which includes the green shaded
region) and λ = 5 (green shaded region) obtained by imposing the condition n < 0. For λ = 0 and
5, the blue and green curves respectively give the bounds on the model parameters obtained from the
condition (c) (colour figure online)

1000
500

0t

0.0

0.5

1.0

r

0.0

0.1

0.2

0.3

8 π
ρ

Fig. 2 Evolution of the energy density (8πρ) at the centre (r = 0) for an inhomogeneous and anisotropic
distribution (λ = 5, k = 0.2, C = 1.2)

for convenience and will not have any impact on the nature of collapse. The choice
rs = 1 has the effect of changing the length measuring scale only. The bounds on the
model parameters are valid for all 0 ≤ rΣ ≤ ∞ including rΣ(t → −∞) = rs = 1.
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1000
800

600
400

200t

0.0

0.5
1.0r

0.00

0.01

0.02
r

8 π
ρ

Fig. 3 Evolution of the radial pressure (8πpr ) at the centre (r = 0) for an inhomogeneous and anisotropic
distribution (λ = 5, k = 0.2, C = 1.2)

1000 800
600

400
200t

0.0

0.5

1.0

r

0.00

0.01

0.02

t
8 π

ρ

Fig. 4 Evolution of the transverse pressure (8πpt ) at the centre (r = 0) for an inhomogeneous and aniso-
tropic distribution (λ = 5, k = 0.2, C = 1.2)

In Figs. 2, 3, and 4, we have shown the evolution of the central values of the energy
density, radial and tangential pressures, respectively, by assuming a set of values con-
sistent with the constraints (we have assumed λ = 5, k = 0.2, C = 1.2) for an
inhomogeneous anisotropic distribution. Setting λ = 0, k = 0.2, C = 2.5, behaviour
of the corresponding parameters for a homogeneous isotropic distribution have been
shown in Figs. 5, 6, and 7. The plots clearly indicate that the physical parameters start
with zero value at t → −∞ and increase till the singularity is reached at t = 0 and
rΣ = 0. Since anisotropy vanishes at the centre, evolution of the radial and tangen-
tial pressures show identical behaviour though explicit expressions for pr and pt in
Eqs. (30)-(31) clearly indicate their inequality for r �= 0. If λ = 0, pr = pt at all inte-
rior points of the star which implies that pressure isotropy condition can be regained
by setting λ = 0. In Figs. 8 and 9, we have shown the variations of the total mass
m(rΣ, t) for λ = 0 and λ = 5, respectively. Evolution of the scale factor R(t) has been

123



Space–time inhomogeneity, anisotropy and gravitational collapse 2515

4.0
3.5

3.0
2.5

2.0

t

0.0

0.5

1.0
r

0.5

1.0

1.5

2.0

8 π
ρ

Fig. 5 Evolution of the energy density (8πρ) at the centre (r = 0) for a homogeneous and isotropic
distribution (λ = 0, k = 0.2, C = 2.5)
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Fig. 6 Evolution of the radial pressure (8πpr ) at the centre (r = 0) for a homogeneous and isotropic
distribution (λ = 0, k = 0.2, C = 2.5)

shown in Fig. 10 for two different values of λ(= 0, 5). The λ = 0 case corresponds to
the Schäfer and Goenner [49] model describing the collapse of a homogeneous fluid
model with isotropic fluid pressure.

3.4 Thermal behaviour

Let us now investigate the evolution of temperature of the collapsing star. In view of
extended irreversible thermodynamics, the relativistic Maxwell–Cattaneo relation for
temperature governing the heat transport within the collapsing matter in the truncated
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Fig. 7 Evolution of the transverse pressure (8πpt ) at the centre (r = 0) for a homogeneous and isotropic
distribution (λ = 0, k = 0.2, C = 2.5)
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Fig. 8 Evolution of the mass function m(rΣ, t) for a homogeneous and isotropic distribution (λ = 0,
k = 0.2, C = 2.5)
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Fig. 9 Evolution of the mass function m(rΣ, t) for an inhomogeneous and anisotropic distribution (λ = 5,
k = 0.2, C = 1.2)
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Fig. 10 Evolution of Scale factor R(t) for homogeneous (λ = 0) and inhomogeneous (λ �= 0) distributions

Israel-Stewart theory [11,57–59] has the form

τ(gαβ + uαuβ)uδqβ;δ + qα = −κ(gαβ + uαuβ)[T,β + T u̇β ], (39)

where κ(≥ 0) is the thermal conductivity and τ(≥ 0) is the relaxation time. In view
of the line element (18), Eq. (39) reduces to

τ
d

dt
(q RB0) + q R A0 B0 = −κ

1

RB0

d

dr
(A0T ) (40)

The relativistic Fourier heat transport equation may be obtained by setting τ = 0
in (40). To get a simple estimate of the temperature evolution, we set τ = 0 in our
calculations. For τ = 0, combining Eqs. (8) and (40), we obtain

8πκ(A0T )′ = 2A′
0 Ṙ

A0 R
, (41)

Following an earlier treatment [59], we choose the thermal conductivity parameter in
the form κ = γ T ω, where γ and ω are constants. Equation (41), then, yields

8πγ (A0T )′ = 2A′
0

A0

T −ω

t
, (42)

where we have used Eq. (26). Integrating the above equation, we get

8πγ A0T 1+ω = 2Ln[A0]
t

. (43)
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Fig. 11 Time evolution of the surface temperature TΣ for homogeneous (λ = 0) and inhomogeneous
(λ = 5) distributions

The surface temperature at any instant for the special case (ω = 0) in our model thus
turns out to be

T (rΣ, t) =
Ln

[(
1 + λk2r2

Σ

)1/4
(

C − D
√

1 − kr2
Σ

)]

4πγ t

(
1 + λk2r2

Σ

)1/4 (
C − D

√
1 − kr2

Σ

) . (44)

Obviously, the surface temperature has zero value at t → −∞ and it evolves as 1/t .
Time evolution of the surface temperature for inhomogeneous (λ = 5) and homo-
geneous (λ = 0) distributions has been shown in Fig. 11. An interesting feature of
our model is that the surface temperature for the inhomogeneous, anisotropic distribu-
tion appears to be less than that of its homogeneous, isotropic counterpart. However,
evolution of the temperature shows identical behaviour in both the cases.

4 Discussion

We have generalized the Banerjee et al. [48] model and examined the impacts of inho-
mogeneous nature of background space–time and anisotropic stresses on the collapse
by comparing the behaviour of physical parameters in our set up to the behaviour of
corresponding parameters of a collapsing homogeneous, isotropic stellar configura-
tion of Schäfer and Goenner [49] model, admissible as a particular class. We have
considered two cases setting the parameter λ = 0, 5, for studying the evolution of
the collapse using numerical procedures. The parameter λ is a geometrical parameter
which is a measure of inhomogeneity. We have derived new bounds on the model
parameters and the bounds on the model parameters found in [49] may be regained
simply by setting λ = 0.
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Though, in general, the physical parameters evolve differently for two different
back ground space–times, an inhomogeneous perturbation of the background space–
time of the collapsing stellar configuration seems to have very little impact on the
gross features of the evolving system. Apparently departure from homogeneity does
not have any drastic impact on the evolution of collapse except for a change in the
collapse rate by a factor (1 + λk2r2)1/4. The possibilities of an in-depth analysis in
different set up giving conflicting results cannot be ruled out.
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