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Abstract This paper deals with the dynamics of scalar field thin shell in the
Reissner-Nordström geometry. The Israel junction conditions between Reissner-Nord-
ström spacetimes are derived, which lead to the equation of motion of scalar field shell
and Klien–Gordon equation. These equations are solved numerically by taking scalar
field model with the quadratic scalar potential. It is found that solution represents the
expanding and collapsing scalar field shell. For the better understanding of this prob-
lem, we investigate the case of massless scalar field (by taking the scalar field potential
zero). Also, we evaluate the scalar field potential when p is an explicit function of
R. We conclude that both massless as well as massive scalar field shell can expand
to infinity at constant rate or collapse to zero size forming a curvature singularity or
bounce under suitable conditions.

Keywords Gravitational collapse · Israel junction conditions · Scalar field

1 Introduction

The idea of the geon (electromagnetic-gravitational entity) by Wheeler et al. [1,2]
leads to investigation of scalar field in general relativity (GR). In GR, the scalar field
appears in the low energy limit of string theory [3]. Still, there is no observational
evidence about the existence of such particles that are associated with the scalar field.
However, the study of gravitational collapse of compact objects in the scalar-tensor
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theories imply that scalar field might be the source of scalar gravitational waves that
can be detected by the advanced detectors [4]. Further, the observational facts from
the binary pulsar may include or exclude the presence of scalar field in GR [5]. In
astrophysical context, boson stars are such compact objects that are composed of
scalar field. Probably, such stars were created in the early universe as Higgs particles
condensate [6]. Recently, it has been proposed that boson stars are the candidates for
dark matter [7]. Also, some remarkable similarities are suggested between neutron
and boson stars.

Dynamics of scalar fields has been the subject of particular interest in both cos-
mological as well as astrophysical situations. In cosmological scenarios, scalar fields
have a great attraction because such fields act as an effective cosmological constant
in deriving the inflation. The nature of spacetime singularity for massless scalar field
has been investigated in recent years on spherical collapse models [8–15]. Bhattach-
arya et al. [16] discussed the gravitational collapse of a minimally coupled massless
scalar field and examined the possibility of existence of nonsingular models where
collapse could be freezed under suitable conditions. All these studies investigate the
dynamics of massless scalar field using the exact solutions of the field equations. Kaup
[6] was among the pioneers to study complex massive scalar field configuration. Ruf-
fini and Bonazzola [17] explored spherically symmetric system and determined the
equilibrium conditions for boson stars solutions.

There is another formalism to study the dynamics of the matter field referred to as
“thin shell formalism” developed by Israel [18,19]. This is one of the exactly solv-
able formulation in GR which is widely used to understand gravitational collapse and
other cosmological as well as astrophysical processes. It involves a discontinuity of
the extrinsic curvatures of the interior and exterior regions across a boundary surface.
The jump in the extrinsic curvature across the boundary surface is caused by a thin
layer of matter. In this formulation, the set of equations leads to equations of motion
(much simpler) corresponding to the field equations, involving curvature on one side
and matter on the other side. The solution of these equations provides full understand-
ing of the dynamics of system. In the relativistic astrophysics, the thin shell equations
help to study the properties of the compact objects.

Pereira and Wang [20,21] studied gravitational collapse of the cylindrical shell
made of counter rotating dust particles by using the Israel thin shell formalism. Sharif
et al. [22–24] have investigated plane and spherically symmetric gravitational collapse
by using this formulation. This approach was generalized to thin charged shell with-
out pressure by De La Cruz and Israel [25]. Kuchar [26] and Chase [27] treated the
charged thin shell problem with pressure by using polytropic equation of state. There
are a number of papers devoted to handle the charged thin shell problems. Boulware
[28] studied the time evolution of the charged thin shell and showed that their col-
lapse could form a naked singularity if and only if density is negative. Farrugia and
Hajicek [29] investigated third law of black hole mechanics in the Reissner Nordström
(RN) geometry. Núñez [30] studied the oscillating perfect fluid shell. Also, Núñez et
al. [31] explored the stability and dynamical behavior of the real scalar field for the
Schwarzschild geometry in single null coordinate.

The purpose of the present paper is to study the application of Israel thin shell for-
malism for the scalar fields in the context of GR. In particular, we study the dynamical
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behavior of scalar field thin shell in charged background. To this end, we take interior
and exterior regions as RN solutions, the Israel thin shell formalism is used to derive
equations of motion of the shell for the perfect fluid. We then specify that the perfect
fluid is generated by scalar field which leads to scalar field equations of motion. The
solution of these equations provide expanding, collapsing or oscillating scalar field
shell. The plan of the paper is as follows: Equations of motion for scalar field model
with quadratic potential and their physical interpretation are presented in Sect. 2. Sec-
tions 3 and 4 deal with dynamics of the massless and massive scalar field with arbitrary
scalar potential, respectively. We summarize our results in the last section.

2 Dynamical equations

In this section, we use Israel thin shell formulation to derive equations of motion of the
scalar field shell. For this purpose, we take a 3D spacelike boundary surface �, which
splits the two 4D spherically symmetric spacetimes V + and V −. The interior and
exterior regions V −and V +, respectively are described by the RN metrics given by

(ds)2± = η±dT 2 − 1

η±
d R2 − R2(dθ2 + sin2 θdφ2), (1)

where η±(R) = 1 − 2M±
R + Q2±

R2 , M± and Q± are the mass and charge, respec-
tively. The subscripts + and − represent quantities in exterior and interior regions to
�, respectively. Further, it is assumed that charge in both regions is the same, i.e.,
Q− = Q+ = Q. The strength of the electric field on the shell can be described by the
Maxwell field tensor, FT R = Q

R2 = −F RT .
The energy-momentum tensor of the electromagnetic field is

T ν
δ

(em) = 1

4π

(
−FνλFδλ + 1

4
δν
δ FπλFπλ

)
. (2)

By employing the intrinsic coordinates (τ, θ, φ) on � at R = R(τ ), the metrics (1)
on � become

(ds)2±�
=

[
η(R) − 1

η(R)

(
d R

dT

)2
]

dT 2 − R2(τ )(dθ2 + sin2 θdφ2). (3)

Here T is also a function of τ and it is assumed that g00 > 0, so that T is a timelike
coordinate. Also, the induced metric on the boundary surface � is given by

(ds)2
� = dτ 2 − a2(τ )(dθ2 + sin2 θdφ2). (4)

The continuity of the first fundamental form gives

[
η(R�) − 1

η(R�)

(
d R�

dT

)2
] 1

2

dT = (dτ)�, R(τ ) = a(τ )�. (5)
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Now the unit normal nμ
± to � in V ± coordinates can be evaluated as

nμ
± = (−Ṙ(τ ), Ṫ , 0, 0), (6)

where dot represents differentiation with respect to τ .
The non-vanishing components of the extrinsic curvature are

K ±
ττ = d

d R

√
Ṙ2 + η±, K ±

θθ = −R
√

Ṙ2 + η±, K ±
φφ = K ±

θθ sin2 θ. (7)

The surface energy-momentum tensor is defined by

Si j = 1

κ
{[Ki j ] − γi j [K ]}, (8)

where κ is a coupling constant, γi j is induced metric on � and

[Ki j ] = K +
i j − K −

i j , [K ] = γ i j [Ki j ]. (9)

The surface energy-momentum tensor for a perfect fluid is

Si j = (ρ + p)ui u j − pγi j , (10)

where ui = δ0
i . Using Eqs. (5), (8) and (10), we can find

ρ = 2

κ R2 [Kθθ ], p = 1

κ

{
Ktt − [Kθθ ]

R2

}
. (11)

Inserting the non-zero components of the extrinsic curvature components, we get

(ζ+ − ζ−) + κ

2
ρR = 0, (12)

d

d R
(ζ+ − ζ−) + 1

R
(ζ+ − ζ−) − κp = 0, (13)

where ζ± =
√

Ṙ2 + η±. Making use of Eq. (12) in (13), it follows that

ṁ + p Ȧ = 0, (14)

where m(= ρ A) and A(= 4π R2(τ )) stand for the integrated total energy density at
some time and area of the shell, respectively. The conservation of surface energy-
momentum tensor leads to the same equation as Eq. (14) and hence this equation is
known as energy conservation law on the shell. It is mentioned here that this equation
can be solved by using the equation of state p = kρ, and its solution is

ρ = ρ0

(
R0

R

)2(k+1)

, (15)
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where R0 is the position of the shell at t = t0 and ρ0 is the density of matter on the
shell at position R0. Using this value of ρ in the definition of m, we obtain

m = 4πρ0
R(2k+2)

0

R2k
. (16)

From Eq. (12), equation of motion of the shell is given by

Ṙ2 + Vef f (R) = 0, (17)

where the effective potential Vef f (R) is

Vef f (R) = 1 −
(

M+ − M−
m

)2

+
(

Q

R

)2

− (M+ + M−)

R
−

( m

2R

)2
. (18)

Notice that we have used κ = 8π to derive this equation.
To see the effects of charge parameter Q on the dynamics of shell, we re-write

Eq. (17) by using the above equation as follows

Ṙ = ±
√(

M+ − M−
m

)2

−
(

Q

R

)2

+ (M+ + M−)

R
+

( m

2R

)2 − 1. (19)

Here +(−) correspond to expansion (collapse) of shell and m is the same as defined

after Eq. (14). The term Q2

R2 (Coulomb repulsive force) in Ṙ (velocity of shell with
respect to stationary observer) indicates that charge reduces velocity of the shell with
respect to stationary observer. This velocity also depends on position of the observer,
whether the observer is located inside or outside the shell. Further, Eq. (18) implies that
charge parameter increases the effective potential Vef f . In coming sections, we shall
see that throughout the dynamics of shell (composed of either massless or massive
scalar field), charge parameter reduces and increases velocity of the shell with respect
to stationary observer and Vef f , respectively. Thus initially the velocity of the shell
with respect to stationary observer in the RN background is slower as compared to
the Schwarzschild case (as shown in Fig. 1). We conclude that electrostatic repulsive
force in RN background tries to balance with the gravitational force due to the shell
and hence the shell velocity with respect to stationary observer is slow in this case as
compared to uncharged case.

In order to study the dynamics of scalar field shell, we specify that the perfect fluid
is generated by a scalar field. The energy density and the pressure of the scalar field
can be written as

ρ = 1

2

[
φ, νφ

, ν + 2V (φ)
]
, p = 1

2

[
φ, νφ

, ν − 2V (φ)
]
, (20)

where V (φ) = m̃2φ2 is the potential term which contributes to provide mass of the
scalar field. We note that the scalar field will be massless in the absence of such term.

123



2358 M. Sharif, G. Abbas

Fig. 1 Behavior of the shell velocity with respect to stationary observer, when M+ = 1, M− = 0,
k = ρ0 = R0 = 1 and Q = 1. The upper and lower curves correspond to uncharged and charged cases,
respectively. It is clear that initially velocity in the charged case is less than the uncharged case. Velocities

in both cases match for larger values R, as term Q2

R2 becomes negligible for larger values R

Using Eq. (20), we can write the energy-momentum tensor of the scalar field as follows

Si j = ∇iφ∇ jφ − γi j

[
1

2
(∇φ)2 − V (φ)

]
. (21)

Since the induced metric (4) depends only on τ , so φ also depends on τ . Thus Eq. (20)
leads to

ρ = 1

2

[
φ̇2 + 2V (φ)

]
, p = 1

2

[
φ̇2 − 2V (φ)

]
. (22)

In terms of the scalar field, the integrated total energy density of the shell at some time
is

m = 2π R2[φ̇2 + 2V (φ)]. (23)

Using Eqs. (22) and (23) in Eq. (14), we get

φ̈ + 2Ṙ

R
φ̇ + ∂V

∂φ
= 0. (24)

This is the Klien–Gordon (KG) equation, �φ + ∂V
∂φ

= 0, in coordinate system of the
shell metric (4). In terms of the scalar field, the effective potential is

Vef f (R) = 1 −
(

M+ − M−
2π R2(φ̇2 + 2V (φ))

)2

+
(

Q

R

)2

− (M+ + M−)

R

−[π R(φ̇2 + 2V (φ))]2. (25)

Now we solve the KG equation (24) and equation of motion (17) [with Eq. (25)]
simultaneously for φ(τ) and R(τ ). In this case, the exact solution is not possible.
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Fig. 2 The left graph is the behavior of the shell radius R while the right graph is the behavior of scalar
field. Both these graphs have been plotted by using M+ = 1, m̃ = 1, M− = 0, Q = 1, φ̇(1) = 0.19 and
φ(1) = R(1) = 1

We solve these equations numerically by assuming the following initial conditions:
φ̇(1) = 0.19 and φ(1) = R(1) = 1. The graphs of these equations for the set of initial
data are shown in Fig. 2. The left graph shows the behavior of the shell radius R in
which upper and lower curves represent the expanding and collapsing shell, respec-
tively. The right graph is the behavior of scalar field whose upper and lower curves
represent the collapsing and expanding shell, respectively. In case of collapse (upper
curve), scalar field density φ goes on increasing while in case of expansion (lower
curve), this comes to a point on τ -axis implying that scalar field decays to zero value
in this case.

3 Massless scalar field

A scalar field becomes massless, when scalar potential, V (φ), is zero. In this case,
the KG equation reduces to φ̈ + 2Ṙ

R φ̇ = 0 whose solution is φ̇ = �
R2 , where � is an

integration constant. Thus the equation of motion (17) with Eq. (25) takes the form

Ṙ2 + 1 −
(

M+ − M−
2π�2

)2

R4 +
(

Q

R

)2

− (M+ + M−)

R
− π2�4

R6 = 0. (26)

We define the following two parameters:

[M] = M+ − M−, M = M+ + M−
2

.

Using these in Eq. (26), it follows that

Ṙ2 + Vef f = 0, (27)

where

Vef f = 1 −
( [M]

2π�2

)2

R4 +
(

Q

R

)2

− 2M

R
− π2�4

R6 . (28)
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Fig. 3 The left graph shows the shell radius for massless scalar field case (Eq. (26)). The right graph is
the effective potential for massless scalar field (Eq. (28)) with � = 1, keeping all the remaining parameters
and initial conditions fixed as in Figs. 1 and 2

Fig. 4 This figure describes the behavior of effective potential (Eq. (28)). Both graphs correspond to varying
M+ and M−, keeping the remaining parameters fixed as in previous cases

For the initial data of the shell, the left graph in Fig. 3 shows the increase and
decrease in shell radius implying the expansion and collapse of the massless scalar
field shell. Thus a massless scalar shell may expand or collapse depending on the
sign of velocity (i.e., Ṙ) of the shell with respect to stationary observer. The behav-
ior of the potential depends on the number of roots of the potential. If there is no
root then the scalar field shell either expands indefinitely or collapses to a zero size
from some finite value. If there is one non-degenerate root then the shell expands
to infinity or contracts to some finite size. For one degenerate root, the shell will
be in an unstable equilibrium or collapses to form a black hole or naked singularity
[32].

The graphical representation of the effective potential with fixed parameteric values
of the model is shown in Figs. 4 and 5. Both graphs for varying M+ and M− in Fig. 4
and the left graph in Fig. 5 show that the effective potential diverges for initial values
of R and then Vef f → −∞ as R → ∞. In these cases, the shell expands to infinity or
collapses to zero size. The right graph in Fig. 5 shows that the effective potential has
one root and there occurs unstable situation, after which potential diverges negatively
and shell expands or collapses. The cases in which collapse occurs, the shell collapses
to zero size by forming a curvature singularity at which intrinsic Ricci scalar of the
shell, Rμ

μ = − 2
R2 (2R R̈ + Ṙ2), diverges.
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Expanding and collapsing scalar field thin shell 2361

Fig. 5 The left graph describes the effective potential for massless scalar field with different values of �,
keeping all the remaining parameters fixed as in previous cases. The right graph represents the behavior of
the massless scalar field shell for different values of the charge Q

4 Massive scalar field

In this case, we discuss the motion of a scalar field for which potential term, V (φ) is
determined by taking p as an explicit function of R. From Eq. (22), we get

φ̇2 = p + ρ, V (φ) = 1

2
(p − ρ). (29)

Also, from Eqs. (12) and (13), we get

dρ

d R
+ 2

R
(p + ρ) = 0. (30)

Here we use p as an explicit function of R, [31] i.e., p = p0e−k R , where p0 and k are
constants. Inserting this value of p in Eq. (30), it follows that

ρ = χ

R2 + 2(1 + k R)p0e−k R

k2 R2 , (31)

where χ is constant of integration. Notice that the above equations satisfy the conser-
vation equation (14). Further, applying the values of p and ρ in Eq. (29), we get

V (φ) = χ

2R2 − p0e−k R

2

(
1 − 2(1 + k R)

k2 R2

)
, (32)

φ̇2 = χ

R2 + p0e−k R
(

1 + 2(1 + k R)

k2 R2

)
. (33)

These equations satisfy the KG equation (24). Using Eqs. (31)–(33) in (25), we have

Vef f (R) = 1 −
(

M+ − M−
m

)2

+
(

Q

R

)2

− (M+ + M−)

R
−

( m

2R

)2
, (34)

123



2362 M. Sharif, G. Abbas

Fig. 6 The behavior of effective potential for massive scalar field is shown for fixed parameters as well
with varying charge parameter

where

m = 4π R2ρ ≡ 4πχ + 8πp0e−k R

k2 (1 + k R). (35)

The behavior of effective potential for massive scalar field shell is shown in Fig. 6.
The left graph is effective potential for massive scalar field (Eq. (34)) for k = 1, χ =
3, p0 = 1 and remaining parameters are fixed as in the massless scalar field case. This
implies that Vef f → −∞ as R → 0, the massive shell collapses to zero size forming a
curvature singularity. The right graph represents effective potential for massive scalar
field shell for different values of Q. There appear oscillations in the system. There
exist such values of charge parameter for which scalar field shell executes an oscilla-
tory motion. The oscillations occur at two points where Vef f cuts the horizontal axis
at more than one point. The values of R for which Vef f = 0 are shown in right graph
of Fig. 6 yielding zero velocity. This implies that the shell stops for a moment and then
expands or collapses. During the collapsing phase at minimum values of the radius,
the tangential pressure reaches its maximum values while during the expansion, min-
imum pressure occurs at maximum radius. In this way, scalar field shell performs the
oscillatory motion. The values of R for which Vef f = 0, and intrinsic curvature of the
shell is finite, are bouncing points after bounce the shell either expands or collapse.

5 Discussion

In this paper, we have examined the dynamical behavior of the scalar field thin shell.
Using the Israel formalism, the equations of motion have been formulated by taking
the internal and external regions to the boundary surface as RN solution. The equations
of motion are originally derived for perfect fluid and then are written in terms of scalar
field. The complete dynamics of the thin shell is described by the equation of motion
(17) and the KG equation (24). The exact solution of these equations cannot be found,
however, can be solved numerically. Firstly, we have solved these equations by using
the scalar field potential as quadratic potential. This solution is shown in Figs. 1 and 2
which represents the collapsing and expanding scalar field shell. It has been found that
scalar field decays out in the case of expansion while it grows in the case of collapse.
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To analyze further, we have taken massless scalar field and a massive scalar field
with p as an explicit function of R. In the case of massless scalar field, it has been
found that the shell radius is an increasing or decreasing function of the proper time
implying that the shell either collapses or expands. In this case, the effective potential
(Figs. 3, 4, 5) predicts that shell can collapse to zero size by forming a curvature
singularity or can expand to infinity. For the massive scalar field case with p as an
explicit function of R, we have evaluated the scalar field potential instead of taking it
as quadratic. It has been found that the shell radius behaves like the massless scalar
field and the effective potential (Fig. 6) diverges negatively as the radius of the shell
approaches to zero and oscillating behavior is noted in this case. This indicates that
the shell collapses to zero size forming a curvature singularity. There is also bouncing
behavior of the shell in this case. In the both (massless and massive scalar field) cases,
when shell collapses, the edge of the shell coincides with the horizons of the interior
black hole.

The results can be summarized as follows. We have found that there are three possi-
ble phases [expanding, collapsing and oscillating (bouncing)] during the dynamics of
the scalar field in the present configuration. When shell expands, it continues expand-
ing forever with constant velocity as the boundary surface is described by the spatially
homogenous spacetime. In case of collapse, a shell collapses to zero size forming a
curvature singularity at R = 0, where intrinsic Ricci scalar Rμ

μ = − 2
R2 (2R R̈ + Ṙ2),

diverges. Also, the turning (bouncing) points occur when Vef f (R) = 0 at more than
one value of R. In this case, the oscillations occur between two points where Vef f = 0.
The values of R for which Vef f = 0 (right graph in Fig. 6), one gets zero velocity.
This implies that the shell stops suddenly and then expands or collapses. During the
collapse at R = Rmin , the tangential pressure reaches to its maximal values while
during expansion minimal pressure occurs R = Rmax . In this way, the scalar field
shell performs the oscillatory motion.

It would be interesting to extend this work for more generic geometry or using the
polytropic equation of state to check the validity of cosmic censorship hypothesis.
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