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Abstract In the framework of the Einstein–Palatini formalism, even though the
projective transformation connecting the arbitrary connection with the Levi-Civita
connection has been floating in the literature for a long time and perhaps the result
was implicitly known in the affine gravity community, yet as far as we know Julia
and Silva were the first to realise its gauge character. We rederive this result by
using the Rosenfeld–Dirac–Bergmann approach to constrained Hamiltonian systems
and do a comprehensive self contained analysis establishing the equivalence of the
Einstein–Palatini and the metric formulations without having to impose the gauge
choice that the connection is symmetric. We also make contact with the the Einstein–
Cartan theory when the matter Lagrangian has fermions.

Keywords General relativity · Palatini formulation · Projective transformations ·
Gauge symmetry

1 Introduction

Consider pure general relativity (GR) with the connection as an additional indepen-
dent field. There are two usual formulations available, namely the Einstein–Palatini
(EP) or affine-metric formulation (see [1] for a historical account) and the Viel-
bein–Einstein–Palatini (VEP) formulation in which the independent variables are the
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vielbein and the spin-connection. In both cases it is well known, see for instance,
[2–7] that the solution for the connection differs from the Levi-Civita connection by a
projective transformation which is a symmetry of the GR Lagrangian in both EP and
VEP formulations. With the aim to regain the standard GR, these authors as well as
other practitioners in the field modify the original setting in several ways so as always
to end up with the connection dynamically becoming the Levi-Civita connection. The
usual procedure is to restrict the original connection in order to get rid of the projective
transformation. This is the standard textbook approach which is also used in [2]. In this
case one considers torsion free connection in the EP formalism or metric compatible
connection (Einstein–Cartan’s theory) in the VEP formalism. Other authors choose
to modify the original Lagrangian by adding a term with a Lagrange multiplier that
eventually forces the connection to become the Levi-Civita [4,5]. Another procedure
is to add to the Lagrangian new terms quadratic in the torsion and the non-metricity
tensor in such a way that the Levi-Civita connection comes about dynamically [6,7].

In fact, there is no need to indulge into any such manipulations because the projec-
tive transformation is indeed a gauge transformation. As far as we know, this result
was first given in [8] in the case of pure gravity. We think we can add to this result
some new contributions, which will define the contents of our present paper: (a) we
provide with a new constructive derivation of the gauge symmetry, now obtained
by using the Rosenfeld–Dirac–Bergmann (RDB) approach to gauge theories (con-
strained systems); (b) we show that in the case of pure gravity the presence of this
gauge symmetry imposes that the only connection that can be present in an observable
must be the Levi-Civita connection; (c) we extend the results of [8] to the case with
fermions and show that, from the Einstein–Palatini point of view, the Einstein–Cartan
theory is the natural extension of GR with fermionic matter; and (d) we prove that
the usual procedure beginning with a torsion free connection in the EP formalism, or
a connection with metricity in the VEP formalism, is a consistent truncation of the
original setting and it amounts to eliminating the gauge symmetry of the projective
transformation but does not reduce the physical degrees of freedom.

It would be fair to say that the projective transformation has been floating in the
works of many authors (see the review [9]) yet its gauge character has largely remained
unnoticed particularly in the GR community despite Ref. [8]. The main focus of this
paper is to bring out this aspect with emphasis and clarity, and then to carry out the
constraint analysis which is certainly new and insightful.

The relevance of examining the consequences of the gauge character of the projec-
tive transformations relies on the fact that the physical observable in a theory endowed
with gauge symmetry must be gauge invariant. In our case—even including matter
Lagrangians not depending on the connection—we will show that the only connection
that can participate in an observable is the Levi-Civita connection. If there is fermionic
matter with the standard minimal coupling to gravity, we show that the connection that
can participate in an observable is metric compatible though it might have torsion.

Ever since the original formulation by Einstein [10] of EP formalism, it was in
fact known that it was sufficient to have the vanishing trace of the torsion tensor for
reducing the arbitrary connection to the Levi-Civita connection; i.e to be free of the
projective transformation. In our view this condition is nothing but a gauge fixing
condition whereas the stronger condition of the vanishing of the torsion, still in the EP
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On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations 2339

formalism, is a consistent truncation of the original theory with free connection which
also eliminates the projective transformation. We will find the analogue of Einstein’s
gauge fixing for the VEP formalism and will also show that metric compatibility is
in this case a consistent truncation with the same effects as in the EP formalism. The
message is that the EP and VEP formulations with arbitrary and free connection are
fully equivalent to GR. The equivalence also holds for matter Lagrangians not involv-
ing the connection. In the case of fermions with minimal coupling we show that the
VEP formalism is equivalent to the Einstein–Cartan theory.

We intend to make the paper comprehensive and self contained. We start in the
next Section by rederiving Einstein’s result in a very simple manner for the EP case.
Next we turn to the VEP case in Sect. 3 where we find the precise requirement on
the spin-connection that plays a similar role for the VEP formulation. In Sect. 4, we
explain the origin of these conditions as a result of the gauge fixing of a Rd gauge sym-
metry—the projective transformation—first discovered in [8], though the result might
have implicitly been known in the affine geometry community. The clear message that
emerges is that the Einstein GR equation would always follow regardless of whether
one chooses the gauge condition or not in both EP [11] and VEP formulations. We also
show in this section that in the pure gravity case the only connection that can partici-
pate in an observable is the Levi-Civita connection. In Sect. 5 we give an independent
construction of the projective gauge symmetry by carrying out the canonical analysis
within the framework of the RDB approach to gauge theories and identifying the asso-
ciated first class constraints that generate the projective transformations. The counting
of degrees of freedom is also discussed in this section. In Sect. 6, we consider the
inclusion of fermions where we find metricity with torsion (Einstein–Cartan theory).
Finally we conclude with some remarks.

2 The EP formulation with an arbitrary connection

Here we consider the EP Lagrangian

L̄EP = √−ggμν R̄μν (2.1)

where

R̄μν = ∂σ �̄
σ
μν − ∂μ�̄

σ
σν + �̄ρμν�̄

σ
σρ − �̄ρσν�̄

σ
μρ (2.2)

is the Ricci tensor for �̄, an arbitrary affine connection. The overhead bar is indicative
of the connection being an arbitrary independent field and the quantities built from it.
Our aim is to determine �̄ by means of its own EOM which is, as it stands, a differential
equation. One can easily turn the problem into an algebraic one by the simple change
of variables

�̄σμν = �σμν + Cσ
μν (2.3)
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where � is the Levi-Civita connection (its components are the Christoffel symbols)
determined unambiguously from the metric under the conditions of metricity and
torsionfree. The Lagrangian becomes a functional of the metric and the tensor Cσ

μν ,

L̄EP = √−ggμν(Rμν − ∇μCρ
ρν + ∇ρCρ

μν + Cλ
μνCρ

ρλ − Cλ
ρνCρ

μλ) , (2.4)

with the covariant derivative relative to the Levi-Civita connection which is also
used to build the Ricci tensor Rμν . The terms with the covariant derivative are just
divergences which will not affect the Euler–Lagrange EOM. Since we are only inter-
ested in the EOM, we drop these terms in the following and we end up with the
Lagrangian

L̄EP = LEH + √−ggμν(Cλ
μνCρ

ρλ − Cλ
ρνCρ

μλ)+ divergence , (2.5)

where LEH stands for the Einstein–Hilbert Lagrangian. Thus the EP Lagrangian
becomes, up to a divergence, the EH Lagrangian plus a potential term which does
not depend on the spacetime derivatives. The EOM for C is

gμν
∂

∂Cγ
αβ

(Cλ
μνCρ

ρλ−Cλ
ρνCρ

μλ)=gαβCρ
ργ +δαγCβρ

ρ−Cαβ
γ −Cβ α

γ =0. (2.6)

So we must solve the algebraic equation

gαβCρ
ργ + gαγC ρ

βρ − Cαβγ − Cβγα = 0. (2.7)

With some algebraic manipulation, as shown in the appendix, we obtain

Cα
βγ = δαγUβ , (2.8)

for an arbitrary vector Uβ . It is clear that for the connection to dynamically become
the Levi-Civita connection, what is required is Uμ = 0. Further by using Eqs. (2.3)
and (2.8), the torsion tensor can be written as

T̄ σμν = T σμν = Cσ
μν − Cσ

νμ = δσν Uμ − δσμUν ,

and its trace gives Uμ = 1
d−1 T̄ νμν , which should vanish to yield the usual EOM

(i.e., determining the connection as the Levi-Civita connection). This is the condition
Einstein obtained in 1925 [10],

Uμ = T̄ νμν = 0. (2.9)

and pronounced that it is necessary to assume this condition to get to the usual EOM.
It should be noted that what is required is the vanishing of the trace of the torsion
tensor and not of the torsion itself.
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On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations 2341

3 The VEP formulation with an arbitrary spin-connection

In this case we consider the Lagrangian as

L̄VEP = |e|e[μ
I eν]J R̄ I

μν J , (3.1)

where eI = eμI ∂μ is the vielbein (eμI eνJη
I J = gμν , eI

μ = gμνeνJη
I J = (eνJ )

−1) and

R̄ I
μν J = ∂μω̄

I
ν J + ω̄ I

μ K ω̄
K
ν J − (μ ↔ ν)

is the Riemann tensor expressed as a 2-form. The spin-connection 1-form ω̄ I
μ J is a

functional of the vielbein and the connection �̄σμν , defined by using the property that
the covariant derivative of the identity tensor, I = eI

ν dxν ⊗ eI , must vanish (it is
sometimes referred to as the “tetrad postulate”),

∇̄μeI
ν = ∂μeI

ν − �̄σμνeI
σ + ω̄ I

μ J eJ
ν = 0. (3.2)

Now we take the vielbein eμI and the spin-connection ω̄ I
μ J as independent variables.

No conditions are imposed on the spin-connection. We proceed in the same way as in
the previous section and define D I

μ J by

ω̄ I
μ J = ω I

μ J + D I
μ J (3.3)

where ω I
μ J is the Levi-Civita spin-connection, i.e, torsionfree and metric compatible.

Note that with an arbitrary spin-connection, we are not implementing local Lorentz
gauge transformations, but instead implementing local GL(d, R) gauge transforma-
tions. Infinitesimal transformations are defined as δM I = aI

J M J and δNI = −a J
I NJ

so that δ(M I NI ) = 0. Note also that δηI J = aI J + a J I , which vanishes only for the
Lorentz transformations. Thus if we want to keep the Minkowski metric invariant we
must restrict to the local Lorentz group. This is what we will do henceforth.

Proceeding similarly to the previous section, the Lagrangian becomes

L̄VEP = LVEH + |e|e[μ
I eν]J (D I

μ K D K
ν J − D I

ν K D K
μ J )+ divergence , (3.4)

and to study the EOM for D we need only to consider the piece

eμI eν J (D I
μ K D K

ν J − D I
ν K D K

μ J ) = Eμσσ Eρρμ − Eμρσ Eρσμ , (3.5)

where we have carefully defined D I
ρ K =: eμK eI

ν E ν
μρ in order to match Eq. (3.5) with

the potential term in Eq. (2.5), with E ↔ C . In view of Eq. (2.8) the solution for E is
therefore Eαβγ = δαγ Vβ with Vβ arbitrary. Going back to the D variables, it takes the
analogous form

D I
μ J = δ I

J Vμ. (3.6)
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Thus we are again led to the same gauge condition Vμ = 0 for the spin-connection
to dynamically become the Levi-Civita connection. This condition is equivalent to
D I
μ I = 0, which is equivalent to

ω̄ I
μ I = 0 (3.7)

which is analogous to the Einstein condition (2.9). This would then dynamically imply
metricity and torsionfree character for the connection in the VEP formulation. The
invariance of ω̄ I

μ I under the local Lorentz transformation is obvious because the flat

indices are saturated. On the other hand, ω̄ I
μ I is a 1-form under diffeomorphism and

therefore the Eq. (3.7) is geometric.

4 The Rd gauge symmetry of projective transformations

4.1 The gauge group of projective transformations and its gauge fixing

Apart from the diffeomorphism invariance and the local Lorentz invariance in the VEP
case, Eqs. (2.8) and (3.6) indicate to the existence of new gauge symmetry in the EP
and VEP formalisms. Let us start by considering first the EP formalism. Since Uβ in
Eq. (2.8) is arbitrary, this means that Cσ

μν → Cσ
μν+δσν Uμ must be a symmetry of the

EOM. In fact it is a Noether gauge symmetry that leaves the Lagrangian L̄EP invariant,
as one can easily verify. This is the symmetry of projective transformations already
mentioned in Sect. 1. Although scarcely noticed in the previous literature, it is clearly
a gauge symmetry because the parameters of the symmetry are arbitrary functions of
the spacetime coordinates.1 In turn this means that L̄EP is invariant under the Rd gauge
group defined by the finite transformation

gμν → gμν , �̄σμν → �̄σμν + δσν Uμ , (4.1)

for an arbitrary vector field Uμ [11]. As we said in Sect. 1 this transformation (4.1)
has indeed been recognized by many authors as a symmetry of the Lagrangian but
surprisingly its gauge character has however remained overlooked, with the notable
exception of [8]. All other authors drew the erroneous inference that the GR EOM
could only be obtained by imposing the constraint (2.9) or by the other procedures
mentioned in Sect. 1. This is however not true and it would be explicitly shown in the
next Section.

Now we can give a new meaning to the Eq. (2.9): it is just a good gauge fixing
condition for the Rd gauge symmetry. This is something which had not been realized
in any of the previous discussions of this problem.

Note that introducing from the scratch a symmetric connection, that is, torsionless,
appears now as a consistent truncation of the theory2 and its only effect is of eliminat-

1 We will further argue this important point in Sect. 5.
2 We take the strong sense in which a truncation is said to be consistent if the truncated EOM of the original
Lagrangian coincide with the EOM of the truncated Lagrangian.
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On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations 2343

ing the gauge symmetry of the projective transformations while retaining the physical
degrees of freedom unaffected.

We now turn to the VEP case. Keeping Eq. (3.6) in mind, we see that the Rd gauge
symmetry is expressed through DμI J → DμI J +ηI J Vμ, which leaves L̄VEP invariant.
Thus the Lagrangian LVEP is invariant under the finite gauge transformation

eμI → eμI , ω̄ I
μ J → ω̄ I

μ J + δ I
J Vμ. (4.2)

In this perspective, Eq. (3.7) is a good gauge fixing condition for the VEP formalism.
Equations (4.1) and (4.2) are in fact the same as they refer to the same gauge symmetry.
Indeed, Eq. (3.2) implies the well known formula ω̄ I

μ J = eI
ν (∂μeνJ + �̄νμρeρJ ), from

which it follows Eq. (4.1) ⇔ Eq. (4.2), with Vμ = Uμ. It is worth noting though that
the gauge conditions (2.9) and (3.7) are different but each of them is holonomous in
its own variables.

Similarly in the EP case, note that imposition of the antisymmetry of the spin-con-
nection, i.e. making it metric compatible from the scratch, is a consistent truncation of
the theory which just eliminates the gauge symmetry of the projective transformation.
The physical degrees of freedom remain the same.

4.2 The equation of motion without gauge fixing

The next question arises: what happens when no gauge is fixed? The answer is that
we still obtain the standard GR. Let us work in the EP case with the original variables
g and �̄. Note that

δL̄EP

δC
= 0 ⇔ δL̄EP

δ�̄
|�̄=�+C = 0. (4.3)

It follows from Eq. (2.7) that the connection EOM is solved to give

δL̄EP

δ�̄
= 0 ⇔ �̄αβγ = �αβγ + δαγUβ , (4.4)

with Uβ arbitrary.
On the other hand, the metric EOM for LEP , including matter only coupled to the

metric, is

R̄(μν) − 1

2
gμν R̄ = Tμν , (4.5)

where only the symmetric part of the Ricci tensor is relevant. Under the substitution
dictated by the solution to Eq. (4.4), the Ricci tensor becomes

R̄μν |(4.4) = Rμν + 2∂[μUν].

Putting this into Eq. (4.5), we end up with
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Rμν − 1

2
gμνR = Tμν. (4.6)

That is the standard EOM for GR. This result was already noticed in [11,12]. Let
us mention that the considerations of the non-observability of the projective transfor-
mation also emerge in the work of [13–15].

We conclude that the EOM for LEP can be written as Eq. (4.6) which is just GR
equation together with the equation for the connection Eq. (4.4). In here the Rd gauge
freedom is fully manifest and its physical meaning we now analyze. To construct phys-
ical observables3 we must resort to gauge invariant quantities. Comparing Eqs. (4.1)
and (4.4), we infer that any gauge invariant quantity built up by using the connection
must be independent of the gauge parmeters Uμ. This means that the same quantity
could be built by using just the Levi-Civita connection which is indeed invariant under
the Rd gauge group instead of the original one. This shows that it is the Levi-Civita
connection which is physically meaningful.

On a historical note, let us mention that Einstein was convinced that the only way
to obtain GR was by requiring the connection to dynamically become the Levi-Ci-
vita connection in the first place. He made this claim very clear in [10] (see the
English translation) by saying: “Had we not assumed the vanishing of the φτ (φτ is
our Uτ )”, we would have been unable to derive the known law of the gravitational
field in the above manner by assuming the symmetry of the gμν . With the benefit of
hindsight, we may say that he (as well as other authors, among them [4,5]) did not
notice the Rd gauge symmetry, else he would have seen that the vanishing of φτ is
in fact a gauge condition, our Eq. (2.9), which did not have to be assumed to obtain
Eq. (4.6).

Similarly the same analysis could be carried through for the VEP formalism. In
fact Eqs. (3.3) and (3.6) imply ω̄ I

μ J = ω I
μ J + δ I

J Vμ which in turn implies R̄ I
μν J =

R I
μν J + 2δ I

J ∂[μVν]. In view of the antisymmetry of the flat indices in the Lagrangian

(3.1), it is clear that the Lagrangian is invariant under the Rd gauge group and so is
the vielbein EOM. Therefore the vielbein EOM coincides with the standard GR EOM
in the vielbein formalism.

A different line of thought was developed in [6,7] in which the VEP Lagrangian is
extended with terms quadratic in the torsion and the non-metricity tensor. This exten-
sion is natural from an effective field theory standpoint. When the change of variables
(3.3) is applied, the Lagrangian becomes that of EH plus terms quadratic in the D
variables. The generic form of these terms is of the type QμI JνK L DμI J DνK L . For
the non-degenerate matrix Q it turns out that EOM for D would require vanishing of
these variables which means the theory is dynamically equivalent to the standard EH.
It suggests that inclusion of the quadratic terms seems to be effectively equivalent to
fixing the gauge in our case.

The analysis above and in the previous subsection shows that the EP and the VEP
formalisms, with the usual restrictions of vanishing torsion and metric compatibil-
ity respectively, are completely equivalent to Einstein’s GR even including matter as
long as the matter Lagrangian does not depend on the connection. This is because

3 For a discussion on observables in generally covariant theories, see [16,17].
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the connection becomes dynamically the Levi-Civita connection in both the cases. If
there are fermions, the matter Lagrangian depends on the connection which then asks
for the vielbein formulation and in that case the resulting VEP formalism does not
yield the Levi-Civita connection. However the observable connection is still metric
compatible. More on this later.

5 Canonical analysis and degrees of freedom

In this section we will use the techniques of the theory of constrained systems as
developed by Rosenfeld, Dirac and Bergmann, [18–23] (References of books include
[24–26]. See [27] for a brief introduction to the RDB theory). This section can be read
as a completely independent derivation of the projective transformations symmetry
and its gauge character.

The change of variables (2.3) offers another nice advantage that it is easy to do the
canonical phase space analysis of the theory. Dropping the boundary term in Eq. (2.5),
irrelevant for our purpose, the Lagrangian under consideration is

L̄EP = LEH + √−ggμν(Cλ
μνCρ

ρλ − Cλ
ρνCρ

μλ). (5.1)

The canonical Hamiltonian is just the ADM Hamiltonian [28] with a new potential
term,

H̄EP = HADM − √−ggμν(Cλ
μνCρ

ρλ − Cλ
ρνCρ

μλ) , (5.2)

in which we should replace gμν components according to the ADM decomposition,
with lapse N and shift N j ,

gμν =
(−N 2 + N iγi j N j γi j N j

γ j i N i γi j

)
. (5.3)

The primary constraints of the theory are d momenta Pμ � 0 canonically conjugate
to the lapse and shift together with d3 momenta � μν

λ � 0 canonically conju-
gate to the variables Cλ

μν . We use Dirac notation of weak equality, �, to indicate
that the constraints vanish when the EOM, now in phase space, is satisfied. The
dynamics in phase space is given by the Dirac Hamiltonian, which is the canoni-
cal Hamiltonian plus additional terms linear in the primary constraints with Lagrange
multipliers,

H̄D = H̄EP + λμPμ + λρμν�
μν
ρ .

Let us first look for the secondary constraints arising from the requirement that the
constraints � μν

ρ are preserved in time. The equations are

{� μν
ρ , H̄D} � 0
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which give Eq. (2.7) as the new secondary constraints. This is however equivalent to
Eq. (2.8) and it describes the independent constraints

Cν
μν′ � 0 (with ν′ 
= ν) , C0

μ0 − Ci
μi � 0 , i = 1, . . . d − 1 , (5.4)

which are d2(d−1)+d(d−1) = d(d2−1) secondary constraints. In addition there are
another d secondary constraints implied by the preservation in time of the constraints
Pμ. These are the well known ADM Hamiltonian and momentum constraints, now
with additional pieces coming from the potential term in Eq. (5.1). It is worth not-
ing that these additional pieces can be safely eliminated because the potential term,√−ggμν(Cλ

μνCρ
ρλ − Cλ

ρνCρ
μλ) is proportional to the constraints (5.4). No tertiary

constraints arise in the formalism.
Consider the constraints� μν

λ together with the constraints (5.4). A simple observa-
tion tells that they organize together as 2d(d2 − 1) second class constraints (defining
a locally simplectic submanifold) and a set of d remaining first class constraints.
These first class constraints are given by the trace� μν

ν which have vanishing Poisson
bracket with the constraints (5.4). What we have found are just the generators of the
Rd gauge algebra. In fact, defining the gauge generator

G =
∫

dd−1x εμ�
μν
ν

for an infinitesimal set of arbitrary4 functions εμ, we obtain

δCα
βγ := {Cα

βγ , G} = δαγ εβ

which is the infinitesimal gauge transformation of the Rd gauge group described
in Eq. (4.1) and the discussion above it. Notice that this result can be taken as a
new independent derivation of the projective transformation as symmetry of the the-
ory including the proof of its gauge character because it is generated by first class
constraints.

As regards the diffeomorphism symmetry (general convariance) one can find the
gauge generators following on the lines of [29]. This is not a trivial task because the
formalism now must account for the action of the diffeomorphism on the C variables
in phase space. We will not pursue this task here.

Let us count the degrees of freedom. In addition to the standard GR counting, we
have 2d3 new variables in phase space, the C’s and the �’s, but they are constrained
by 2d(d2 − 1) second class constraints plus d first class constraints, the latter gener-
ating the Rd gauge transformation. To gauge fix the transformation we need d gauge
conditions like Eq. (2.9). Thus the total number of constraints plus the gauge condition
exactly match the number of new variables introduced, 2d3. With all this squared out
we are again left with the GR degrees of freedom.

4 Note that this arbitrariness allows for functions of compact support. In the case of diffeomorphism invari-
ance, this compact support was instrumental for Einstein’s hole argument. See [30] for the relation of the
hole argument with gauge transformations.
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6 Including fermions

Now we will include a matter Lagrangian with the standard Dirac fermion.5 This
would however be true for any other spinor with the same type of coupling to gravity.
The Lagrangian is

L̄M = |e|(i eμI ψ̄γ
I ∇̄μψ − mψ̄ψ) ,

with

∇̄μψa = ∂μψ
a + 1

2
ω̄μK L(�

K L)abψ
b ,

where�K L is the ( 1
2 , 0)+(0, 1

2 ) representation of the Lorentz algebra. Notice that the
spin-connection does not need to be antisymmetric in the flat indices but only its anti-
symmetric component couples to the fermion regardless of the specific representation
it is in.

The local Lorentz gauge group is realized for the total Lagrangian LVEP + LM with
the standard definitions for the transformation of the spinors and the spin-connection
under the Lorentz group.

We proceed along the lines of Sect. 3 and define DμI J by

ω̄μI J = ωμI J + DμI J (6.1)

with ωμI J being the Levi-Civita spin-connection. Note that DμI J appears linearly in
LM as DμI J AμI J with

AμI J := i

2
|e|eμK ψ̄γ K� I Jψ.

The D-dependent part in the total Lagrangian LVEP + LM is

eμI eν J (D I
μ K D K

ν J − D I
ν K D K

μ J )+ DμI J AμI J .

Defining E ν
μρ := D I

ρ K eK
μ eνI and Aμρσ := eρK eσL AμK L we can write the above

expression as

Eμσσ Eρρμ − Eμρσ Eρσμ + Eσμρ Aμρσ

with Aμρσ being antisymmetric in the last two indices. The EOM for the E variables
is

gαβEρργ + gαγ E ρ
βρ − Eαβγ − Eβγα + Aαβγ = 0. (6.2)

5 Of course, one can add to the picture a Maxwell field with minimal coupling with the fermion but this
addition does not involve the spin-connection and hence will have no effect.
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Following on the same lines as in the appendix for the case with no fermions, the
solution to the above equation is found to be

Eαβγ = 1

2
(Aαβγ − Aβγα − Aγβα)+ 1

d − 2
(gαβ A ρ

ργ − gγβ A ρ
ρα )+ gαγUβ

(6.3)

where Uβ is arbitrary. In terms of the D variables, the result is

Dβ I J = −1

2
Aβ I J + AμK L

×
(1

2
eK
β (e

μ
J δ

L
I − eμI δ

L
J )+ 1

d − 2
eμL(eJβδ

K
I − eIβδ

K
J )

)
+ ηI J Uβ. (6.4)

Note that it decomposes into an antisymmetric and a symmetric part, the latter being
just a gauge artifact.

Having in mind Eq. (6.1) we infer from Eq. (6.4) the following:

• The gauge group Rd is still present in the formalism.6

• Up to a gauge transformation of Rd , the spin-connection is antisymmetric in its
flat indices.

• The gauge condition (3.7) is still valid, when implemented it eliminates the Rd

gauge freedom and yields metricity for the spin-connection.
• Putting Eq. (6.4) into Eq. (6.1) and next plugging it into the vielbein EOM for

L̄VEP +L̄M , the final equation is the same as if we had started with an antisymmetric
spin-connection as an input from the outset. This is because the symmetric part of
the spin-connection, ηI J Uβ , which is merely a gauge artifact, does not enter into
the veilbein EOM.

• We observe that metricity, equivalently the antisymmetry of the spin-connection, is
carried through for the fermionic matter while the torsionfree condition is violated
by the antisymmetric component in the right hand side of Eq. (6.4). This is the
Einstein–Cartan theory of gravity in which fermions source torsion (see [31] for
a general account). In this theory metricity is a precondition whereas in here it
arises dynamically from the arbitrary free connection.

7 Conclusion

In most of the previous discussions of the Einstein–Palatini formulation (in particular
[2–7,11]), it is clear that the gauge character of the transformation (4.1) has not been
realized. In fact it was first stated in [8]. In this paper we construct this gauge symme-
try by using canonical methods, and then use it to gain a clearer understanding of the
physical equivalence between the Einstein-Hilbert and the Einstein–Palatini formula-
tions of general relativity. Besides let us also note in the following some points which
are interesting and insightful.

6 The existence of the projective transformation is also recognized in [9] but with no mention of its gauge
character.
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We have shown that the Einstein condition (2.9) is a gauge condition of the Rd

gauge symmetry admitted by the EOM. This is indeed insightful that when we come
to the Palatini formulation, there is an increase in the number of degrees of freedom
which have to be controlled by the connection EOM. This is what precisely appears
as the gauge condition which is simply to make the torsion tracefree. Of course the
gauge condition should have no effect on the metric equation of motion and that is
what is done in Ref. [11] and also shown in Sect. 4.2. However Einstein had not real-
ized this symmetry nor its gauge character and that is why he had to assume it as a
condition to get the GR EOM. In fact he believed that the GR EOM could be retrieved
only if the connection became dynamically the Levi-Civita connection. On the other
hand Trautman [2] does recognise the arbitrariness in determination of the connection
signified by the projective transformation but overlooks spotting of its gauge character.

Further we do the canonical analysis in phase space and work out its full structure
of constraints. It is then shown that the additional degrees of freedom introduced by
the EP formalism are exactly countered by the constraints and the new Rd gauge
symmetry with its gauge condition. We have also written down the generator of this
symmetry.

We have also done the entire analysis in the VEP case and shown that there is a
duality between the basic variables and their corresponding relations for the EP and
VEP formalisms. This duality has been already discussed in [7]. In the EP case the
torsionfree condition is algebraic, a symmetry property of the connection, whereas
metricity is a differential relation of the type, ∂g +�g +�g = 0. While for the VEP,
it is the metricity that is algebraic, an antisymmetry property of the spin-connection,
whereas the torsionfree condition is a differential relation of the type, ∂e + ωe = 0.
Now we extend this duality to the gauge fixing conditions: being holonomous in their
respective settings, the gauge conditions (2.9) and (3.7) are consistent with this duality
[7]. Still in the VEP formalism, it is shown that the fermions could also be included in
the matter Lagrangian which would however require non-zero torsion but metricity is
preserved. This is Einstein–Cartan theory of gravity. Of course there is nothing new
in saying that fermions are sources for torsion. The main point here is that metricity is
an outcome of the dynamics instead of being postulated form the outset as is usually
done. Our result thus makes the case for the claim that Einstein–Cartan theory is the
natural extension of Einstein’s GR when fermionic matter is present.

We have seen that, now without fermions, the connection EOM dynamically deter-
mine it as the Levi-Civita connection up to a gauge transformation which does not
affect the metric EOM. Alternatively one can plug back the solution of the connection
EOM into the Lagrangian itself which would give the standard EH action having the
symmetric Levi-Civita connection. We should however point out here that it is this
connection that is physically observable in the parallel transport, and the reason is
the following. To construct physical observables we must resort to gauge invariant
quantities. Noticing from (4.4) that �̄σμν = �σμν + δσν Uμ, we infer that any gauge
invariant quantity built up by using the connection7 must be independent of the gauge

7 When �̄σμν is plugged into the geodesic equation there would arise an additional term,
(Uμdxμ/ds)dxσ /ds which could always be absorbed by reparametrization of the affine parameter [33].
Thus the geodesic equation would remain covariant under this transformation.
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parmeters Uμ. This means that the same quantity may be built by using just the Levi-
Civita connection instead of the original one. This shows that it is the Levi-Civita
connection which is physically meaningful. This argument is trivially extended to the
fermionic case, where the metric compatible connection—now with torsion—is the
physically meaningful connection.

We have also shown that the usual procedures which are followed in textbooks and
the standard discussion of this problem of beginning with a symmetric connection, i.e.
torsion free in the EP formalism, or a connection with metricity in the VEP formalism,
are both consistent truncations of the general case of arbitrary free connection and it
simply amounts to eliminating the gauge symmetry of the projective transformation
without reducing the physical degrees of freedom.

Finally from a conceptual and intuitive standpoint, we find it extremely satisfying
and appealing that the EP-VEP formulations with matter not coupled to the connec-
tion (while in the VEP fermions could be included but they would generate torsion
with metricity retained) are entirely equivalent to the EH formulation with no a priori
condition on the connection. We would however like to emphasize the new realization
that in the EP-VEP formulation, new degrees of freedom get introduced which are
then controlled by the gauge symmetry of projective transformations and the corre-
sponding gauge fixing condition is exactly what Einstein had to assume to get the
standard gravitational equation. The gauge fixing condition is however never a neces-
sary assumption. Paraphrasing in the MTW idiom [32], the connection indeed flaps
the breeze full fledged, even more so than what the MTW asked for, and dynamically
collapses to the standard gravitational dynamics.

Appendix

Here we solve Eq. (2.7) in detail. The tensor C has three traces, which we label
c1 , c2 , c3 , according to the position of the remaining free index

c1 ↔ C ρ
αρ , c2 ↔ Cρ

αρ, c3 ↔ Cρ
ρα.

Then, taking traces on (2.7) we obtain (d is the spacetime dimension (d > 2)) the two
relationships

(d − 1)c3 − c2 + c1 = 0 , (d − 1)c1 − c2 + c3 = 0 ,

from which c3 = c1 follows. Defining the vector Cα := C ρ
αρ = Cρ

ρα , one has, for
(2.7),

Cαβγ + Cβγα = gαβCγ + gαγCβ. (7.1)

Writing the cyclic permutations, αβγ → γαβ → βγα, we obtain a total of three
relations, the first one being (7.1). Subtracting the second relation from the first one
and adding up the third, we obtain as a final result Cαβγ = gαγUβ , for an arbitrary
vector Uβ (note that taking traces on this last result, we recover Uβ = Cβ .). Raising
the first index we obtain (2.7).
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