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Abstract Fermi’s analysis of the contribution of the electromagnetic field to the
inertial mass of the classical electron within special relativity is brought to its logi-
cal conclusion, leading to the conservation of the total 4-momentum of the field plus
mechanical mass system as seen by the sequence of inertial observers in terms of
which the accelerated electron is momentarily at rest.

Keywords Special relativity · Electromagnetic mass · Conservation laws

1 Introduction

In 1921–1923 Enrico Fermi [1–7] wrote his first four scientific papers in a series
addressing the question of the contribution of the energy in the Coulomb field of a
classical model of the electron to its inertial mass within special relativity. This model
had been developed in the first decade of the 1900s by Abraham [8,9] and Lorentz [10]
during the same period in which special relativity was being born. Fermi’s second
paper [2] studied this question within general relativity using a metric introduced
by Levi–Civita representing a spacetime reference frame accelerated along one spa-
tial direction. Fermi’s third paper [3,11,12] addressed a side issue in this series—the
mathematical theory of his Fermi coordinate system and Fermi–Walker transport (both
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extensively employed by Synge in his early textbook on general relativity [13]), the
latter of which became a key tool in the theory of general relativity—while the culmi-
nating fourth paper written in three versions in Italian and German but never available
in English until now [14], though often quoted, has rarely been appreciated nor under-
stood for its actual content. Fermi himself stopped short of considering his result in
the fourth paper in the context of his third, namely by considering the electromag-
netic contribution to the inertial mass together with a contribution from an additional
mass source (mechanical or bare mass). We finish his calculation here. Furthermore
although the topic continues to interest people even today as an interesting physics
question, the natural completion of his work by applying it to the controversial ques-
tion of the nature of the 4-momentum integrals for the electromagnetic field has never
been correctly considered. We do so here. Details may be found in [15].

An unfortunate complication in this story was the confusion of the entirely separate
issue of the stability of the electron with the issue of attributing a unique 4-momen-
tum to its electromagnetic field. Unlike the 4-momentum of a point particle which
is a uniquely defined 4-vector at a spacetime point, the 4-momentum of the electro-
magnetic field in the presence of sources is a nonlocal measurement by an inertial
observer which is represented mathematically by an integral over a spacelike hyper-
plane of constant inertial coordinate time in the observer’s associated inertial reference
system, and whose result depends on the entire field at such a moment of time. In gen-
eral this produces a different 4-vector for every inertial observer and for every choice
of time in that observer’s system of reference. This is a consequence of the nonvanish-
ing divergence of the stress-energy tensor of the electromagnetic field when sources
are present, in contrast to the situation for divergence-free such tensors where Gauss’s
law guarantees that the 4-momentum is independent of the inertial observer and choice
of inertial time. Historically the Lorentz transformed components of the rest frame
4-momentum were compared to the components of the distinct 4-momentum seen by
an observer in relative motion in the associated inertial coordinate system, but since
these are components of two distinct 4-vectors, they cannot agree. It should have been
expected that this comparison would fail, but instead this was seen as an apparent
problem.

Poincaré [16–20] attempted to restore a unique total 4-momentum result by
considering the combined system of the electromagnetic extended charge model with
stabilizing stresses that would yield a divergence-free total energy-momentum ten-
sor, thus “closing the system.” However, in so doing, he obscured the fact that the
electromagnetic field, which gave birth to special relativity through its Lorentz invari-
ance, should make a contribution to the total mass-energy of the electron which is by
itself relativistically correct. This perpetuated a basic error with the Abraham–Lorentz
model rather than correcting it.

The key to resolving these complications with the model was the notion of rigidity
later introduced by Born in 1909 [21,22], the only notion of rigidity that is compatible
with special relativity. Fermi understood how to use this condition to invalidate the
starting point of the Abraham–Lorentz calculation of the equation of motion for a rigid
extended spherically symmetric electron accelerated by an external electromagnetic
field—that the total electromagnetic force on the electron at a moment of inertial time
in which it is instantaneously at rest be zero—and correct it using his Fermi coordinate
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Fermi and electromagnetic mass 2065

system which inserts a Fermi coordinate lapse function factor into the integration of the
differential forces over the corresponding time hyperplane. This led to the “correct”
mass-energy relationship between the energy of the self-field of the electron and its
inertial mass. However, as we will see, it also leads to a conserved total 4-momentum
that is naturally associated with the 4-velocity of the electron in the expected way.

2 Electromagnetic preliminaries

We follow the conventions of Misner, Thorne and Wheeler [23] for the −+++ signa-
ture metric gαβ of Minkowski spacetime, which in inertial coordinates (xα) = (t, xi )

with the identification x0 = t has nonzero components −g00 = gii = 1 (Greek and
Latin indices run from 0 to 3 and 1 to 3 respectively, units are chosen so that c = 1)
and for the electromagnetic field tensor Fαβ , whose stress-energy tensor

T μν = 1

4π

(
Fμα Fν

α − 1

4
gμν Fαβ Fαβ

)
(1)

has nonzero divergence

T μν ;ν = −Fμ
ν J ν, (2)

as a result of the Maxwell equation Fαβ ;β = 4π Jα , where Jα is the 4-current.
Gauss’s law can only be applied to a 4-vector field on Minkowski spacetime, so

introduce a covariant constant vector field Qα , Qα;β = 0 representing a translation
Killing vector field and let J α = Qβ T βα , so that J β ;β = QαT αβ ;β . Let R be the
spacetime region between two spacelike hyperplanes �1 and �2 oriented by their
future-pointing unit normals uα

(1) and uα
(2) which are the 4-velocities of the corre-

sponding inertial observers. Provided that the fields fall off sufficiently fast at spatial
infinity so that the closing timelike boundary integral there between the two hyper-
planes vanishes, Gauss’s law states

∫
R

J β ;β d4V =
∫
�2

J βd�β −
∫
�1

J βd�β, (3)

where for a single hypersurface �, the hypersurface volume element is d�β =
−uβd�, so that

∫
�

J βd�β =
∫
�

(−uβJ β) d� (4)

is the integral of the future-normal component of the vector field with respect to
the intrinsic volume element d� = dV� . In inertial coordinates adapted to the
4-velocity uα so that � coincides with a hyperplane of constant inertial time t ,
this is just dV� = dx1dx2dx3, and the hyperplane integral is just a triple integral
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with respect to these spatial coordinates, while the spacetime volume element is then
d4V = dt dx1dx2dx3. For intersecting such hyperplanes �1 and �2 associated with
observers in relative motion, R must be oriented oppositely on the two disjoint pieces
into which the intersection divides it, with the half for which �2 is the future boundary
oriented positively, and the other half oriented negatively (see Fig. 5.3.c of Misner,
Thorne and Wheeler [23]). Thus

∫
R

QαT αβ ;βd4V =
∫
�2

QαT αβd�β −
∫
�1

QαT αβd�β, (5)

where if we agree to evaluate these expressions in inertial coordinates where Qα are
constants, then they can be factored out of the equation.

The inertial coordinate components of the 4-momentum of the electromagnetic field
as seen by an inertial observer with 4-velocity uα at a moment of time t in the observer
rest frame represented by a spacelike time coordinate hyperplane � (for which uα is
in fact the future-pointing timelike unit normal vector field) is given by the integral
formula

P(�)α =
∫
�

T αβd�β. (6)

In inertial coordinates where uα = δα
0 this gives the energy and momentum as the

integral of the local energy density and the Poynting vector respectively

P(�)0 =
∫
�

T 00dV�, P(�)i =
∫
�

T 0i dV�. (7)

While the contracted pair of indices in the integral (6) can be evaluated in any coor-
dinates, one can integrate over an object with a free index only if that index is expressed
in some inertial coordinate system where it makes sense to compare 4-vectors at dif-
ferent spacetime points in the flat spacetime due to the path independence of parallel
transport. In such coordinates we then have from Eqs. (2), (5) and the definition (6)

∫
R

−Fα
β Jβd4V = P(�2)

α − P(�1)
α. (8)

When Jα = 0, the left hand side is zero, showing that the 4-momentum vector func-
tional is independent of the hyperplane and defines a single 4-vector which represents
the conserved 4-momentum of the free electromagnetic field.

3 Lagrangian equations in Fermi coordinates

The Born rigidity condition requires that the charge and mass density profiles of an
electron model be time-independent in the Fermi coordinate system adapted to a world
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Fig. 1 Inertial Cartesian coordinates (T, X1) with Fermi coordinates (t, x1) such that t = 0 = T coincide,
showing an X2 = 0 = X3 cross-section of the world tube of an electron sphere instantaneously at rest at
the origin at T = 0 but accelerated in the negative x1 = X1 direction (a1 < 0). At a successive Fermi time
�t later, the Fermi time hyperplanes intersect to the right of the world tube (equivalent to the assumption
|a1|r0 < 1). The spacetime region within the electron world tube between the two slices (shaded in this
plane cross-section) occurs in the Gauss’s law application to the wedge between the two time slices, namely
R = R− ∪ R+, two regions which are separated from each other by a plane of constant x1 within the
hypersurface t = 0 shown as the intersection point in this diagram; R− must be positively oriented, but R+
negatively oriented for Eq. (3)

line within the localized matter distribution. The constant Fermi time hyperplanes in
such a coordinate system are orthogonal to this world line at their point of intersection,
representing the local rest space of the associated comoving observer at that point of
the world line. In fact the Fermi time coordinate lines are always orthogonal to the
Fermi time coordinate hyperplanes; for this reason these coordinates are often known
as Fermi normal coordinates.

The classical model of the nonrotating electron assumes a spherically symmetric
distribution of mass and charge within a sphere of radius r0 of the central world line
in such a coordinate system, where the metric line element has the form

ds2 = −N 2
F dt2 + δi j dxi dx j , NF = 1 + ai xi (9)

and ai are the Fermi coordinate components of the 4-acceleration aα of the central
world line xi = 0, where the proper time derivative along the time lines d/dτ =
N−1

F d/dt reduces to the Fermi coordinate time derivative; in the Fermi coordinates
one has aα = δα

i ai . The spacetime volume element is d4V = NF dt dV , where
dV = dx1dx2dx3 is the spatial volume element. See Misner, Thorne and Wheeler [23]
for details of this coordinate system. Figure 1 shows a 2-dimensional cross-section
of two successive Fermi time hyperplanes for a central world line decelerating along
the x1 direction, and the interpretation of the Fermi lapse function for an infinitesimal
increment �t of Fermi time.

The time lines are the world lines of the elements of the charged matter distribution,
having Fermi coordinate 4-velocity components

Uα = dxα

dτ
= 1

NF

dxα

dt
= 1

NF
δα

0, (10)

from which one obtains the acceleration aα = DUα/dt |xi =0 of the central world line.
Let ρ and ρ(me) be the spherically symmetric charge and mechanical or bare mass
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densities, which are functions only of the radius r = (δi j x i x j )1/2 and which vanish
outside r = r0. The Abraham–Lorentz spherical shell model assumes a delta func-
tion distribution at r = r0: ρshell = δ(r − r0)e/(4πr2

0 ), where e is the total charge
of the electron; one may also easily consider a uniform density distribution within
the sphere of radius r0. Let de = ρ dV and dm(me) = ρ(me)dV be the elements of
the charge and mechanical mass distributions, so that e = ∫

ρ dV is the total charge
and m(me) = ∫

ρ(me) dV is the total mechanical mass (also called bare mass). The
4-current is then Jα = ρ Uα .

The action for the electromagnetic field together with the matter distribution con-
sidered by Fermi in his third paper [3] is

S =
∫
R

(
− 1

16π
Fαβ Fαβ + Aα Jα

)
d4x −

∫
dτ dm(me), (11)

where the second integral in the Lagrangian is the integral with respect to the differen-
tial of mechanical mass of the line integral over the world line of the matter element,
while the second term in the first integral here can be similarly expressed as∫

ρ AαUα NF dt dV =
∫

ρ Aα

dxα

dτ
NF dt dV

=
∫

ρ Aα

dxα

dt
dt dV =

∫
Aαdxα de, (12)

showing that it is a parametrization-independent line integral integrated over the charge
distribution. The region R of integration is assumed to be a cylindrical region with
respect to the Fermi coordinate system between two fixed Fermi times, over an arbi-
trary time-independent spatial region B in the Fermi coordinate system. The action
is a function of the 4-potential of the electromagnetic field, in terms of which Fαβ =
d Aαβ = Aβ,α − Aα,β , and of the world lines of the matter distribution, which are
the time lines of the Fermi coordinate system. Varying the action with respect to Aα

yields the remaining Maxwell’s equations.
The first term in the action is independent of the world lines. Varying the world

lines such that δxα = δα
iδxi leads to the Lagrangian equations of motion for the

central world line of the rigid charged matter distribution. Varying the 4-current term
with respect to the world lines, as shown by Fermi [3–6], ignoring a boundary term
which arises from an integration by parts in time, leads to

t2∫
t1

⎛
⎝∫

B

Fαβ

dxα

dt
de

⎞
⎠ δxβ dt

=
t2∫

t1

⎛
⎝∫

B

FαβUα NF de

⎞
⎠ δxβ dt

=
t2∫

t1

⎛
⎝∫

B

E(U )i NF de

⎞
⎠ δxi dt. (13)
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where E(U )α = Fα
βUβ is the electric field as seen by the Fermi coordinate

observer with 4-velocity Uα . The variation of the mechanical mass term yields
− ∫ t2

t1
m(me)ai δxi dt .

If the variations δxi are arbitrary functions of the Fermi time, vanishing at the end-
point Fermi times to justify ignoring the integration by parts boundary term, then one
obtains the Fermi condition, now amended by the re-insertion of the mechanical mass
term

∫
B

ρE(U )i NF dV − m(me)ai = 0. (14)

This condition with m(me) = 0, as assumed by Fermi in his fourth paper and by Abra-
ham and Lorentz in their purely electromagnetic model of the electron, differs from
the Abraham–Lorentz starting condition for their derivation of the equations of motion
only by the additional factor of the Fermi coordinate lapse function in the integral, see
Jackson [27] who reproduces their calculation. However, the first term in (14) reversed
in sign is exactly the Gauss integral integrand for the integral over t in Eq. (8), namely

∫
R

−Fα
β Jβd4V = −

t2∫
t1

⎛
⎝∫

B

ρδα
i E(U )i NF dV

⎞
⎠ dt, (15)

so that using the Fermi condition to replace the expression in parentheses, the latter
becomes

∫
R

−Fα
β Jβd4V = −

t2∫
t1

m(me)δ
α

i a
i dt. (16)

However, to evaluate this vector integral we need to express its components in an iner-
tial coordinate system where we can utilize the relation aα = DUα/dτ = dUα/dτ ,
remembering that the Fermi coordinate time is the proper time along the central world
line

m(me)

t2∫
t1

aα dτ = m(me)

t2∫
t1

dUα

dτ
dτ

= m(me)U
α|t2t1 = pα

(me)|t2t1 , (17)

which are the inertial coordinate components of the mechanical 4-momentum of the
rigid matter distribution. Gauss’s law (8) using (15)–(17) then becomes

− pα
(me)|t2t1 = P(�t2)

α − P(�t1)
α, (18)
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or

pα
(me)(t1) + P(�t1)

α = pα
(me)(t2) + P(�t2)

α, (19)

showing that the total 4-momentum of the system as seen by the Fermi coordinate
comoving observer is independent of the Fermi time, a result apparently overlooked
until now. Aharoni [24], who put out a new edition of his textbook on special relativity
in 1965 in order to explain Fermi’s work on this particular problem after its redis-
covery, got very close to this result with his postulated self-force introduced in his
reinterpretation of Fermi’s results—but he missed it by neglecting to consider Gauss’s
law for the electromagnetic field with sources. Attention had been brought to Fermi’s
work in 1960 by Rohrlich’s discussion of the 4-momentum integral for the electro-
magnetic field of the unaccelerated spinless classical electron [25] without knowledge
of Fermi’s work or of the same conclusions reached earlier in 1949 by Kwal [26], who
was also unaware of Fermi’s work.

It should also be noted that Nodvik generalized this model to include spin by
adding Euler angles describing the orientation of the electron spin axis with respect
to a Fermi–Walker propagated orthonormal frame along the central world line [28],
as more recently updated and extended by Appel and Kiessling [29,30] and reviewed
by Spohn [31]. The bare mass contribution to the Lagrangian is then modified by the
Lorentz gamma factor of the motion of the elementary elements of the mass distribu-
tion with respect to the central world line, described by the intrinsic “gyration” angular
velocity of the electron. However, the resulting discussion becomes extremely com-
plicated and very difficult to follow for those of us who are not experts in advanced
classical electrodynamics.

The advantage of our presentation for the spinless model is that it retains the ele-
gance and simplicity of the work initiated by Fermi himself while remaining at the
comprehension level of the standard reference text for classical electrodynamics by
Jackson [27]. This allows the central idea of much more sophisticated analyses to be
accessible to the general audience, an idea which is not explicitly described in the
leading books on this subject [31–35].

4 The unaccelerated electron

For the case of an unaccelerated distribution of charge ai = 0 when the exterior elec-
tromagnetic field vanishes and NF = 1, Fermi’s condition reduces to equating to zero
the total electric force on the electron from its own Coulomb field

∫
B

ρE(U )i dV = 0, (20)

in which case the volume integral in Gauss’s law vanishes and the total 4-momentum
P(�)α in the electromagnetic field is independent of time in the Fermi coordinate sys-
tem, as expected since the state of the system is static in that inertial reference frame.
However, although the 4-momentum of the Coulomb field is time-independent for
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Fermi and electromagnetic mass 2071

any inertial observer, different inertial observers in relative motion measure different
4-vectors for this 4-momentum. Because this was misunderstood, and it is natural to
want to associate a 4-vector representing the 4-momentum of the Coulomb field of the
electron which is aligned with the 4-velocity of its central world line, people looked
for solutions.

Poincaré [16–19] introduced stresses needed to balance the electromagnetic stresses
in the charge distribution for the case of zero mechanical mass soon after the Abra-
ham–Lorentz model was developed, but unfortunately retained their mistaken nonrel-
ativistic notion of rigidity for the accelerated electron, mixing up the separate issue
of the stability of this model with the lack of consistency within special relativity.
By adding a nonunique ad hoc stress-energy tensor to cancel out the divergence of
the electromagnetic one, he re-established the existence of a conserved 4-momentum
at the cost of being inconsistent with special relativity, deriving an inertial mass for
the electromagnetic field related to the energy W by the relation 4

3 W/c2 instead of
W/c2.

Decades later in 1949 Kwal [26] essentially realized that in order to have a unique
4-momentum associated with the Coloumb field of the unaccelerated electron, one
simply had to restrict the time hyperplane in the 4-momentum integral to one associ-
ated with the electron’s inertial rest frame, although he was not sophisticated enough
to actually talk about the region of integration and only examined the volume element
for the hyperplane integration. In fact one can simply insert a projection along the
rest frame 4-velocity into the contracted pair of indices in the 4-momentum integral
definition to enforce this result for any time hyperplane. In inertial coordinates the
components of this adjusted 4-momentum are

PKwal(�)α =
∫
�

T αβ(−UβU δ) d�δ, (21)

where as above Uα is the 4-velocity of the rest frame of the electron and uα is the
4-velocity of the inertial observer associated with the time slice �. However,

− U δ d�δ = −U δuδ d� = γ (U, u) d� = d�rest, (22)

leads to the differential of volume d�rest on the tilted hyperplanes associated with a
different rest frame time hypersurface at each point of �, a differential whose Lorentz
contraction d�δ = γ (U, u)−1d�rest by the relative gamma factor γ (U, u) = −uδU δ

yields the original differential. This corresponds to integrating over the the corre-
sponding region of �rest related by moving to it from � along the rest frame time
lines. Thus we have

PKwal(�)α =
∫
�

T αβUβ d�rest. (23)

However, if we express the components of this equation in rest frame inertial coordi-
nates where the system is static, the components of the 4-vector integrand T αβUβ are
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independent of the rest frame time coordinate and so have the same values along each
rest frame time line, so the integral is equivalent to integrating over any time hyperplane
�rest in the rest frame with respect to the actual differential of volume on that rest frame
time hyperplane and the result is the unique 4-vector P(�rest)

α . Kwal essentially only
describes replacing the factor −uβ d� by −Uβ d�rest in the integral, without using
the time translation invariance in the rest frame to relate the different time hyperplane
regions of integration. A decade later in 1960 Rohrlich [25] came to the same conclu-
sion without being aware of the work of Kwal or Fermi or being explicit about the time
translation invariance needed to evaluate the rest frame 4-momentum on time slices
not associated with the rest frame. Jackson describes in detail Rohrlich’s discussion
in the Second and Third Editions [27], and provides an alternative explanation for
getting the same result on other time slices using the invariants of the electromagnetic
field tensor. Unfortunately Rohrlich claims the Abraham–Lorentz definition of the
observer-dependent 4-momentum of the electromagnetic field is wrong in the case of
the very special case of an unaccelerated electron, which is simply not the case. When
the integral is restricted to a bounded region of a constant inertial time hyperplane,
this integral is essential in describing the transport of energy and momentum in and
out of the region for any configuration of charges, currents and electromagnetic fields.
See Sect. 6.7 on Poynting’s Theorem in Jackson’s Third Edition [27].

Explicit evaluation of the electromagnetic 4-momentum with respect to an inertial
observer with 4-velocity uα on a constant inertial time hyperplane � in the shell model
of the electron shows that it can be expressed in the form [15]

P(�)α = P(�rest)
α + 1

3
P(�rest)βUβν(u, U )α

= W

(
Uα − 1

3
ν(u, U )α

)
, (24)

where ν(u, U )α is the relative velocity of the moving frame compared to the rest frame
as seen in the rest frame and P(�rest)

α = WUα , and W is the rest frame energy of
the Coulomb field defined explicitly in the next section. The second term on the right
hand side of this equation (orthogonal to the first term) shows the explicit dependence
of the 4-momentum on the observer 4-velocity uα . See Fig. 2.

Schwinger [40] has considered a special 1-parameter family of internal stress-
energy tensors compatible with this shell model, resulting in a total stress-energy
tensor which is divergence-free and hence the total 4-momentum is a single conserved
4-vector. Among these is the choice corresponding to h = −1 in the notation of
the Third Edition of Jackson [27] where this tensor is proportional to the orthogonal
projection gαβ + UαUβ into the local rest spaces of the electron sphere and hence
does not contribute at all to the rest frame evaluation of the total 4-momentum, which
therefore equals the 4-momentum of the electromagnetic field alone, the first term
on the right hand side of Eq. (24). In any other inertial frame, the integral of the
internal stress-energy tensor inside the electron sphere therefore exactly cancels the
extra velocity-dependent term in that equation to yield the same total 4-momentum
4-vector.
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Fig. 2 The relationship
between the rest frame
4-momentum P(�rest) and the
4-momentum P(�′) observed in
an inertial frame in relative
motion, referred to the
corresponding inertial
coordinate axes for the case of
motion along the x1 direction

5 Equations of motion for the rigid charge distribution

The actual equations of motion for the central world line of the rigid charge distribution
can be evaluated in the quasi-stationary limit of small enough and sufficiently slowly
changing acceleration that one can linearize Eq. (17) with respect to the acceleration
and ignore its time derivatives (thus neglecting radiation reaction terms) as described
in detail in Jackson [27] for the case of zero mechanical mass, without the Fermi lapse
factor. First one must separate out the self-field due to the charge distribution from the
external field in which the electron is moving, assuming that the latter is essentially
constant over the charge distribution so that it may be factored out of the integral.
The self-field is defined through the retarded time integrals of the 4-potential over the
charge distribution in Lorentz gauge. One then has

∫
E (self)(U )i NF de +

∫
E (ext)(U )i NF de − m(me)ai = 0. (25)

The lowest order contribution to the self-force in this approximation as shown by
Fermi is −m(em)ai , where the inertial mass coefficient m(em) is a constant equal to the
total energy W of the Coulomb field of the charge distribution, defined by

W = 1

2

∫ ∫
d3xd3x′ ρ(x)ρ(x′)

|x − x′| (26)

in the notation of Jackson [27], expressed as seen by an inertial observer at a time when
the electron is momentarily at rest. The Fermi coordinate lapse factor in the integrand
of the self-field integral in (25) corrects the Abraham-Lorentz result m(em) = 4

3 W to
conform with the Einstein mass-energy relation E = mc2 (with c = 1), as we show
next.

Then since the first term on the left hand side and the right hand side of Eq. (25) are
proportional to the acceleration, the second term must be first order in the acceleration,
so keeping only first order terms, one can ignore the Fermi lapse factor in the second
term which becomes
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∫
E (ext)(U )i NF de = E (ext)(U )i

∫
de = eE (ext), (27)

leading to the Lorentz force law in the Fermi frame for which the spatial velocity is
zero

(m(me) + m(em))ai = eE (ext)
i . (28)

In other words the mass formula for the electromagnetic contribution to the inertial
mass is

m = m(me) + m(em). (29)

For the spherical shell model, one easily finds m(em) = e2/(2r0), which compares
very nicely with the Reissner–Nordstrom irreducible mass formula [36]

m = m(irred) + e2/(2r+) (30)

for the gravitational mass m of a static spherically symmetric charge distribution of
total charge e and outer horizon radius r+ within general relativity.

6 Conclusions

The classical theory of the electron and related issues has attracted the attention of
many of the great physicists of the past century, and has been the subject of many
articles and a few books that continue to appear, most of which seem not to reflect
Fermi’s simple argument, although a relatively recent article by Kolbenstved [37]
offers an alternative explanation of that argument. For a complete list of such refer-
ences see [15], as well as the recent analysis by Boughn and Rothman [38] of a related
problem considered by Fermi in his fifth paper [39]. Ultimately the problematic issues
of a finite-sized classical electron were sidestepped by the point particle model and
renormalization techniques introduced in the quantum theory. However, as recently as
the past decade, new results in the classical theory have appeared [29–31,33–35], but
which still leave this loose end of Fermi’s work unaddressed.

Gauss’s law for stress-energy tensors with nonzero divergence is straightforward
to consider yet, until now no one has connected up Fermi’s results with the question
of the 4-momentum in the electromagnetic field of the classical electron model, an
issue which arose after he lost interest in the problem. Doing so has provided a useful
pedagogical example omitted in all textbooks on general relativity or electrodynamics
and has led to the following satisfying result. While in the case of the unaccelerated
electron, there is no selection mechanism to pick out the obvious candidate for the
4-momentum aligned with the 4-velocity of the rigid electron other than the alignment
itself, for the accelerated electron it is only the instantaneous rest frame observer which
leads not only to aligning the 4-momentum of the electromagnetic self-field with the
4-velocity, but also to a 4-momentum conservation law for the total 4-momentum.
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