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Abstract A global view is given upon the study of collapsing shear-free perfect fluid
spheres with heat flow. We apply a compact formalism, which simplifies the isotropy
condition and the condition for conformal flatness. The formulas for the characteristics
of the model are straight and tractable. This formalism also presents the simplest pos-
sible version of the main junction condition, demonstrated explicitly for conformally
flat and geodesic solutions. It gives the right functions to disentangle this condition
into well known differential equations like those of Abel, Riccati, Bernoulli and the
linear one. It yields an alternative derivation of the general solution with functionally
dependent metric components. We bring together the results for static and time-depen-
dent models to describe six generating functions of the general solution to the isotropy
equation. Their common features and relations between them are elucidated. A general
formula for separable solutions is given, incorporating collapse to a black hole or to a
naked singularity.

Keywords Spherical symmetry · Perfect fluids · Shear-free collapse · Heat flow

1 Introduction

Spherically symmetric radiating spacetimes are important in astrophysics for model-
ling radiating stars and in cosmology. Gravitational collapse is a highly dissipative
process, required to account for the enormous binding energy of the resulting object
[1]. In the diffusion approximation this is described by the heat flux. It allows to
join the interior solution to the Vaidya shining star exterior [2]. Radiating models are
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1836 B.V. Ivanov

necessary in cosmology to describe the formation of structure, evolution of voids and
the study of singularisties [3].

Shear-free perfect fluids with heat flux are often studied in order to simplify the
calculations and allow realistic analytic solutions. Two of their advantages are that
there are just two metric components and their space evolution is governed by the
isotropy condition, which is an ordinary second order linear differential equation in
the radial variable [3,4]. In the presence of heat flux the only non-trivial non-diagonal
component of the Einstein equations becomes an expression for it. The vanishing of
the heat flux implies a severe constraint, which transforms the isotropy condition into
a non-linear and highly complicated differential equation with few explicit solutions
[3,5–7]. This situation persists even when anisotropy of the pressure is allowed both
for shear-free and geodesic fluids [8,9].

Many analytic solutions of the isotropy condition have been found. It has been
written in a compact form already in 1948 [5]. Published in an obscure journal, this
paper has been discussed nevertheless in some monographs [3,7]. In spite of this,
researchers prefer to work directly with the metric coefficients, which complicates
the investigation. The isotropy condition is the same for static perfect fluid models
and for time-dependent ones. In the static case both the heat flux and the off-diag-
onal component of the Einstein tensor vanish identically, so there is no additional
constraint on the isotropy condition. Time dependence is obtained by promoting the
integration constants into arbitrary functions of time. As a result, there are two groups
of authors—the static (S) and the dynamical (D) group. Strangely enough, almost no
interaction exists between them. This problem becomes especially annoying when the
general solution of the isotropy equation is discussed. Recently, such a solution was
proposed by D authors [10], using the Lie symmetries method. It was treated as a class
of solutions at first, but later this statement was corrected [11]. However, generating
functions have been found by the S group as early as 1971 [12,13]. Interestingly, the
S authors were not aware of previous research inside their group, so more such func-
tions appeared during the years [14–18] (in the last reference a connection is made
between it and the previous one). Of course, only non-vanishing in the static limit
characteristics of the models were studied, like energy density, pressure and the mass
function.

While in the static case the main junction condition to the Schwarzschild solu-
tion is the vanishing of the pressure on the surface, in the dynamical case the correct
joining was found in 1985 [2]. Like the isotropy condition, this is an ordinary differ-
ential equation. The difference is that it has only time derivatives and is non-linear.
Once again, mainly its formulation in terms of the metric coefficients was considered
[19–21]. During the solving process it has been found that some combinations simplify
the computations.

One of the important questions of gravitational collapse is whether it ends in a black
hole or a naked singularity. A model with separable metric was thoroughly studied
[22–24] and it was found that a black hole forms at the end. However, there exists a
simple solution of the same junction condition, when horizon never appears and the
fate of the collapsing matter is a naked singularity [25]. Further, conformally flat and
geodesic models were studied extensively, but the fact that the latter are a subclass of
the first is not universally known.
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Collapsing shear-free perfect fluid spheres 1837

In the present paper we address all these questions. In Sect. 2 the field equations
are given as well as the definitions of important characteristics of the fluid spheres
like energy density, pressure, heat flux, expansion scalar, mass function, the second
Weyl invariant and the distribution of the causal temperature. In Sect. 3 the junction
conditions between the interior and the exterior are presented and the definitions of
quantities that lie or depend on the surface are written. These are the surface luminos-
ity, redshift and temperature, the luminosity at infinity and the total energy radiated
during the collapse. It is stressed that the energy is stored in the integration func-
tions. The condition for the formation of a horizon and consequently a black hole is
also mentioned. Section 4 contains the compact formulation of the isotropy equation
(LG formalism) and its general solution, obtained in six different ways. The relations
between the different generating functions are elucidated and the characteristics of the
model are expressed through some of them. In the next few sections several classes
of solutions are derived utilizing the LG formalism. These are separable solutions in
Sect. 5, conformally flat and geodesic solutions in Sect. 6 and solutions with functional
dependence between the metric components in Sect. 7. For the sake of completeness
we present chronologically the remaining solutions known to us in Sect. 8. The last
section contains some conclusions.

2 Field equations

The collapse of a shear-free perfect fluid sphere is described by the following metric
in isotropic comoving coordinates

ds2 = −A2dt2 + B2
(

dr2 + r2d�2
)
, d�2 = dθ2 + sin2 θdϕ2, (1)

where A and B depend on r and t . The energy-momentum tensor for a fluid undergoing
dissipation in the form of heat flow reads [4,22]

Tik = (μ + p) ui uk + pgik + qi uk + qkui , (2)

where μ is the energy density of the fluid, p is the isotropic pressure, ui is the four-
velocity and qi is the radial heat flux vector, which is orthogonal to ui . In comoving
coordinates

ui = A−1δi
0, qi = (0, q, 0, 0). (3)

The non-trivial Einstein equations are

8πμ = 3Ḃ2

A2 B2 − 1

B2

(
2B ′′

B
− B ′2

B2 + 4B ′

r B

)
, (4)

8πp = 1

A2

(
−2B̈

B
− Ḃ2

B2 + 2 Ȧ Ḃ

AB

)
+ 1

B2

(
B ′2

B2 + 2A′B ′

AB
+ 2A′

r A
+ 2B ′

r B

)
, (5)
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8πp = 1

A2

(
−2B̈

B
− Ḃ2

B2 + 2 Ȧ Ḃ

AB

)
+ 1

B2

(
− B ′2

B2 + A′

r A
+ B ′

r B
+ A′′

A
+ B ′′

B

)
,

(6)

8πq = 2

B2

(
Ḃ

AB

)′
. (7)

Here the dot and the prime stand for time and radial derivatives respectively. The rate
of collapse � is given by [19]

� = 3Ḃ

AB
(8)

Let us use the variable u = r2 and organize the time derivative terms in terms of �.
The Einstein equations become

8πμ = �2

3
− 4

B2

(
3Bu

B
− u B2

u

B2 + 2u Buu

B

)
, (9)

8πp = −�2

3
− 2�̇

3A
+ 4

B2

[
u Bu

B

(
Bu

B
+ 2Au

A

)
+ Au

A
+ Bu

B

]
, (10)

8πq = 4r�u

3B2 , (11)

2B2
u

B2 + 2Au Bu

AB
− Auu

A
− Buu

B
= 0. (12)

The last equation is the difference between Eqs. (5) and (6) and represents the isotropy
of pressure. It contains no time derivatives and is an ordinary second-order differential
equation for A, B. Thus we have the freedom to choose arbitrarily one of them and
solve for the other. Time dependence arises when the integration constants Ci are
promoted to integration functions Ci (t). Equations. (8–11) become expressions for
�,μ, p and q. The effective adiabatic index of the fluid � =dln p/dln μ also can be
found.

When the heat flow q vanishes Eq. (11) becomes another condition on A, B and
the combination with the isotropy condition leads to a non-linear equation with few
solutions [3,5–7]. This situation remains also in the anisotropic case for shear-free or
geodesic collapsing spheres [8,9].

The static case follows when the functions Ci (t) become constants again and
� = 0 = Ȧ. Then Eq. (11) yields simply q = 0 but the isotropy condition remains
the same. Thus to every dynamical model corresponds a static one.

An important characteristic in the general case is the mass function m of the fluid
ball [19]

m

r3 = B

2

(
Ḃ2

A2 − 2B ′

r B
− B ′2

B2

)
= B3�2

18
− 2B

(
Bu

B
+ u B2

u

B2

)
. (13)

123



Collapsing shear-free perfect fluid spheres 1839

The conformal tensor has one essential component, which is given in an invariant
way by the second Weyl invariant 	2. It can be determined from the following formula,
holding for anisotropic fluid spheres with heat flow [8]

m

R3 = 4π

3
(μ + pt − pr ) − 	2. (14)

In the isotropic and shear-free case R = r B and we have

	2 = 8πμ

6
− m

r3 B3 . (15)

Equations (9, 13) yield

	2 = 4u

3B2

[(
Bu

B

)2

−
(

Bu

B

)

u

]
. (16)

The terms with time derivatives cancel and the equation for conformally flat solutions
	2 = 0 is an ordinary differential equation in u, like the isotropy condition (12). For-
mula (14) has been derived originally in terms of the electric part of the Weyl tensor
E [26]. Comparing both formulas one comes to the conclusion that E = 3	2.

Another characteristic of the collapsing sphere is the temperature distribution T
among its volume. Unlike the previous quantities, it is determined by a non-linear
differential causal transport equation. For the present metric it becomes [20]

τ (q B). + q AB = −κ (AT )′

B
, (17)

where κ is the thermal conductivity and τ is the relaxational time-scale which gives
rise to the causal behaviour of the theory. Both of them depend on the temperature in
general. A physically reasonable choice is the transportation of energy by massless
particles. Then Eq. (17) becomes

α

4
X ′ + q A4−σ B2 Xσ/4 + β (q B). A3 B = 0, X = (AT )4 , (18)

where α, β, σ are constants. In the non-causal case β = 0 it is easily solved. Integrable
causal cases are σ = 0; 2; 4 [1,20,27–29]. Explicit solutions do not alter the structure
of this equation.

3 Junction conditions

The collapsing fluid lies within the sphere � defined by r = r� . The fluid is radi-
ating, hence, the exterior is not vacuum, but the outgoing Vaidya spacetime with the
metric [4]
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ds2 = −
(

1 − 2M (v)

ρ

)
dv2 − 2dvdρ + ρ2d�2. (19)

The junction conditions represent the continuity of the first and second fundamental
forms on �. This results in the relations [2]

p = q B, M (v) = m (r, t), ρ (v) = r B (20)

which hold on the surface �. Here M is the total mass of the radiating sphere, ρ� is
its radius as seen from outside and v is the time of the distant observer. The first rela-
tion is a differential equation containing derivatives with respect to t only. Replacing
Eqs. (10, 11) and setting r = r� we get

�2 + 2�̇

A
+ 4r�u

B
= 24πps, (21)

where ps is the pressure of the corresponding static model.
Some of the characteristics of the model are defined on its surface. Such are the

surface luminosity �� and the redshift z� [4,30]

�� = 2

3
u3/2

� (B�u)�, z� =
(

1 + 2u Bu

B
+ r B�

3

)−1

�

− 1. (22)

The exterior time v is related to the interior one t as follows

v =
∫

(1 + z�) A�dt. (23)

The surface temperature of the star is

T 4
� = ��

4πδρ2
�

=
(

r�u

6πδB

)

�

, (24)

where δ is some constant. The total luminosity for an observer at rest at infinity reads

�∞ = −d M

dv
= ��

(1 + z�)2 = 2

3
u3/2

� B�u

(
1 + 2u Bu

B
+ r B�

3

)2

�

, (25)

The total energy radiated during the collapse of the fluid sphere follows from the
previous equation

E∞ =
ve∫

vb

�∞ = M (vb) − M (ve), (26)

where vb (ve) is the exterior time of the collapse’s start (end). These correspond to
tb (te) according to Eq. (10). Equations (13, 20) show that the radiated energy results
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from the change in the integration functions �Ci = Ci (tb)− Ci (te). Thus the energy
that a static model can give out is stored in its constants, which are animated during
the collapse and evolve under the single condition given by Eq. (21).

A separable solution was discussed in detail [22–24]. There tb = −∞ and the exte-
rior solution at that moment is the static exterior Schwarzschild solution in isotropic
coordinates

ds2 = −
(

1 − M0/2ρ

1 + M0/2ρ

)2

dt2 +
(

1 + M0

2ρ

)4 (
dρ2 + ρ2d�2

)
. (27)

Here M0 is the constant total mass. The sphere collapses until a black hole is formed at
te = tB H . This happens when the coefficient g00 in the exterior metric (19) vanishes at
the surface � and a horizon appears. Equation (20) shows that the relation 2m = r B
should be satisfied there. It may be written with the help of Eq. (13) as follows

(
1 + 2u Bu

B
+ r B�

3

)

�

(
1 + 2u Bu

B
− r B�

3

)

�

= 0. (28)

The first multiplier vanishes in order to satisfy this relation. Then Eqs. (22,25) lead to
the blowing up of the redshift and vanishing of the luminosity at infinity.

Another separable solution with tb = −∞, however, never develops a horizon [25]
and the collapse proceeds till all the mass is burnt out, namely M (te) = 0, which
maximizes E∞. The final state can also be any static model for anisotropic fluids with
vanishing radial pressure pr = 0 and no heat flow [31]. In this case Eq. 21 is trivially
satisfied.

4 Six generating functions

All of the previous formulas are based on the solution of Eq. (12). The search for its
solutions spans an interval of 63 years, starting from 1948 when Kustaanheimo and
Qvist wrote it in a very compact form [3,5,7]. Introducing instead of A and B the
potentials L = 1/B and G = A/B it becomes

2GLuu = LGuu, B = 1/L , A = G/L . (29)

This is a linear second-order differential equation. One can choose an ansatz for G
and solve for L or vice versa. However, a general solution is hard to find. Choosing
the function K = Lu/L transforms Eq. (29) into a Riccati equation for K

Ku + K 2 − Guu

2G
= 0, (30)

which is first order, but still a general solution for any G is not known.
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This difficulty may be overcome if we choose one of the potentials as a function of
AB or its u-derivative. For example let us take A and W = 1/AB. Then

L = AW, G = A2W (31)

and Eq. (29) becomes

Au

A
= ±

√
Wuu

2W
, B = 1/AW. (32)

It is readily integrable when an arbitrary W is given [10].

A = A0 (t) exp ±
∫ √

Wuu

2W
du. (33)

The function of integration A0 (t) may be removed from A by a time change but it
remains in the expression for B. In the above reference the solution was presented
as a result of Lie symmetries analyses, together with other classes of solutions. Later
it was emphasized that this is a general solution [11] and in this way the potential
of Msomi et al. W is a generating function for the metric A, B and all of the above
characteristics of the model can be expressed through it. In addition, W together with
Eqs. (32–33) comprises the general solution of the isotropy condition Eq. (29). The
potential Ŵ = W −1 = AB was also discussed [10] with similar expressions for A, B.

The story does not begin here, however. As emphasized, the isotropy condition
holds also for the static case, which was studied extensively in the past. Unfortu-
nately, most of the authors worked in the so-called curvature coordinates. Yet there
is some amount of papers in isotropic coordinates. Quite a few concrete solutions
have been found and beside them five other generating functions. As we pointed out
in the introduction, the work of this ‘static’ group of authors is completely unknown
to the ‘dynamical’ group, which studied the time-dependent metric. The opposite is
also true. One of the purposes of the present paper is to present both the static and
dynamical results together, so that the future efforts may be united and rediscoveries
avoided. We shall derive the generating functions from one another. Amazingly, their
authors were unaware of the work of each other with one small exception.

Thus, let us take instead of W the potential

U = −2Wu

W
= 2 (ln AB)u, (34)

Uu = 1

2
U 2 − H2, H2 = 4A2

u

A2 . (35)

In this form the isotropy condition was given by Kuchowicz [12,13,32]. For U this is
a Riccati equation, but for H is an algebraic one and for A is a simple linear equation.
The metric is given by

A = exp
1

2

∫
Hdu, B = B0 (t) exp

1

2

∫
(U − H) du, (36)
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where B0 is a function of integration. Thus U is another generating function. The
change H2 = U J turns the Riccati equation for U into a Bernoulli equation, which
is integrable, or into a simple algebraic equation for J

Uu = 1

2
U 2 − JU. (37)

Here one can choose either U or J as a generating function.
Let us replace next the potentials U, H by f, g according to the following expres-

sions

U = 1

f
, H = g

f
, (38)

so that

1

f
= 2 (ln AB)u, g = (ln A)u

(ln AB)u
. (39)

Then the isotropy condition becomes simply

fu = g2 − 1

2
(40)

and one can choose either f or g as a generating function. The other one follows
immediately, while the metric is given by

A = exp
1

2

∫
g

f
du, B = B0 exp

1

2

∫
1 − g

f
du. (41)

This third generating function was found by Goldman [14], who also gave some par-
ticular solutions. His work was corrected and further developed by Knutsen [16]. The
latter author expressed the characteristics of the static model in term of the potentials,
studied the energy conditions and proposed another particular solution.

Next, let us take the potential

� = ln AB =
∫

du

2 f
. (42)

Then Eq. (40) yields

g = ε

√
�2

u − �uu√
2�u

, (43)
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where ε = ±1 and the metric is expressed through �

A = exp ε

√
2

2

∫ √
�2

u − �uudu, B = B0 exp

(
� − ε

√
2

2

∫ √
�2

u − �uudu

)
.

(44)

These are essentially the expressions of Ref. [18] and � is the fourth generating
potential, proposed by Lake.

The fifth one Z was introduced by Rahman and Visser [17]. It is obtained from the
relation

� = 2
∫

Z

1 − u Z
du (45)

and is connected to the Goldman-Knutsen potentials by the equations

2 f = 1

Z
− u, g2 = − Zu

2Z2 . (46)

Inserting them in Eq. (41) we get for the metric

A = exp ± 1√
2

∫ √−Zu

1 − u Z
du, B = B0 A−1 exp

∫
Z

1 − u Z
du. (47)

Finally, we should mention the potentials introduced by Stewart [15]

P = 2r (ln AB)u, S = 2r

(
ln

A

B

)

u
, (48)

which satisfy the equation

2r Pu − P

r
− 1

2
P2 + S P + 1

2
S2 = 0. (49)

It can be shown that

P = r

f
, S = (2g − 1) P (50)

and then Eqs. (49) transforms into (40). In this way P is the sixth (and the last known
to us) generating function.

Equation (40) shows that to every function f correspond two functions ±g, Sup-
pose we have a solution A1, B1 with potentials f1, g1. Then there is another solution
with f2 = f1 and g2 = −g1. Equation (41) yields

A2 = A−1
1 , B2 = B1 A2

1. (51)
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This is exactly the Buchdahl theorem [33] in the spherically symmetric case.
Now let us give the characteristics of the fluid model in terms of L and G:

ds2 = L−2
(
−G2dt2 + dr2 + r2d�2

)
, (52)

� = −3L̇

G
, 8πq = 4

3
r L2�u, (53)

8πμ = �2

3
+ 12Lu (L − uLu) + 8uL Luu, (54)

8πp = −�2

3
− 2�̇L

3G
+

(
4Gu L

G
− 6Lu

)
(L − 2uLu) − 2L Lu, (55)

m = r3

L3

[
�2

18
+ 2Lu (L − uLu)

]
, 	2 = 4

3
uL Luu, (56)

�� = 2

3

(
r3�u

L

)

�

, T 4
� = 1

6πδ
(r�u L)�, (57)

z� =
(

2uLu + r�/3

L − 2uLu − r�/3

)

�

, (58)

�∞ = ��

L2
�

(L − 2uLu − r�/3)2
�, (59)

It is clear that G appears only through �, except in the pressure. Note also the simple
formula for the second Weyl invariant.

Finally, let us express the characteristics in terms of a generating function. The most
convenient are the Goldman-Knutsen potentials. A and B are found from Eq. (41).
The rest are

� = 3

2A

∫ (
1 − g

f

).

du, (60)

8πμ = �2

3
− 1

f 2 B2

[
(1 − g)

(
6 f + 3u − ug − 4ug2

)
− 4u f gu

]
, (61)

8πp = −�2

3
− 2�̇

3A
+ 1

f 2 B2

[
2 f + u

(
1 − g2

)]
, (62)

m

(r B)3 = �2

18
+ g − 1

2 f 2 B2 [2 f + u (1 − g)], (63)

	2 = u

3 f 2 B2

[
(1 − g)

(
2 + g − 2g2

)
+ 2 f gu

]
, (64)

�∞ = ��

(1 + z�)2 , z� =
(

1 + 1 − g

f
u + r B�/3

)−1

�

− 1, (65)

while q,�� and T� are given by Eqs. (11,22,24) respectively. In the junction condition
(21) one should put

8πps = 1

f 2 B2

[
2 f + u

(
1 − g2

)]
, (66)
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computed at the surface �. Here g is given by Eq. (41) and f (r, t) is an arbitrary
function of u and a number of functions Ci (t). When the latter and B0 (t) are con-
stant, q,�,��,�∞, T�, T, p� vanish, so that the model becomes static. Then the
formulas for the energy density, the pressure and the mass coincide with those of
Knutsen [16].

5 Separable solutions

Separable solutions have the following metric [34]

A = j (t) α (u), B = h (t) β (u). (67)

The function j (t) may be set to 1 by a time change. Then Eq. (12) shows that α and β

should satisfy the isotropy condition as a static metric. Thus the generating functions
are static, while h (t) = B0 (t). Replacing the above metric in the expressions for the
various characteristics we obtain

� = 3ḣ

αh
, 8πq = − 4rαu ḣ

α2β2h3 , (68)

�� = −2ḣ

(
r3αuβ

α2

)

�

, T 4
� = − ḣ

2πδh2

(
rαu

α2β

)

�

, (69)

8πμ = 3ḣ2

α2h2 + 8πμs

h2 , 8πp = − ḣ2 + 2hḧ

α2h2 + 8πps

h2 , (70)

m = (rβ)3

2α2 hḣ2 + hms, 	2 = 	2s

h2 , (71)

�∞ = ��

(
1 + 2uβu

β
− rβḣ

α

)2

�

, (72)

z� =
( −2uαβu + rβ2ḣ

αβ + 2uαβu − rβ2ḣ

)

�

, (73)

where quantities with an index s correspond to the static model with metric α, β.
We suppose that the boundary of the static model is also at r� , so there ps = 0 and

Eq. (21) becomes

2hḧ + ḣ2 − 2aḣ = 0, a = 2

(
rαu

β

)

�

. (74)

This ordinary second-order differential equation governs the behaviour of h. Its first
integral reads

ḣ = 2√
h

(
a
√

h − b
)
, (75)

123



Collapsing shear-free perfect fluid spheres 1847

where b is an integration constant. Integrating once more gives

t − t0 = h

2a
+ b

a2

√
h + b2

a3 ln

∣∣∣∣
√

h − b

a

∣∣∣∣ . (76)

Here t0 is a second integration constant. When b �= 0 one can enforce the equality
b = a by absorbing a constant in β [22–24,28,29]. This solution was analysed in great
detail and leads to the formation of a black hole.

When b = 0 the solution is h = 2a (t − t0) [25]. In this reference this particular
solution was given as a simple ansatz satisfying Eq. 74, the general solution being
unavailable, according to the authors. Here we have derived it from the general for-
malism. It is easy to see that m and r B are proportional to t − t0, hence, their ratio is
constant. At �

(
2m

r B

)

�

= 2

(
8u2α2

u

α2 + ms

rβ

)

�

. (77)

This certainly can be made less than unity by choosing the constants of the arbitrary
static solution. Going back to the arguments that lead to Eq. (28), one comes to the
conclusion that no horizon is formed during the process of collapse. Its end is marked
by te = t0 when the mass burns out completely and vanishes. The energy accumulated
during the collapse is radiated at the same rate. Both luminosities, the surface tempera-
ture and redshift are constant, while μ, p and 	2 diverge as (t − t0)−2 , q ∼ (t − t0)−3

and � ∼ (t − t0)−1. This may be an indication for the formation of a naked singularity.
In Ref. [25] the special solution

α = 1 + cu, β = 1 (78)

was considered, which in addition is conformally flat. Solutions with no horizon appear
also in higher dimensional spacetimes [35,36].

6 Conformally flat solutions

These solutions have 	2 = 0 and a look at Eq. (56) shows that the LG formalism is
the most appropriate for their study. Eqs. (26, 29) yield

Luu = 0, Guu = 0. (79)

Integration produces four integration functions. In the general case they are indepen-
dent and Eq. (52) indicates that in G one of them may be set to unity. Hence

L = C1 (t) u + C2 (t), G = u + C3 (t). (80)
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The metric and the combination AB, which is the basis of the six generating functions,
become

A = u + C3

C1u + C2
, B = 1

C1u + C2
, AB = u + C3

(C1u + C2)
2 . (81)

The characteristics of the fluid model depend on the three functions Ci (t). It is much
simpler to use C1, L and G instead. One should note that

Lu = C1, Gu = 1, �u = −3Ċ1

G
+ 3L̇

G2 . (82)

We can use Eqs. (52–59) for the characteristics of the model, inserting in them the
above formulas. Equation (56) yields

m = 4πμru

3L3 , (83)

which follows also from Eq. (15) or the square of the conformal tensor [19]. The time
evolution of C1, L and G is governed by the junction condition Eq. (21) on �, where
ps is given by Eq. (55) with � = 0. Dropping for a while the index �, we obtain after
a lengthy calculation

2L L̇Ġ +
(

3L̇2 − 2L L̈
)

G + 4r L L̇G − 4rĊ1LG2 − 4 (L − 2uC1) LG2

+
(

8C1L − 12uC2
1

)
G3 = 0. (84)

With respect to G this is an Abel equation of the first kind

A1Ġ + A2G + A3G2 + A4G3 = 0. (85)

It is not soluble analytically in general, but in some degenerate cases one obtains
[21] an algebraic equation (when A1 = 0) or Bernoulli equations (when A3 or A4
vanishes), which are integrable.

With respect to C1 this is a Riccati equation

R1Ċ1 + R2C1 + R3C2
1 + R4 = 0, (86)

which may be transformed into a inhomogeneous second-order linear equation. The
general solution may be found if a particular one is known.

Finally, in order to elucidate the character of Eq. (84) with respect to L we make
the replacement

L = l−2, (87)
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which gives

Gl̈ − (
Ġ + 2rG

)
l̇ − G2l − rG2l3Ċ1 + 2G2 (u + G) l3C1

−3uG3l5C2
1 = 0. (88)

One can make this equation linear and homogenous in l in two ways. First, we simply
put C1 = 0 [19,20]. When G is constant there are three classes of solutions. In these
references G was taken in the form G = C3u + 1, which leads to more involved
coefficients of the equations. They hold for u in general, but are needed for u� only.
Another possibility is to make L ∼ C1 This happens when C2 = kC1 with k some
coefficient. The case of constant G was studied [1]. In fact, in these two cases A and
B become separable and Eq. (88) is the analogue of the integrable Eq. (74). Some
other conformally flat and separable solutions with a single, linear in time, integration
function have been discussed [25,37].

A well known example of a static conformally flat solution is the interior Schwarzs-
child metric. In isotropic coordinates it looks like [17,38]

A = 1 + 1+c2
c2

u
c1

1 + u/c1
, B = 1

1 + u/c1
(89)

and has two constants. The limit c2 → ∞ leads to the Einstein universe, while
c2 = −1/2 yields the De Sitter universe [17]. The Z potentials of these solutions
were given in the last reference. As pointed out in the beginning, one can ‘animate’
these classical static models by making the constants time-dependent. A model where
they, in addition, depend on each other was given by Kramer [39] and studied later
[40]. The junction condition becomes a complicated nonlinear second-order differen-
tial equation, which surprisingly may be solved in terms of a special function. Due to
their simple structure, conformally flat solutions were among the first to be discovered
[3,41–46]. The subclass with G = 1 was studied too [47].

An important class of solutions are the geodesic or non-accelerating ones, which
have A = 1. This leads to G = L and the metric becomes

ds2 = −dt2 + L−2
(

dr2 + r2d�2
)
. (90)

Equations (29) gives Luu = 0 and (56) shows that the geodesic solutions are a subclass
of the conformally flat solutions. We have for the expansion

� = −3L̇

L
, �u = −3

(
C1

L

).

. (91)

The characteristics of the model are obtained when these formulas are inserted in
Eqs. (53–59).For example, the pressure reads

8πp = −�2

3
− 2�̇

3
− 4LC1 + 4uC2

1 . (92)
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The condition A = 1 simplifies the generating functions of geodesic models. Thus
W = L , H = 0, g = 0, � = − ln L , Z = const and P = −S.

The junction condition Eq. (21) becomes

−4r L2Ċ1 + 4L
(

r L̇ + L2
)

C1 − 4uL2C2
1 = 2L L̈ − 5L̇2, (93)

taken on the surface �. It differs substantially from Eq. (84), although it still represents
a Riccati equation for C1 [48]. When some of the coefficients are made to vanish, a
Bernoulli or a soluble Riccati equation follows. The ansatz

L = L0 (t + t0)
n , (94)

where L0, t0.n are constants, transforms Eq. (93) into the linear second-order equa-
tion of the confluent hypergeometric function. Elementary solutions were found for
n = 0;−2/3;−2 [48]. This method also reproduces the solution with

B = c1

2c2

(
1 − c2c3 exp s

1 − uc3 exp s

)
s2, s =

(
6t

c1

)1/3

, (95)

where ci are constants. It has been discussed extensively in the past [27,29,49–51].
Finally, it should be mentioned that the study of collapsing shear-free perfect fluid
models with heat flow began with the well-known Robertson-Walker cosmological
model by promoting its constant k to a function k (t) [3,41,45,52,53].

7 Functional dependence between A and B

A class of solutions to the isotropy condition has the functional dependence A (B).
The latter is equivalent to G (L). Then Eq. (29) becomes

2GLuu = GL L L L2
u + GL L Luu, (96)

which may be written as

GL L
2G
L − GL

Lu = Luu

Lu
. (97)

Integrating once we obtain

Lu = C1 (t) exp
∫

GL L
2G
L − GL

d L , (98)

where C1 (t) is an integration function. A second integration gives

∫
exp

(
−

∫
GL L

2G
L − GL

d L

)
d L = C1 (t) u + C2 (t), (99)
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C2 (t) being a second integration function. Choosing an explicit G (L) one obtains
after the integrations an explicit or implicit expression for L (t, u). The result for the
variables A, L is similar

∫
exp

(
−

∫
2AL + L AL L

A − L AL
d L

)
d L = C1 (t) u + C2 (t). (100)

This formula was found long ago [43] and considered to be the general solution of the
isotropy equation. Formally this is true, because time plays the role of a parameter and
not a variable in it. Therefore, effectively, A = A (u) and B = B (u). Inverting the
second equality and replacing it in the first, one finds that for every solution indirectly
A = A (L). Thus L may be considered as another generating function. However,
the inversion and the double integration in Eqs. (99,100) make the procedure rather
cumbersome and implicit. Formula (100) was later rediscovered by the Lie symmetry
method [10] and a few examples were presented for illustration in both references. In
the LG formalism one of them is given by G = L3. A brief calculation yields from
Eq. (99)

L = [C1 (t) u + C2 (t)]1/7 . (101)

When A is a function of B (or L) such is the base for the generating functions AB.
Then Eq. (39) shows that the Goldman-Knutsen potential g = g (L). However, f
depends on L and Lu in the general case.

A model of the same type was found in an attempt to generalize the exterior
Schwarzschild solution (27) [54,55] It has

A = 1 − F

1 + F
, B = B0 (t) (1 + F)2 , F = c1

(1 + c2u)1/2 . (102)

Bayin [56] studied static solutions in isotropic coordinates of the type

A = A0φ
−c1 , B = B0φ

c2 (103)

with

φ = c3ec4u, φ1−c = c3u + c4, (104)

where c = c (c1, c2) in a specified way. They also have A and B directly dependent
on each other.

8 Other solutions

As stated before, static and time-dependent solutions are on equal footing with respect
to the isotropy condition. We present only one of the metric functions in most cases,
preserving the original notation. The constants below are understood. Chronologically,
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the first solutions were given by Narlikar et al. in 1943 [7,13,57]. They are static and
have

L I = C1r1+n/2 + C2r1−n/2, L I I = C3r−k/2, (105)

where n > 0, 0 ≥ k ≥ −2. There are three cases of A for each L , including the
interior Schwarzschild metric (SIM). Nariai [7,58] found five static solutions, one of
them coinciding with L I from above. The rest are

L2
I = (a + bu)α, L2

I I = u (a + b ln r)2, L2
I I I = a cos (b + cu),

(106)
A2

I V = (a + bu)α.

In 1968 Strobel [3,41] gave a list of cases of Luu/L for which a solution of Eq. (29)
can be found in the handbooks on differential equations and two explicit solutions
with Luu = 0. This reference remained unnoticed. Kuchowicz [7,12,13,32,59] gave
a host of new static solutions, using his generating function. In view of their great
number we direct the reader to the original references. Goldman [14] studied three
explicit static examples of his potential g

gI = a

1 − bu
, gI I = 1√

2
coth (a − bu), gI I I = cosh (a + bu). (107)

Stewart [7,15] applied the Buchdahl theorem to SIM to obtain a new static solution
with

A2 = c (1 + au)2 (1 − bu)−2 . (108)

Sanyal and Ray [43] gave their Case 1 dynamical solution

A = C (t) u + D (t) (109)

as a complementary one to their general solution (100). Modak [44] proposed a time-
dependent metric, which coincides with the animated fourth Nariai solution. Pant and
Sah [60] studied in detail the static model with

A = A0
1 − kδ

1 + kδ
, B = (1 + kδ)2

1 + u/a2 , δ (u) =
(
1 + u/a2

)1/2

(
1 + bu/a2

)1/2 , (110)

which is a generalisation of the Buchdahl solution (102) for b �= 0.
Deng in 1989 invented a powerful method (Deng’s ladder) [3,45] for generating

an infinite chain of more and more complicated solutions, varying with time, from a
simple seed A1. One finds next the general form of L1, takes it as a seed, finds the
general A2 and so on. He delivered the most general conformally flat solution and
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some others. Banerjee et al. [61] gave two dynamical solutions

AI = T (t) z1/2 − α

T (t) z1/2 + α
, AI I = z

T (t) (z + a/T (t))
, z = 1 + η (t) u. (111)

In 1990 Knutsen [16] corrected and extended the Goldman potential method by
studying the characteristics, the physical plausibility and the dynamical stability of
the static models in terms of the Goldman-Knutsen generating function. He discussed
the third Goldman solution and proposed a simpler one with g = au + b.

Another static solution was given by Burlankov [62]

L2 = a

(
u + b − √

3/2

u + b + √
3/2

)√
3

. (112)

Recently, Pant et al. [63] studied in detail the static metric

A = cos
√

2b (d − u)

sin (a + bu)
, B = cos ec2 (a + bu). (113)

Finally, Msomi et al. [10], with the help of Lie symmetry analysis, found five trans-
formations, leading to new solutions from old ones and introduced their generating
function W .

9 Conclusions

We have given a global view upon the study of collapsing shear-free perfect fluid
spheres with heat flow. The application of the LG formalism has been advocated
throughout the present paper. It provides a very compact formulation of the isotropy
condition (12), namely Eq. (29), and a very simple expression for 	2—Eq. (56). The
formulas for the other characteristics, Eqs. (52–59), are also straight and tractable.
Equation (56) clearly shows why the condition for conformal flatness is so similar to
the isotropy condition.

The LG formalism also presents the simplest possible version of the junction con-
dition. This has been demonstrated explicitly for conformally flat and for geodesic
solutions. It gives the right functions to disentangle this condition into well known
differential equations like the Abel equation, the Riccati equation, the Bernoulli equa-
tion or the linear one. This formalism yields an alternative derivation of the general
solution when the metric components are functionally dependent.

We have also discussed an unified study of separable solutions by incorporating the
simple linear in time ansatz into the general formula for the solution of the junction
condition (76).

One of the main objectives of the paper is to bring together the results of the static
and dynamical group of authors, not only in the chronology of particular solutions,
but in the discovery of generating functions. The recent proposition of the generating
potential W [10] has prompted the search for similar functions, mainly in the work of
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the static group. A bunch of five generating potentials has been found, any of which
provides the complete solution of Eq. (29). Their common feature is the presence of
the basic form AB. Its use reduces the LG equation to a first order or an algebraic
one, depending on which potential of the pair is chosen as a seed. It seems that the
Goldman-Knutsen generating function satisfies the simplest equation and a future
task may be to continue the studies of Knutsen upon characteristics, pertinent to the
dynamical models. Obviously, new generating potentials may be proposed by taking
other functions of AB or its u-derivative. In view of this we hope that the enumeration
of the existing generating functions, undertaken here, will prevent wasting of time in
rediscoveries in the future.

Finally, putting in order the four-dimensional case will help to lessen the efforts in
investigating shear-free radiating collapse in higher dimensions [11,36].
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