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Abstract We have studied the null geodesics of the Schwarzschild black hole
surrounded by quintessence matter. Quintessence matter is a candidate for dark
energy. Here, we have done a detailed analysis of the geodesics and exact solutions
are presented in terms of Jacobi-elliptic integrals for all possible energy and angular
momentum of the photons. The circular orbits of the photons are studied in detail.
As an application of the null geodesics, the angle of deflection of the photons are
computed.
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1 Introduction

It is well known that we live in a universe undergoing a period of accelerating expan-
sion. This indicates the presence of mysterious form of repulsive gravity called dark
energy. There are several observations that support dark energy. One is the studies of
type Ia supernova [1–3]. The other is the observations related to the cosmic microwave
background (CMB) [4] and large scale structure (LSS) [5,6].

The nature of dark energy is yet to be understood. There are several cosmolog-
ical models proposed in which the dominant component of the energy density has
negative pressure. One of them is the cosmological constant � which corresponds
to the case of dark energy with a state parameter ωq = −1. However, there is a key
problem that is yet to be understood about the cosmological constant from the point
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of view of fundamental physics. Its observed value is too small which is also called
the fine-tuning problem [8].

There are alternative models that are proposed as candidates for dark energy. Most
of these models are based on a scalar field. Such scalar field models include but not
limited to, quintessence [9], chameleon fields [10], K-essence [11], tachyon field [12],
phantom dark energy [13] and dilaton dark energy [14]. For a detailed review of various
models of dark energy see [7].

Given the fact that dark energy contains about 70 % of the universe and black holes
are also accepted as part of our universe, studies of black holes surrounded by dark
energy takes an important place in research. In this paper, we study the Schwarzschild
black hole surrounded by quintessence matter. Quintessence is described as a scalar
field coupled to gravity with a potential that decreases as the field increases [9,7].
Kiselev [15] derived black hole solutions surrounded by quintessence matter which
has the state parameter in the range, −1 < ωq < − 1

3 . In this paper, we will focus on
the solution derived by Kiselev.

There are several works done on the black hole derived by Kiselev in the literature.
The quasinormal modes of the black holes has been computed extensively. The quasi-
normal modes of the Schwarzschild black hole surrounded by the quintessence matter
has been computed in [16–19]. The quasinormal modes of the Reissner-Nordstrom
black hole surrounded by the quintessence matter has been presented in [20]. Hawking
radiation of d-dimensional extension of the Kiselev black hole has been studied by
Chen et. al. in [21].

The main objective of this paper is to study the geodesic structure of massless
particles of the Schwarzschild black hole surrounded by quintessence matter. The
motion of particles around black holes has been studied extensively in the literature
for all types of black holes. Due to the large volume of papers related to this subject,
we will avoid referring the papers here. Motion of particles around a black hole is one
way to understand the gravitational field around a black hole. Given the fact that dark
energy is one of the most important issues need to be resolved in physics, the studies
of particles around a black hole immersed in dark energy take an important place.

The paper is presented as follows: In Sect. 2 the black hole solutions surrounded by
quintessence matter is introduced. In Sect. 3 the general formalism of the geodesics
are given. In Sect. 4, the radial geodesics are discussed. In Sect. 5, the geodesics with
angular momentum are discussed. In Sect. 6, the geodesics are analyzed with a new
parameter. In Sect. 7, the applications of the null geodesics are given. Finally, the
conclusion is given in Sect. 8.

2 Schwarzschild black hole surrounded with quintessential matter

In this section we will give an introduction to the Schwarzschild black hole solutions
surrounded by quintessential matter obtained by Kiselev [15]. The geometry of such
a black hole has the metric of the form,

ds2 = −g(r)dt2 + g(r)−1dr2 + r2(dθ2 + sin2 θdφ2) (1)
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Schwarzschild black hole surrounded by quintessence 1859

where,

g(r) = 1 − 2M

r
− c

r3wq+1 (2)

Here, M is the mass of the black hole and wq is the state parameter of the quintessence
mater. c is a normalization factor. The parameter wq has the range,

−1 < wq < −1

3
(3)

The equation of state for the quintessence mater is given by,

pq = wqρq (4)

and

ρq = − c

2

3wq

r3(1+wq )
(5)

Here pq is pressure and ρq is the energy density. As described in [15], to cause acceler-
ation, the pressure of the quintessence matter pq has to be negative. The mater energy
density ρq is positive. Hence the parameter c > 0 for negative wq . For more details on
the derivation of the solutions and the basis to choose the parameters as given, reader
is referred to the paper by Kiselev [15].

One can observe that for wq = −1, the function g(r) for the metric reduces to

g(r) = 1 − 2M

r
− cr2 (6)

which is the Schwarzschild-de-Sitter black hole space-time.
In this paper, we will focus on the special case of wq = − 2

3 . Then,

g(r) = 1 − 2M

r
− cr (7)

For 8Mc < 1, the metric with the above g(r) given in Eq. (7) has two horizons as,

rin = 1 − √
1 − 8Mc

2c
(8)

rout = 1 + √
1 − 8Mc

2c
(9)

The inner horizon rin is like the Schwarzschild black hole horizon. The outer horizon
rout is a cosmological horizon similar to what is observed in the Schwarzschild-de-Sitter

black hole. Notice for small c, rout ≈ 1
c which is similar to rout ≈

√
3
�

for small � in
the Schwarzschild-de-Sitter case. There is a static region between the two horizons.
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Fig. 1 The graph shows the relation of g(r) with r for various values of the parameter c. Here, M = 1
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Fig. 2 The graph shows the relation of the temperature with c for both horizons. The dashed curve is for
the inner horizon while the thick curve is for the outer horizon. Here, M = 2

Hence, in considering the motion of photons, we will focus on the region between the
two horizons.

If 8Mc = 1, the space-time has a degenerate solution at r = 1
2c . For 8Mc > 1,

there are no horizons. All three situations are represented in Fig. 1.
The Hawking temperature for this black hole is,

Trin,rout = 1

4π

∣∣∣∣
dgtt

dr

∣∣∣∣
r=rin,out

(10)

which leads to,

Trin,rout = 1

4π

∣∣∣∣∣
2M

r2
in,out

− c

∣∣∣∣∣ (11)
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Schwarzschild black hole surrounded by quintessence 1861

The temperature for both horizons are plotted in Fig. 2. The temperature of the outer
horizon is smaller than the inner horizon.

3 Geodesics of the black hole

We will derive the geodesic equations for neutral particles around the quintessence
black hole. We will follow the same approach given in the well known book by Chan-
drasekhar [22]. The equations governing the geodesics in the space-time given in
Sect. 2 can be derived from the Lagrangian equation,

L = −1

2

(
−g(r)

(
dt

dτ

)2

+ 1

g(r)

(
dr

dτ

)2

+ r2
(

dθ

dτ

)2

+ r2 sin θ2
(

dφ

dτ

)2
)

(12)

Here, τ is an affine parameter along the geodesics. Since the black hole have two
Killing vectors ∂t and ∂φ , there are two constants of motion which can be labeled as
E and L . They are given by,

g(r)ṫ = E (13)

r2 sin2 θφ̇ = L (14)

We choose θ = π/2 and θ̇ = 0 as the initial conditions. Hence θ̈ = 0. θ will remain
at π/2 and the geodesics will be described in an invariant plane at θ = π/2. With ṫ
and φ̇ given by Eqs. (13) and (14), the Lagrangian in Eq. (12) simplifies to be,

ṙ2 + g(r)

(
L2

r2 + h

)
= E2 (15)

Here, 2L = h. h = 1 corresponds to time-like geodesics and h = 0 corresponds to
null geodesics. For a time-like geodesic, τ may be identified with proper time of the
particle describing the geodesic. Comparing Eq. (15) with ṙ2 + Veff = E2, one get
the effective potential,

Veff =
(

L2

r2 + h

)
g(r) (16)

By eliminating the parameter τ from the Eqs. (13) and (14), one can get a relation
between φ and r as follows;

dφ

dr
= L

r2

1√
(E2 − Veff)

(17)

In this paper, we will only focus on null geodesics. Hence h = 0 and the effective
potential corresponds to,

Veff = L2 g(r)

r2 (18)
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4 Radial null geodesics

The radial geodesics corresponds to the motion of particles with zero angular momen-
tum (L = 0). Hence for radial null geodesics, the effective potential,

Veff = 0 (19)

The two equations for ṫ and ṙ simplifies to,

ṙ = ±E; ṫ = E

g(r)
(20)

The above two equations lead to,

dt

dr
= ± 1

g(r)
= ± 1(

1 − 2M
r − cr

) (21)

The above equation can be integrated to give the coordinate time t as a function of r as,

t = ±
( −2√

1 − 8cM
Tanh−1

( −1 + 2cr√
1 − 8Mc

)
+ Log

(
r − 2M − cr2

))
+ const± (22)

The constant of integration is imaginary. However, when one compute the time t , the
overall expression will be real. On the other hand, the proper time can be obtained by
integrating,

dτ

dr
= ± 1

E
(23)

which leads to,

τ = ± r

E
+ const± (24)

When r → rin, t → ∞. When r → rin, τ → rin
E , which is finite. Hence the proper

time is finite while the coordinate time is infinite. This is the same result one would
obtain for the Schwarzschild black hole [22]. Figure 3 represents both times to show
this. Note that we have picked the plus sign in this case, since we are studying the
ingoing light rays.

5 Null geodesics with angular momentum (L �= 0)

In this section, we will study the null geodesics with angular momentum.
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Fig. 3 The graph shows the relation of the coordinate time t and the proper time τ with the radius r . Here,
M = 1, c = 0.05. The initial position is at r = 16. The inner horizon is at rin = 2.254 and the outer
horizon rout = 17.746. The dark curve is for t and the light curve is for τ
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Fig. 4 The graph shows the relation of Veff with the parameter c. Here, M = 1 and L = 1

5.1 Effective potential

In this case,

Veff = g(r)
L2

r2 (25)

For r = rin and rout, Veff = 0. In Fig. 4, the Veff is given for various values of c. The
potential for the Schwarzschild black hole is higher than for the black hole surrounded
with the quintessence.

When the Veff is expanded, it looks like,

Veff = L2

r2 − 2L2 M

r3 − L2c

r
(26)
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Fig. 5 The graph shows the relation of Veff with the energy E . Here, M = 1, c = 0.01 and L = 1

The contribution to the effective potential from the quintessence is − L2c
r compared

to the Schwarzschild black hole. Note that in the Shwarzschild-de-Sitter case, the
contribution is a constant −L2�.

Since the energy and the effective potential are related by ṙ2 + Veff = E2, the
motion of the particles depend on the energy levels. In Fig. 5, the effective potential
is plotted and three energy levels, E1, Ec and E2 are given. There are three different
scenarios of motion of the particles as described below.

Case 1: E = Ec.
Here, E2 − Veff = 0 and ṙ = 0. The orbits are circular. Due to the nature of the

potential at r = rc, these are unstable. More details of the circular orbits will follow
in the Sect. 5.2.

Case 2: E = E2.
Here, E2 − Veff ≥ 0 in two regions as is clear from Fig. 5. If the photons start the

motion at r > rc, it will fall to a minimum radius and fly back to large values of r . If
the photons start the motion at r < rc, then the photons will fall into the singularity
crossing the inner horizon at r = rin.

Case 3: E = E1.
Here, E2 − Veff > 0 and ṙ > 0 for all r values. Hence the photons coming from

large r values will cross the horizon at r = rin and will fall into the singularity.

5.2 Circular orbits

Circular orbits occurs when E = Ec as explained in Sect. 5.1. Hence at r = rc,

ṙ = 0 ⇒ Veff = E2
c (27)

and

dVeff

dr
= 0 (28)
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Fig. 6 The graph shows the relation of rc with c. Here M = 2

From Eq. (28), one get two solutions for circular orbit radius r as,

r± = 1

c

(
1 ± √

1 − 6cM
)

(29)

The larger root r+ is greater than rout and rin < r− < rout. Since the motion of interest
is between the horizons, the radius of circular orbits considered will be r−. We will
name it as rc in the rest of the paper. Hence,

rc = 1

c

(
1 − √

1 − 6cM
)

(30)

In the Fig. 6, the radius of circular orbits are given as a function of c. One can observe
that, the radius is bigger for non-zero values of c.

Due to the nature of the potential at r = rc, the circular orbits at r = rc are unstable.
The hypersurface at r = rc is known as the “photon sphere”. For a detailed discussion
about photon spheres see the paper by Claudel et.al [23]. When c → 0, rc → 3M
which is the radius of the unstable circular orbit of the Schwarzschild black hole [22].
Circular orbits takes a special place in the studies of geodesics. The null circular orbit
is the boundary between two qualitatively different regions. An interesting paper on
null circular orbits of a hairy black hole is given by Hod [24].

The radius of the circular orbit rc in Eq. (30) is independent of E and L . However,
they are related to each other from Eq. (27) as,

E2
c

L2
c

= g(rc)

r2
c

= (rc − 2M − cr2
c )

r3
c

= 1

D2
c

(31)

Here, Dc is the impact parameter at the critical stage. When c → 0, D2
c → 27M2

which is the impact parameter for the unstable circular orbits of the Schwarzschild
black hole [22].
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Fig. 7 The graph shows the relation of Tτ with the mass M . The dark curve is for Tτ,quintessence and the
dashed curve is for Tτ,Sch. Here, c = 0.05 and L = 1

5.2.1 The time period

The time period for the circular orbits for proper time (τ ) as well as coordinate time
(t) can be calculated with φ = 2π . From Eq. (14),

Tτ = 2πr2
c

L
(32)

The values Tτ for the Schwarzschild black hole is given by,

Tτ,Sh = 2π(3M)2

L
(33)

Since the radius rc is smaller for the Schwarzschild black hole, obviously Tτ is smaller
for the Schwarzschild black hole.

From combining the two equations Eqs. (13) and (31),

Tt = 2πrc√
f (rc)

= 2πr3/2
c√

rc − 2M − cr2
c

(34)

The value for Tt for the Schwarzschild black hole is given by,

Tt,Sh = 3
√

3M (35)

The graphs for the time periods are given in Figs. 7 and 8. By observing the graphs
of the time periods, it is clear that the periods for the Schwarzschild black hole is
smaller in comparison with the quintessence black hole. In a recent paper, Hod made
an interesting observation that the null circular geodesics provide the shortest possible
orbital period to circle a black hole [25].
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Fig. 8 The graph shows the relation of Tt with M . The dark curve is for Tt,quintessence and the dashed
curve is for Tt,Sch. Here c = 0.01 and L = 1
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Fig. 9 The graph shows the Lyapunov exponent λ as a function of c. Here, M = 1

5.2.2 Lyapunov exponent for the unstable circular orbits

The instability time-scale of the unstable circular null geodesics is given by the Lyapu-
nov exponent λ. The expression for λ was derived by Cardoso et al. [26] as (Fig. 9),

λ =
√

−V ′′
eff(rc)

2ṫ(rc)2 =
√

−V ′′
eff(rc)r2

c g(rc)

2L2

=
√

−c2 − 24M2

r4 + 18M

r3 − 3

r2 − 14cM

r2 + 4c

r
(36)

The instability of the circular orbits are more for the Schwarzschild black hole in
comparison with the black hole with a non-zero c. In the paper by Cardoso et.al [26],
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a critical exponent for instability of orbits were defined as,

γ = Tλ

Tτ

(37)

Here, Tλ is the instability time scale which is related to the Lyapunov exponent as
Tλ = 1/λ. Hence for large c values, λ becomes smaller for the same critical exponent.

5.3 Force on the photons

Since we have already computed the effective potential, one can obtain the effective
force on the photon as,

F = −1

2

dVeff

dr
= −3M L2

r4 + L2

r3 − cL2

2r2 (38)

Here, we have divided dVeff
dr by 2 since the equation of motion is written as ṙ2 + Veff =

E2. The first term, which is the Newtonian term, is attractive since it is negative. The
second term is repulsive. The third term which is the force due to the quintessence
matter, is attractive. It is interesting to notice that even though dark energy in cosmol-
ogy is associated with a repulsive force to facilitate acceleration, in this situation, the
dark energy term is attractive. This is a result due to the fact that we are studying a
static configuration between the two horizons.

From Fig. 10, the force F = 0 at,

r± = 1

c

(
1 ± √

1 − 6cM
)

(39)

One can see from the graph that rout < 1
c

(
1 + √

1 − 6cM
)
. Since we are only con-

cern about the motion for r < rout, one can conclude that the force is positive for
rc < r < rout which leads to a repulsive force. On the other hand, for r < rc, the force
is negative leading to an attractive force.

The maximum repulsive force occur at r = rmax where,

rmax = 3

2c

(
1 −

√
1 − 16cM

3

)
(40)

6 Analysis of the geodesics with the variable u = 1
r

Geodesics equation of motion can also be studied using a well known change of
variable u = 1

r . Then the Eq. (17) becomes,

(
du

dφ

)2

= f (u) (41)
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Fig. 10 The graphs shows the relation of F with r . Here M = 0.5, c = 0.1 and L = 2

where,

f (u) = 2Mu3 − u2 + cu + E2

L2 (42)

It is clear that the geometry of the geodesics depends on the nature of the roots of the
equation f (u) = 0. Note that for any value of the parameters in the theory M, c, L , E ,
the function f (u) → −∞ for u → −∞ and f (u) → +∞ for u → +∞. Also, for
u = 0, f (u) = + E2

L2 . Therefore, f (u) definitely has one negative real root (u1). Let
us name the roots of f (u) as u1, u2 and u3. The sum and the products of the roots
u1, u2 and u3 of the polynomial f (u) are related to the coefficients of f (u) as [27],

u1 + u2 + u3 = 1

2M
(43)

u1u2u3 = − E2

2M L2 (44)

As discussed earlier, u1 is real and negative. Therefore, the roots u2, u3 has to be
positive if they are real. This conclusion comes from observing the signs of the Eqs. (43)
and (44). Overall, the polynomial f (u) has a negative (u1) real root always. The other
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Fig. 11 The graph shows the function f (u) for M = 0.5, c = 0.01, L = 30 and E = 9

two roots (u2, u3) will be either real or complex-conjugate. If they are real, then they
will be positive. Also, if they are real, they could be degenerate roots as well.

The function f (u) for general values of M, c, E and L is given in Fig. 11.

6.1 General solution for the geodesics in terms of u

From Eq. (40) derived above,

(
du

dφ

)
= ±√

f (u) (45)

where f (u) can be written as,

f (u) = 2M(u − u1)(u − u2)(u − u3) (46)

The “+” sign will be chosen without lose of generality. One can integrate the equa-
tion, du√

f (u)
= dφ to get a relation between u and φ in terms of Jacobi-elliptic integral

F(ξ, y) as,

φ = −2F(ξ, y)√
2m(u2 − u1)

+ constant (47)

Here,

sin ξ =
√

(u2 − u1)

(u − u1)
(48)

y = (u3 − u1)

(u2 − u1)
(49)
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Fig. 12 The function f (u) when it has degenerate roots leading to circular orbits. The shaded area repre-
sents the possible regions of motion. Here, M = 0.5, c = 0.01 and rc = 1.51142

Depending on the values of the E, L , c, M , the integration constant would be real or
imaginary. Also, u1 is always real while the nature of u2 and u3 depend on the values
of E, L , c, M .

6.2 Circular orbits

We will analyze in more ddetail the circular orbits here. In this case, the function f (u)

has a degenerate root at u = uc. Hence, f (u) can be written as,

f (u) = 2M(u − uc)
2(u − u1) (50)

Here, uc = 1
rc

, where rc is given by Eq. (30). From Eq. (42),

u1 = 1

2M
− 2uc (51)

A null geodesic arriving from r = rs > rc ( or u = us < uc) undergo unstable circular
orbits at r = rc ( or u = uc). The form of the function f (u) in this case is given in
Fig. 12.

One can integrate the equation, du√
f (u)

= dφ to get a relation between u and φ as,

u = u1 + (uc − u1)tanh2
(

φ − φ0

a0

)
(52)
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rcrc r rin

Fig. 13 The polar plot shows the critical null geodesics approaching the black hole from rs > rc . The
geodesics have an unstable circular orbit at r = rc . Here, M = 0.5, c = 0.01 and rc = 1.51142

φ0 and a0 are given by,

φ0 = a0tanh−1
(√

u1 − us

u1 − uc

)
(53)

a0 = −
√

2

M(uc − u1)
(54)

In Fig. 13, the polar plot of the null geodesics are given for photons arriving from
rs > rc and having an unstable circular orbit at r = rc.

6.3 Unbounded orbits

Case 2 : E = E2
Here, we will study Case 2 given in the Sect. 5.1. In this case, f (u) = 0 has three

real roots. Therefore, the motion is possible in two regions given as 1 and 2 in Fig. 14.
If the particle starts far from the black hole at r = rs , it will fall until r = r2 = 1/u2

and fly away from the black hole. The equation of motion is the same as given in
Eq. (46). The integration constant is chosen such that φ = 0 for r = rs . The corre-
sponding motion is given in Fig. 15.

The second possibility for E = E2 corresponds to the motion starting from r = r3
(or u = u3 ). Here, r3 < rc. Hence the particle will fall into the singularity crossing the
horizon at r = rin. In this case, the solutions for φ is similar as in Eq. (47). Therefore,
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Fig. 14 The graph shows the function f (u) when it has three real roots. Here M = 0.5, c = 0.01, L = 30
and E = 9
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Fig. 15 The polar plot shows the null geodesics approaching the black hole from r = rs . Here, M =
1, c = 0.01, L = 30, E = 9, rs = 15 and r2 = 2.54082. The inner horizon is at rin = 1.01021

we will omit the explicit expressions for the φ in this case. The integration constant is
chosen such that φ = 0 when u = u3. The corresponding motion is given in Fig. 16.

Case 3 : E = E1
Here, we will study the Case 3 given in the Sect. 5.1. In this case, f (u) = 0 has

only one real root as given in Fig. 17.
The motion is possible in the shaded area. For all values of r , the photons will fall

into the black hole. The equation of motion is same as in Eq. (47). However, in this
case, u2 and u3 are both imaginary and u1 is real. The corresponding motion is given
in Fig. 18.

7 Application of null geodesics: gravitational lensing by the quintessence
black hole

Bending of light and gravitational lensing is an important aspect one can study related
to null geodesics around black holes. The unbounded orbit with energy E = E2
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Fig. 16 The polar plot shows the null geodesics falling into the black hole from r = r3. Here, M = 1, c =
0.01, L = 30, E = 11, r3 = 1.34587 and rin = 1.01021

u

f
u

u1 0

Fig. 17 The graph shows the function f (u) when it has only one real root. Here, M = 0.5, c = 0.01, L =
21, E = 9 and u1 = −0.363391

studied in Sect. 6.3 clearly represents how photons deviate from its original path when
moving around a black hole. The motion is given in Fig. 15.

7.1 Closest approach ro

To study the bending of light, let us first calculate the closest approach distance ro

for the photon with energy E2. It is defined by the value of r when dr
dφ

= 0. From
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Fig. 18 The polar plot shows the null geodesics approaching the black hole from r = 15. Here, M =
0.5, c = 0.01, L = 21 and E = 9

Eqs. (41) and (42),

(
1

r2

dr

dφ

)2

= f (r) = 2M

r3 − 1

r2 + c

r
+ E2

L2 (55)

dr
dφ

= 0 corresponds to the roots of f (r) = 0 which also could be written as,

r3 + D2cr2 − D2r + 2M D2 = 0 (56)

From Fig. 13, the roots of the above equation corresponds to r1, r2, r3 which are the
inverse of u1, u2, u3. Since r1 < 0, the roots to be considered are r2 or r3. From Fig. 5,
r2 and r3 are the positions where E2 = Veff . Clearly, r3 < r2 (since u3 > u2). Also,
r3 < rc < r2. Hence, the root we will choose for the closest approach is r2.

Now, one can use the well known techniques in determining the roots of a cubic
polynomial to obtain r0 from Eq. (55) as,

rquintessence
o = 2

√
− p

3
cos

(
1

3
cos−1

(
3q

2p

√
− 3

p

))
− D2c

3
(57)
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Fig. 19 The graph shows the closest approach ro for the quintessence black hole (dark curve) and the
Schwarzschild black hole (dashed curve) as a function of the impact parameter D. Here, M = 1 and
c = 0.05. Dc = 6.8956 for the quintessence black hole and Dc = 5.19615 for the Schwarzschild black
hole

Here, p and q are given by,

p = − (D4c2 + 3D2)

3
(58)

q = 54M D2 + 9cD4 + 2D6c3

27
(59)

When c → 0, ro approaches the well known value for the Schwarzschild black hole
given by [28],

rSch
o = 2D√

3
cos

(
1

3
cos−1

(
−√

27M

D

))
(60)

Figure 19 shows the closest approach for the quintessence black hole and the Schwarzs-
child black hole.

7.2 Bending angle

Now, we will compute the angle of deflection of light for the quintessence black hole.
In a paper by Amore et.al. [29], a new method was introduced to compute the deflec-
tion angle for a static spherically symmetric space-time. This method yields highly
accurate analytical results. In the paper, they applied the technique to well known
metrics. One of them was the metric in Weyl gravity [30,31]. In Weyl gravity, the
metric is given by,

ds2 = −g(r)dt2 + g(r)−1dr2 + r2(dθ2 + sin2 θdφ2) (61)

g(r) = 1 − 2β

r
+ γ r − kr2 (62)
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Fig. 20 The graph shows the bending angle α for the quintessence black hole (dark curve) and the Schwarzs-
child black hole (dashed curve) as a function of the impact parameter D. Here, M = 1 and c = 0.05.
Dc = 6.8956 for the quintessence black hole and Dc = 5.19615 for the Schwarzschild black hole

Even though the context in which the Weyl gravity and the quintessence black hole
are formulated are different, one can see that for k = 0 and γ = −c, the Weyl grav-
ity geometry and the quintessence black hole geometry is the same!. Therefore, the
bending angle obtained by Amore et.al [29] for the Weyl gravity can be modified to
obtain the angle for the quintessence black hole as,

αquintessence = 4M

ro
+ 4M2

r2
o

(
15π

16
− 1

)

+c

(
ro − M + 3π M

2

)
+ c2 r2

o

2
(63)

Note that here, ro is the one given in Eq. (56) for the quintessence black hole.
When c → 0, one obtain the well known bending angle for the Schwarzschild

black hole, as,

αSch = 4M

ro
+ 4M2

r2
o

(
15π

16
− 1

)
(64)

Here, ro corresponds to the one given in Eq. (60). We will substitute the respective
expressions for r0 in terms of the impact parameter D for both black holes and plot
the deflection angle as a function of the impact parameter D.

From Fig. 20, the photons with the same impact parameter bends more around the
quintessence black hole for small D and less for large D. We like to mention here that
Liu et.al [32] did studied the gravitational frequency shift and deflection of light for the
black holes surrounded by the quintessence for various values of the state parameter
ωq . There, the function u was computed as a first order approximation where as here
the exact solution is used.
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8 Conclusion

We have studied the null geodesics of a black hole surrounded by dark energy. Here,
we have chosen quintessence as the candidate for dark energy and the black hole
solution studied was derived by Kiselev [15]. The equations for the geodesics were
solved exactly for various values of energy and angular momentum of the photons.
All possible motions are presented. The circular orbits are studied in detail and are
shown to be unstable. We have also computed the Lyapunov exponent λ which gives
the instability time scale for the unstable geodesics. It is shown that λ is smaller for
the dark energy black hole in comparison with the λ for the unstable circular orbits
for the Schwarzschild black hole.

As an application of the photon motion studied here, we have studied the light
deflection for this particular black hole and have done comparisons with the Schwarzs-
child black hole. The photons with the same impact parameter bends more around the
quintessence black hole for small D and less for large D.

As an extension of this work, one could study the motion of particles around the
charged version of the quintessence black hole.
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