Gen Relativ Gravit (2012) 44:1587-1609
DOI 10.1007/s10714-012-1353-4

GOLDEN OLDIE

Republication of:
The geometry of free fall and light propagation

Jiirgen Ehlers - Felix A. E. Pirani - Alfred Schild

Published online: 14 April 2012
© Springer Science+Business Media, LLC 2012

An editorial note to this paper can be found in this issue preceding this Golden Oldie and online via
doi:10.1007/s10714-012-1352-5.

Original paper: J. Ehlers, F. A. E. Pirani and A. Schild, in: General Relativity, papers in honour of
J. L. Synge. Edited by L. O’Reifeartaigh. Oxford, Clarendon Press 1972, pp. 63—84. Reprinted with the
kind permissions of Felix A. E. Pirani, of the Oxford University Press and of the Royal Irish Academy.

Editorial responsibility: A. Krasinski, e-mail: akr@camk.edu.pl.

J. Ehlers (Deceased May 20, 2008)
Potsdam, Germany

F. A. E. Pirani (<)
22 Siddons Buildings, 39 Tavistock Street, London WC2E 7NT, UK

e-mail: felixpirani @ gmail.com

A. Schild (Deceased May 24, 1977)
Austin, TX, USA

@ Springer


http://dx.doi.org/10.1007/s10714-012-1352-5

1588 J. Ehlers et al.

4

THE GEOMETRY OF FREE FALL AND
LIGHT PROPAGATION

J. EHLERS, F. A. E. PIRANI, and A. SCHILD

1. Introduction and description of results

IN both the special and the general theory of relativity, as well as in similar
differential-geometrical theories of space-time, one may distinguish several
local geometrical structures assigned to the space-time manifold M: the
topological, differential, conformal, projective, affine, and metric structures.
In making these distinctions, we follow essentially H. Weyl™ with some
modifications explained later.

Postponing more precise definitions of the different structures to later
sections; we recall that a conformal structure (of normal-hyperbolic or
Lorentzian typef) consists of a field of infinitesimal null cones defined all
over M a projective structure consists of a family of curves, called geodesics,
whose members behave in the second-order infinitesimal neighbourhood of
each point of M like the straight lines of an ordinary projective four-space;
an affine structure differs from a projective structure in that the preferred
curves carry preferred affine parameters (defined up to linear transformations)
such that, infinitesimally, there is an affine geometry around each point of
M and a metric assigns to any pair of adjacent points of M a number called
its separation.

Equivalently, we may list the fundamental operations generating these
structures infinitesimally. In the conformal case, it is the construction of the
hyperplane element orthogonal to a given line element—the null elements
being those contained in their orthocomplements. In the projective case, it is
the parallel displacement of a direction D from a point p to an adjacent
point ¢ which lies in that same direction D relative to p—the preferred
autoparallel lines / being those whose tangent elements are parallel along /.
In the affine case, it is the usual Levi-Civita parallel displacement of an

1 In this paper, we shall assume throughout that dim M = 4 and that the signature is
(+++—). However, many statements can be modified so as to hold without these
physically motivated restrictions.

1 We shall use the term ‘curve’ for what is called a ‘one-dimensional submanifold’ in
current differential-geometric literature. Thus, for us, a curve is not a map from an interval
of R into M, although it can locally be obtained as the range of many such maps.
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arbitrary vector from a point to any adjacent point—equidistant points (with
respect to an affine parameter) on a geodesic being such that their connection
vectors are parallel. Finally, in the metric case, it is the construction of all
line elements at a point ¢ that are congruent to a given line element at some
other point p. All these structures are assumed to be smooth with respect to
the differential topology, which also enters basically into the infinitesimal
operations. '

In the Riemannian space-times of special and general relativity, all these
structures are present, and they are intimately related to each other.

From the physical as well as from the geometrical point of view, one may
ask which of these structures should be considered as basic and which as
derived. Excluding, for well-known reasons, rigid rulers as primitive physical
concepts, we may follow Synge™ in accepting as basic the concepts particle
and (standard) clock, and introduce the metric as the fundamental structure,
postulating that whenever x, x+dx are two nearby events contained in the
world line, or history, of a clock then the separation associated with (x,
x+dx) equals the time interval as measured by that (and any other suitably
scaled) clock. This procedure has two advantages. First, it uses as primitive a
physical quantity that can, in fact, be measured locally and with extreme
precision, and, secondly, it introduces as the primary geometric structure
the metric, from which all the other structures can be obtained in a straight-
forward manner.

If the aim is a deduction of the theory from a few axioms, the chronometric
approach is indeed very economical. If, however, one wishes to give a construc-
tive set of axioms for relativistic space-time geometries, which is to exhibit
as clearly as possible the physical reasons for adopting a particular structure
and which indicates alternatives, then the chronometric approach does not
seem to be particularly suitable, for the following three reasons. It seems
difficult to derive firom the behaviour of clocks alone, without the use of
light signals, the Riemannian form for the separation,

ds = |g;;dxdx7|/2, 0))

rather than some other, first-degree homogeneous, functional form in the
dx* (as, for instance, the Newtonian form ds = g,dx?). Postulating this form
axiomatically, one foregoes the possibility of understanding the reason for its
validity. The second difficulty is that if the g;; are defined by means of the
chronometric hypothesis, it seems not at all compelling—if we disregard
our knowledge of the full theory and try to construct it from scratch—that
these chronometric coefficients should determine the behaviour of freely
falling particles and light rays, too. Thus the geodesic hypotheses, which
are introduced as additional axioms in the chronometric approach, are hardly
intelligible; they fall from heaven like eqn (1). Finally, once the geodesic
hypotheses have been accepted, it is possible, in the theories of both special and
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general relativity, to construct clocks by means of freely falling particles and
light rays, as shown by Marzke®’ and, differently, by Kundt and Hoffmann.!
Thus, these hypotheses alone already imply a physical interpretation of the
metric in terms of time. The chronometric axiom then appears either as
redundant or, if the term ‘clock’ is interpreted as ‘atomic clock’, as a link
between macroscopic gravitation theory and atomic physics: it claims the
equality of gravitational and atomic time. It may be better to test this
equality experimentally} or to derive it eventually from a theory that em-
braces both grawtatlonal and atomic phenomena, rather than to postulate
it as an axiom.

For these reasons, we reject clocks as basic tools for setting up the space-
time geometry® and propose to use light rays and freely falling particles
instead. We wish to show how the full space-time geometry can be synthesized
from a few assumptions about light propagation and free fall.

Our method has some similarity to Helmholtz’s derivation of the
metrics of spaces of constant curvature. According to Helmholtz!” and
Lie,®! the existence and form of these metrics can be deduced from the
qualitative assumption of the free mobility of rigid bodies. Similarly, we
attempt to derive the conformal, projective, affine, and metric structures of
space-time from some qualitative (incidence and differential-topological)
properties of the phenomena of light propagation and free fall that are
strongly suggested by experience. Not only the measurement of length but
also that of time then appears as a derived operation. All our axioms, which
will be stated in the second part of this paper, are local; we shall not need to
impose any global restrictions on space-time.

Our line of reasoning is illustrated in Fig. 1 and, in summary, is as follows:

(a) The propagation of light determines at each point of space-time the
infinitesimal null cone and thus gives it a conformal structure €. With
respect to this, one can distinguish between time-like, space-like, and null
directions, vectors, and curves, respectively, and one can single out as null
geodesics those null curves contained in a null hypersurface™ (see upper
right-hand portion of Fig. 1). These null geodesics will be shown to represent
light rays.

(b) The motions of freely falling particles determine a family of preferred
%-time-like curves, and by assuming this family to satisfy a generalized law
of inertia, we show that free fall defines a projective structure 2 in space-time
such that the world lines of freely falling particles are the @-time-like geodesics
of Z.

() The conformal and projective structures thus defined are intimately
related, as experience indicates: an ordinary particle (i.e. one with positive

1 In recent observational tests of gravitation theories by radar tracking of planetary
orbits, atomic time has indeed been used only as an ordering parameter whose relation
to gravitational time was to be determined from the observations.
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FiG. 1. General scheme of conformal, projective, Weyl, and Riemannian structures.

66 @ Springer



1592 J. Ehlers et al.

rest mass), though always slower than light, can be made to chase a photon
arbitrarily closely. From this we shall deduce that the conformal and pro-
jective structures of space-time are compatible, in the sense that every
#-null geodesic is also a #-geodesic. We call a manifold M endowed with a
compatible pair of %, & structures a Weyl space.

A Weyl space (M, €, Z) possesses a unique affine structure < such that
</ -geodesics coincide with &-geodesics and %-nullity of vectors is preserved
under .«7-parallel displacement. Conversely, the existence of such an .« for a
pair (%, &) implies that % and & determine a Weyl structure. In view of this

W

(a) (b)
FIG. 2. (a) Parallel transport, (b) length, and (c) affine parameter in a Weyl space.

(a) 0 = constant, —IV—| = constant;

7]

constant, V||V, |T| = | V] at p and g;

ds

®)
vl
(©) dxgl||dx,, duy = du,.

theorem, one may say that light propagation and free fall define a Weyl
structure on space-time; we symbolize the latter by (M, %, 7).

(d) In a Weyl space, one can define an arc length (unique to within linear
transformations) along any non-null curve (i.e. a curve whose tangent is
nowhere null) & by requiring that the corresponding tangent vector T’ be
congruent, at each point of k, to a non-null vector ¥ which is parallelly
displaced along & (congruence of vectors at a point is, of course, well
defined in a conformal space!®’). Intuitively, this means that two infinitesimal
line elements of k, ds, and ds,, situated at p and g respectively, are con-
sidered as congruent on k if the infinitesimal connection vector belonging
to ds, arises from that associated with ds, by parallel transport from p
and g, followed by a rotation (or pseudorotation) at ¢ (see Fig. 2). Applying
this to the time-like world line of a particle P (not necessarily freely falling),
one obtains a proper time (= arc length) ¢ on P, provided two events on
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P have been selected as zero point and unit point of time. The (idealized)
Kundt-Hoffmann experiment™’ to measure proper time along a time-like
world line in Riemannian space-time by means of light signals and freely
falling particles can be used without change to measure proper time ¢ in a
Weyl space-time.

The preceding considerations contain the basis of our construction of
space-time geometry. Whereas the ideas that light propagation determines a
conformal structure ¢ and free fall defines a projective structure & on
space-time have been clearly spelled out by Weyl, %! neither he himself nor
anybody else, as far as we know, has used these two structures and their
compatibility as fundamental, and derived the existence and uniqueness of an
affine connection from these data. Rather, although Weyl emphasized
repeatedly the fundamental roles of the structures ¢ and & from a physical
point of view, in geometry he took the affine and metric structures as basic
and considered the projective and conformal structures as arising from
these by abstraction only, although also geometrically % and & are the more
primitive (less restrictive) structures. It seems remarkable that, as we have
shown, the analysis of light propagation and free fall leads quite naturally
to a Weyl geometry.} ,

Our construction also establishes the feasibility of Trautman’s formulation
of the principle of equivalence.®*!! According to this author, the principle
states first that the motions of freely falling particles endow space-time
with an affine connection and, secondly, that all local physical processes lead
to essentially the same connection. In arguing for the first part, which is the
only one with which we are concerned here, one should recognize the fact
that the free-fall trajectories determine directly (at best) a projective and notan
affine structure. Since, however, the totality of free-fall trajectories passing
through an event determines the light cone as its boundary, our reasoning
shows that the first assertion is, in fact, true; one might even substitute “Weyl
structure * for ‘affine connection’ in that assertion. The subtle point is that to
obtain the affine connection one has to make use of both the projective and the
conformal structure. This is even true in the case of special relativity, if one

t In Weyl’s deep, group-theoretical analysis of the uniqueness of the Pythagorean metric
(quadratic fundamental form), he took as basic operations the congruent mappings of a
tangent space onto itself and the translation of a tangent space into that of a neighbouring
point.®1 These operations seem empirically less immediately accessible than the construction
of a null cone (which is equivalent to emission of a flash of light) and the drawing of a time-
like geodesic (which is equivalent to ejection of a freely falling particle).

1 Our definition of a Weyl geometry in terms of % and £ or, equivalently, ¢ and «7,
seems to be preferable to Weyl’s own description since it uses only unique, intrinsic struc-
tures of that geometry. Weyl’s linear fundamental form arises only if one chooses arbitrarily
a Riemannian metric .# compatible with % and forms the difference tensor of the (intrinsic)
Weyl connection < and the (arbitrary, non-intrinsic) Riemannian connection of .#. The
contraction of the difference tensor is twice the Weyl linear fundamental form. Gauge
transformations do not occur in our intrinsic formulation.
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wants to work with local properties only, as Weyl™! pointed out long ago.
In Newtonian space-time the role of the conformal structure is played by
the absolute time."*!

(e) Itis now a straightforward matter to formulate additional assumptions
that are necessary and sufficient in order that a Weyl space (M, %, «7) be a
Riemann space, in the sense that there exists a Riemannian metric .# com-
patible with % (i.e., having the same null cones) and having 7 as its metric
connection. The Riemannian metric is then necessarily unique, up to a
constant positive factor. To obtain such conditions, we make use of the fact
that o7 determines a curvature tensor R. Using the equation of geodesic
deviation, we show that (M, ¥, .2/) is Riemannian if and only if the proper
times #, " on two arbitrary, infinitesimally close, freely falling particles
P, P’ are linearly related (to first order in the distance) by Einstein-simul-
taneity; i.e. if and only if whenever p;, p,, . . . is an equidistant sequence of
events on P (ticking of a clock) and g, o, . . . is the sequence of events on
P’ that are Einstein-simultaneous with py, p,, . . . respectively, then gy, go, . .
is (approximately) an equidistant sequence on P’ (see Fig. 1). Equivalently,
we consider parallel transport of a vector ¥, from a point p to a point ¢
along two different curves P, P’. The resulting vectors, at g, V,, and V,, will
be different, in general (see Fig. 1). If and only if V, and V; are congruent
for all such figures, the Weyl geometry considered is, in fact, Riemannian.
Taking P, P’ as world lines of (not necessarily freely falling) particles, one can
easily see that the Riemannian property means that whenever two standard
clocks (as determined above) associated with P, P’ have equal rates at p,
then they also have equal rates at g. Both criteria given can, in principle, be
tested experimentally. If one adopts either of them one obtains the full space—
time structure of general relativity.

In any case, one may consider R as the (intrinsic) gravitational field and
devise methods for measuring it, as in the Riemannian case. It is also easy
to add a physically meaningful axiom that singles out the space-time of
special relativity, either by requiring homogeneity and isotropy of M with
respect to (%, 27), or by postulating vanishing relative accelerations between
arbitrary, neighbouring, freely falling particles.

It should be clear now that the difficulties inherent in the chronometric
approach and listed on pp. 64, 65 are absent from the test-particle approach
presented here, and that the latter approach offers a deeper understanding of
the space-time geometry than the former. In particular, it seems worth
emphasizing that those properties of the ‘haystack’ of particle trajectories
that single out the Riemannian from among the more general Weyl space—
times are distinctly more complicated than those that lead to the latter ones.

In the remainder of this paper, we shall state our axioms and outline the
proofs of the assertions that have been stated above. A fully rigorous form-
alization has not yet been achieved, but we nevertheless hope that the main
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line of reasoning will be intelligible and convincing to the sympathetic reader.
Further details, in particular geometrical constructions and a geometrical
characterization of the projective curvature tensor, will be published elsewhere.

2. Axioms and proofs

We begin by assuming a set M = {p, g, . . .} of elements called events, and
two collections & ={L, N, ...}, Z ={P, O, ...} of subsets of M, the members
of which are called /ight rays L, . . . and particles P, . . . respectively. (From
now on we shall use ‘particle’ instead of ‘world line of a freely falling particle’,
for brevity.) Both light rays and particles are to be understood in a classical
sense; light rays are small, identifiable wave packets or parts of wave trains
such as are used, for example, in radar-echo observations, and particles
might be artificial satellites, billiard balls, or some such bodies whose exten-
sion and structure can, under suitable circumstances, be neglected.

We now discuss in turn how various structures can be introduced on M
by means of % and &, provided the latter satisfy certain axioms suggested by
experience. The (idealized) processes involving particles and light rays are
supposed to take place in an otherwise empty region of space-time.

Differential topology

We sketch first how one might introduce a differential topology on M by
means of & and Z. The reason that we do not take this structure for granted
is that differentiability plays a crucial role in our introduction of the null
cones (pp. 72-6) and in the infinitesimal version of the law of free fall (p. 77).
(It should be realized that the representation of light in special relativity by
means of ordinary cones rather than by hypersurfaces of hour-glass shape
as in Fig. 3 depends partly on a particular choice of differential structure.)
The assumptions introduced below are minimal requirements.

We accept in accordance with Axiom L, (p. 72) that there are ‘figures’ in
M of the type shown in Fig. 4; i.e., a light signal L is emitted from a particle
P at p towards another particle Q where it is reflected at ¢ and arrives back
on P at p'. If p varies on P, then so does p'; the map e : p — p' will be called
an echo on P from Q. Similarly, let the map m : p — g be called a message
from P to Q.

Axiom D,. Every particle is a smooth,t one-dimensional manifold; for any
pair P, Q of particles, any echo on P from Q is smooth and smoothly invertible.

AXIOM D,. Any message from a particle P to another particle Q is smooth.

Axiom D, characterizes the differential structure of one particle P; any
permissible local coordinate # on P may be thought of as the time shown by
a (non-metric, possibly irregular) clock associated with P. Axiom D, asserts
that the ‘times’ on different particles are smoothly related by light signals.

Let P and P’ be two particles, e an event; in accordance with Axiom L,

t C® seems sufficient for our purposes.
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1596 J. Ehlers et al.

(p- 72), let e be connected with P by two light rays, and similarly with P’
(see Fig. 5). With respect to local coordinates on P and P’, e determines
four numbers, u, v, ', v'. If e varies, we obtain a map xpp. : ¢ — (u, v, u', v')
from M to #*. Making use of such maps, which one might call radar co-
ordinate systems, we further assume

FiG. 3. Deformed light ‘cone’. FiG. 4. Echo and message.

F1G. 5. Radar coordinates.

AXIOM Dg. There exists a collection of triplets (U, P, P") where U < M,P,
P' € P such that the system of maps xpp|y is a smooth ailas for M.} Every
other map xqq- is smoothly related to the local coordinate systems of that atlas.

With this axiom (which is a theorem in Minkowski space-time), we have
endowed M with a differential topology; henceforth, A will denote the
ensuing smooth manifold.

T C® seems sufficient for our purposes.
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It follows immediately from our axioms that every particle is a smooth
curve in M.

Let M, denote the tangent (vector) space of M at p; according to Axiom
D, dim M = dim M, = 4. We shall write D, for the projective.three-space
canonically associated with M,; its elements are called directions at p.
Using these notions, we finally require, again referring to processes as illu-
strated in Fig. 4,

AXIoM Dy. Every light ray is a smooth curve in M. If m : p — q is a message
from P to Q, then the initial direction of L at p depends smoothly on p along P.

Light propagation and conformal structure

Experience indicates with high accuracy'®! that light emitted from a source §
between two events a and b on S’s history reaches a detector D between events
c and d that are arbitrarily close to each other, provided a and b are sufficiently
close and there is no matter between S and D. Moreover, the reception event
¢ depends on « only and not on the motion of S or on any characteristics
of the light pulse (spectrum, polarization, intensity). We therefore lay down
the following axiom:

AxioMm L,. Any event e has a neighbourhood V such that each event p in V.
can be connected within V to a particle P by at most two light rays. Moreover,
given such a neighbourhood and a particle P though e, there is another neigh-
bourhood U < V such that any event p in U can, in fact, be connected with P
within V by precisely two light rays Ly, L,, and these intersect P in two distinct
events ey, e, if p ¢ P. If t is a coordinate on P 0V with t(e) = 0, then
g1 p— —t(e)t(ey) is a function of class C* on U. (See Fig. 6.)

We need an additional axiom to restrict further the set of all light rays
passing through an event. Considering again a situation as illustrated in
Fig. 6, we wish to characterize the configuration that is generated in the
vicinity of p if p is kept fixed, but P and with it L, and L, are moved around
arbitrarily in a neighbourhood of p. We require, using the concepts introduced
before Axiom Dy,

AxioMm Ly. The set L, of light-directions at an (arbitrary) event e separates
D,—L, into two connected components. In M, the set of all non-vanishing
vectors that are tangent to light rays consisis of two connected components.

This axiom is intended to express the separation of non-light-like directions
into time-like ones and space-like ones and the possibility of distinguishing
between ‘future’ and ‘past’ light vectors. (Only the distinction between two
classes matters; we do not introduce any intrinsic difference between future
and past here.)

Let us consider some properties of the function g introduced in axiom
L, for given P, e, and ¢. By definition, g(p) = 0 (for p € U) if and only if
p lies on a light ray through e. If it were true that g,,(¢) # 0, then the equation
g(p) = 0 would define, near e, a smooth hypersurface through e that would
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1598 J. Ehlers et al.

contain all light rays through e. Since this contradicts the second part of
axiom L,, we conclude that g .(e) = 0. This last property of g implies that
gar' = g.ap(e) defines a tensor at e.
If we differentiate twice the equation g{x“(s)} = O that holds for any
light ray L = {x°(s)} through e and evaluate the result at e, we obtain
LemMA 1. The tangent vector T at e of any light ray L through e satisfies

g T°T? = 0. @)

FIG. 6. Illustration of Axiom L;.

If x°(¢) is the parameter representation of P in any permissible coordinate
system (see p. 71), then g{x“(t)} = —1?; hence, g,K°K® = —2, K being
the tangent vector of P at e with respect to ¢. Thus,

gab # 0 (3)

According to Lemma 1 and inequality (3), L. is contained in the quadric
O defined in D, by eqn (2). Axiom L, now picks out that or those quadrics
@ which contain a subset L, with the topological properties formulated
in that axiom. Testing one by one the possible quadrics in projective three-
space, one readily finds**! that the quadratic form g,,£°&® is non-degenerate
and normal hyperbolic, and L, = Q. (The last assertion derives from
the fact that no proper subset of any quadric has the required topological
properties.) Consequently, eqn (2) characterizes the set of all vectors at
e that are tangent to light rays. This statement shows that although the
tensor go, has been constructed by means of a particular particle P and
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parameter £ on P it is, except for a non-vanishing factor, an intrinsic object of
the light geometry. In order to characterize it relatively to any coordinate
system by a unique system of numbers, we choose the signature of the
quadratic form in eqn (2) to be (+++—) always, and we normalize the
common factor in the g,, so that

det (ga) = —1; @)

we switched to the notation av to stress that g, then is a tensor density of
weight —1/2, not a tensor. This description of a conformal structure has
also been used by Bergmann."®! Having obtained g, we can and shall
henceforth distinguish between time-like, space-like, and null vectors, and
classify curves accordingly.

Relative to a coordinate system, one can find the numbers g, at e uniquely
by taking nine null vectors T, at e with linearly independent ‘squares’
T4 ® T —such a set {T,} exists under the assumptions made so far—and
then solving the system of linear equations

galiT; =0, )

using also the normalization conditions imposed on g,,. This remark is useful
for the following reason. If T is a null vector at e, we can draw a light ray L
through e with tangent vector T. By choosing a particle P through e and an-
other one, Q, through some event p € L (p # e),T one can construct a message
from P to Q of which L is an element. According to Axiom D, this construc-
tion can be used to obtain a set {T,} of null vectors at events p e P,
p near e, such that the function p — T, is smooth and T, = T, the vector
originally given at e. Doing this for each vector T 4 of the set used in eqn (5),
one obtains smooth null vector fields on P near e that uniquely determine the
ga at all events p on P near e, from eqn (5). That implies that the Fap a1€
smooth functions of p on P. Since this holds for any particle through e and,
as we shall see in the next section, the tangent vectors of particles generate
M., the gq, are smooth functions on M.

We have shown then that light propagation determines a conformal
structure € such that the null vectors are precisely the tangent vectors of
light rays, whence light rays are @-null curves. Next, we wish to show that
light rays are %-null geodesics. To prove that, let us again consider the
function g introduced in Axiom L,. We have shown already that, at e,
g =0 and g, = 0. Therefore, if ¢ is an event in U connected to e by a
light ray L with tangent vector T, we have

g.ug) = f ¢ (T,

T The possibility of doing so is implied by Axioms P; and P,. No circularity will result
from using it already here.
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where L = {x“(u)} and 7“ = dx°/du. Since T is a non-vanishing #-null
vector, we know that, at e, g, 7" % 0. Since, moreover, g ,,{x°(u)}T?(u)
can be considered as a continuous function of « and the initial direction of
L at e, and since these directions form a compact set, it follows from the
above formula that there exists a neighbourhood W of e such that if e # gew
and g(g) = 0, then g ,(9) # 0. This result implies (by the implicit-function
theorem) that if we denote by », the set of events contained in light rays
passing through e then this /ight cone is a smooth hypersurface near e,
except at e itself.

Consider now a neighbourhood of e in which the last statement about
v, holds, which is time-oriented, and which is a V-type neighbourhood as

Exterior

F1c. 7. Stacking of light cones.

postulated in Axiom L,; such a neighbourhood exists. Let »} denote the
future light cone of e, i.e. that part of », which is, at e, in contact with the
future -null cone, and let p be an event on v}, p # e, contained in the speci-
fied neighbourhood. Since v is generated by light rays, its tangent space at p
cannot be space-like. Suppose it were time-like. Then we should have the
situation illustrated in Fig. 7. The light cone »; would intersect, rather than
touch, »; at p. Hence, one could find a light ray (r, p, ¢) such that r is interior
to »,".7 Choosing r sufficiently close to p and anticipating Axiom P, (p. 77)
that the interior of »; is covered locally by particles passing through e,

1In a normal hyperbolic Riemannian manifold, the distinction between the interior
and exterior of the null cone V; of a point p can locally be defined by means of the sign
of the world function {X(p, g), for ¢ near p. This extends immediately to a conformal space.
Since v, is contained in the closure of the interior of N,—for any smooth null curve through
e is contained in that closure—the exterior of . in a neighbourhood U of e can be defined
as that part of U—v. which is connected with the exterior of N,.
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one could conclude that there would be a particle P through e and r which
could be connected to p by three light rays, two on »; and one on »;. (The
existence of the last one follows if Axiom L, is applied to a neighbourhood
of p not containing e.) This result contradicts the assumption that we are
working in a F-neighbourhood in the sense of Axiom L;. Hence »; cannot
be time-like near e; it must be a #-null hypersurface there. That, however,
implies that light rays are %-null geodesics, as we claimed, and that in turn
implies that », is identical with the %-null cone at e.

The results obtained so far could also be expressed by saying that space-
time has, in consequence of the Axioms D; to Dy, L;, Lo, a causal structure,
with an underlying C® manifold M and a C? conformal ‘metric’ g,,. One
may wonder whether this differential and causal structure is uniquely deter-
mined by these axioms, given the underlying sets M, 2, & of events, light
rays, and particles respectively. That is indeed the case, as R. P. Geroch
pointed out to us. It follows immediately if one applies locally to the identity
map M — M between two structures (M, Z, €), (M, 9, &), based on the
same (M, %, 2) (with 2, Z standing for differential structures), the following
theorem due to Hawking.“® If M, M are four-dimensional C® manifolds
with C? conformal structures €, € such that the strong-causality assumption
holds on M, and if ¢: M — M is a bijection such that ¢ and ¢~ preserve causal
relationships, then ¢ is a C® diffeomorphism. (The terms used are defined in
Hawking’s paper. Strong causality always holds locally, i.e. in sufficiently
small, open neighbourhoods, considered as manifolds in their own right.) -

Free fall and projective structure

A simple and empirically well-motivated assumption is the axiom that
follows. ‘

AxioM P;. Given an event e and a €-time-like direction D at e, then there
exists one and only one particle P passing through e with direction D.

Unfortunately, this requirement alone is far too weak to characterize the
‘inertial field’ of general relativity. Consider, for example, a fixed electro-
magnetic field F in Minkowski space-time, and take particles with a fixed
specific charge moving in that field according to Lorentz’s equation of
motion. The corresponding family of time-like world lines satisfies the law
stated above, but no affine connection exists for which these curves are the
geodesics. A great many similar examples can be constructed.

One would like to express the fact that there is one class of test particles
(neutral, spherically symmetrical ones) whose law of motion does not contain
any ‘non-geometrical’ fields (like F in the example mentioned above) that
would define preferred directions or field strengths at one event; any quantities
occurring in the expression of the sought-for equation of motion relative to
some coordinate system should be such that their components can be trans-
formed away at an event on going over to some new coordinate system. We
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formalize these somewhat vague, negative statements, which are based on the
so-called equality of inertial and (passive) gravitational mass, in the axiom
that follows.

AXIOM P,. For each event e M, there exists a coordinate system (%°),
defined in a neighbourhood of e and permitted by the differential structure
introduced in Axiom Dg, such that any particle P through e has a parameter
representation X°(it) with

dzxe
da?

= 0; ©)

such a coordinate system is said to be projective at e.

This axiom might be called an infinitesimal version of the law of inertia,
that takes into account the indistinguishability of gravitational and inertial
forces. It is similar to Weyl’s characterization of symmetric, affine connections
on a manifold.®*™

If eqn (6) is transformed to an arbitrary coordinate system (x*) and
arbitrary parameter  of the particle and a dot is used to denote differentiation
with respect to u, there results, at e,

o4 TIg 0% = A%, 10)

where 4 depends on the choice of #. We can and shall require
Mg =0, I3, = 0. @®)

For a given event e and coordinate system (x%) around e, the coefficients
ITg, are then wuniquely determined, for the difference A between two such
systems II, 1T would, in view of eqn (7) and Axiom Py, satisfy T'*A? ,T7°T¢ =0
for all time-like vectors T at e, and a simple algebraic argument shows that
this together with the relation A%, = Ag, = 0 implies that A?, = 0.

The projective coefficients T1Z, associated with (x%) can be determmed by
solving the linear equations

(i I125044) = 0, )

for a sufficient number of particles {x°(x)}. We believe that the smoothness
assumptions made so far about M and the particles imply smoothness of the
II§,; at any rate, we shall assume them to be at least of class C*.

Any curve that satisfies eqn (7) is said to be a geodesic, and the structure
thus imposed on a manifold is called a projective structure.

We may say, then, that the collection of free-fall trajectories assigns a
unique projective structure & to space-time such that every particle is a
geodesic, and every geodesic which is time-like at some event is a particle.
(The last assertion follows from the preceding one and Axiom P,.)
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Compatibility of free fall and light propagation; Weyl structure

So far we have not yet fully characterized the set of a// particles in terms of
the structures € and . To achieve that, we formalize the idea described in
§ 1, remark (c) on pp. 65, 67 in

AxioM C. Each event e has a neighbourhood U such that an event p € U,
p # e lies on a particle P through e if and only if p is contained in the interior
of the light cone v, of e.

It has been shown on pp. 75-76 that », may be identified with the €-null
cone; this will be done henceforth. The results of the preceding section and
Axiom C imply that every particle is a Z-geodesic which is nowhere
%-space-like, and every P-geodesic that is time-like at some event is
nowhere space-like. From this lemma, we shall deduce a relation between
the quantities g,, and II}, that characterize the conformal and projective
structures of M. Let us introduce the auxiliary quantities ¢°°, defined by

72 e = 03 (10)
the components

K= %yad(yab.c‘l‘ydc.b“é’bc.d) (11
of the conformal connection, and the differences
Agc: = ch_Kgc (12)

between the components of the conformal and projective connections.
Also, let us use the g,,, #*° to shift indices as, for example, in

Aabc: = y'adAgy (13)
It is easily seen that
Afy = A% =0, (14)

since the Ks and ITs have the corresponding properties. The algebraic
properties (14) imply that A, can be represented in the form

By = A(abc)+%(pafbc_ﬂa(bpc))+La(bc)a (15)
where
L(ab)c = L[abc] = Lga = 0. ) (16)
(To prove this, define p, = —§Ae® and Lape = $Aranie—Progne and
work out L;e).)

Now, let x%(u) describe a Z-geodesic such that x%(0) is a ¥-null vector.
We find from eqns (7), (11), (12), (13) atu =0

d
a‘;’(yabi“ib) = — AqpcXAPXC, a7
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If this expression were different from zero, then FapX®X” would change
sign along x*(u) at u = 0, i.e., the geodesic x%(x) would be time-like some-
where and space-like somewhere else. This is incompatible with the lemma
stated above eqn (10), whence we conclude that the expression on the right-
hand side of eqn (17) vanishes for all %-null vectors. It follows that
Agpeb®8°8 = (gapE*E")(5.£°) identically in £9, i.e.,

A(abc) = F@bSe)- (18)

This relation permits us to simplify the representation (15) of A; taking into
account eqns (14) and (16), we get

AYe = Lty +59° g0e—20% 040 (19)
with some functions g,.
Equation (18) implies that on any £-geodesic x*(u) a relation

2 (i) = (gutt¥)2h—5.5) (0)

(4

FiG. 8. Particles P, converging to light ray L.

holds. Therefore, a #-geodesic that is time-like, space-like, or null respectively,
with respect to € at one of its events, has this same orientation everywhere.
This is the first important link between € and & implied by our axioms, in
particular, the compatibility Axiom C.

In the next step, we wish to exploit the postulate, implied by Axiom C,
that each event p on v, sufficiently close to e can be approximated arbitrarily
closely by events ¢ situated on particles through e. Let p € ,, p # e, and let
g» be a sequence of events contained in particles P, through e such that
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g»— p (see Fig. 8). The P, are geodesics and thus satisfy eqn (7). By choosing
their parameters suitably, we can arrange that A = 0 in eqn (7), that the
parameter value O corresponds to e, and that 1 corresponds to g,. Standard
theorems on differential equations then tell us that the sequence {T,} of the
tangent vectors of the P, at e = 0 converges to the tangent vector T of
that geodesic P which passes, for # = 0 and u = 1, respectively, through
e and p, provided we work in a &Z-convex coordinate neighbourhood of e,
as we shall do. Since T, — T and the T,, belonging to particles, are not space-
like, it follows that T is time-like or null.

If T and, therefore, P were time-like, then P would intersect », at p. That,
however, is impossible in a time-oriented neighbourhood of e, since a future-
directed time-like line through e cannot intersect »}, as is geometrically

e

e

FI1G6. 9. A time-like line cannot leave ‘its’ light cone locally.

obvious (see Fig. 9). Since our considerations are local, we can exclude this
possibility.

Let, then, T and hence P be null. Since, as we have pointed out in the
footnote on p. 75, P cannot have any events exterior to »,, the events on P
between e and p must be situated either on », or in the interior of »,. Events
of the latter kind, however, cannot occur in a time-oriented, sufficiently
small neighbourhood, because if ¢ were such an event the part of P after ¢
could not escape from », and hence could not reach the event p. Thus P is
contained, at least between e and p, in »,, and hence is a %-null geodesic.
Since this is true for each p € v, near e and since being geodesic is a local
property of a curve, we obtain our second main consequence of Axiom C,
viz., the projective null geodesics are identical with the conformal null geodesics.

According to this result, the two equations

JaX%% =0, 21
and
Fo4 KE X050 = yx° (22)
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(which characterize €-null geodesics) imply eqn (7). Consequently, subtrac-
tion of eqn (22) from eqn (7) implies

A XX = (A—»)x°. (23)
From eqn (19), it follows that a relation of the form
L} T°T® = uT® (24)

holds for any %-null vector T. If one takes into account the properties (16)
of Ly, one can derive from this property the fact that

. Li. =0,
so that eqn (19) simplifies to

A%e = 5¢° goe=20%q0). 25)

(For the case considered here—dim M = 4 and signature (+ + + —)—the
proof is particularly simple and elegant if eqns (16) and (24) are translated
into spinor language. The statement concerning L holds for any dimension
and normal-hyperbolic signature.)

A second consequence of the last statement in italics, if combined with
Axiom C, is that the set of all particles is identical with the set of all €-time-
like geodesics of 2. This is the characterization announced at the beginning
of this subsection.

We have now established that € and & define a Weyl structure on M and
that eqn (25) is the formal expression of the compatibility of ¥ and £.
(The verification of the sufficiency of (25) is trivial.) It is a straightforward
matter to show on this basis that the functions

Fgc = Kl;lc+ Sqaybc— 106‘1’(179(:) (26)

(with g, from eqn (25)) define a symmetric linear connection with the proper-
ties stated in § 1, remark (c) on pp. 65, 67, and to establish the converse
theorem mentioned there.

As to the Kundt-Hoffmann experiment, we wish to remark here only that
the measurements conceived by these authors make use of only those proper-
ties of particles and light rays that are embodied in the Weyl geometry as
outlined here. Moreover, the calculations that contain the theory of the
experiment can be so rearranged that they contain only the quantities
(gavs 113,) of a Weyl space, together with Weyl proper time (defined in
remark (d) on p. 67) along the observer’s world line; it is the latter quantity
that is measured.

Curvature and Riemannian space-time

Since parallel transport in a Weyl space preserves nullity of vectors, the
linear transformation induced in a tangent space M, by parallel displacement
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around a loop at p can be decomposed uniquely into a Lorentz transforma-
tion and a scalar multiplication. Therefore, the curvature tensor Ry,
associated with a Weyl connection I" decomposes uniquely according to

Rgcd = j‘{gcd-"%é‘;chy (27)
where
FealRiea =0, Fany =0. (28)

The bivector F is Weyl’s Streckenkriimmung. Its vanishing is necessary
and sufficient in order that the identity component of the holonomy group
of I" be a subgroup of the (restricted) Lorentz group. Therefore the vanishing
of F is also necessary and sufficient for the existence (in any simply connected
domain of M) of a Riemannian metric g,,, compatible with the conformal
structure %, such that I" is metric with respect to g,,. This establishes the
second criterion stated in remark (e), p. 69. To obtain the first criterion, we
observe that in the equation
Ve = Re ,UPUVi4+LUF, UVe 29)
of geodesic deviation the first vector on the right-hand side is orthogonal to
and the second one parallel to the tangent vector U of the first of two adjacent,
affinely parametrized geodesics P, P’. If equidistant events on P correspond,
in the sense described in remark (e) on p. 69, to equidistant events on P/,
the connection vector V in eqn (29) can be chosen orthogonal to P; hence,
the second term must vanish, and if this is true for arbitrary U and V, F must
vanish. If, conversely, F = 0, there exists a Riemannian metric compatible
with € and &7, and in that case the desired property holds true.

If one of these criteria is used as an additional Riemannian axiom, one
obtains a Riemannian metric gq,, unique up to a constant, positive factor,
which is compatible with the more primitive structures %, 2, and &7, and
thus one arrives finally at the usual, full space-time structure of general-
relativity theory. This last step seems unavoidable on empirical grounds if
equality of gravitational time (as given by the Weyl arc length and measurable,
for example, by the method of Kundt and Hoffmann) and atomic time is
assumed. This is because the latter is transported in an integrable fashion,
which was pointed out by Einstein in his criticism of Weyl’s theory and
supported by (among other things) the consistency of the interpretations of
observed red-shifts. (But how compelling is the time-equality postulate?)

In a Weyl space-time, the bivector F is closed, dF = 0, and the vector
density (of weight one)

fa: = (yacy’bchd)sb

is conserved, #% = 0. Weyl used these facts to interpret F as the electro-
magnetic field, and # as the electric-charge current density. Nowadays, this
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identification is no longer compelling; one may, however, ask whether other
interpretations of ¥, and 7, relating the gravitational field to another
universally conserved current, might contain some physical truth.
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