
Gen Relativ Gravit (2012) 44:1419–1432
DOI 10.1007/s10714-012-1347-2

RESEARCH ARTICLE

Regular models with quadratic equation of state

S. D. Maharaj · P. Mafa Takisa

Received: 19 September 2011 / Accepted: 24 February 2012 / Published online: 7 March 2012
© Springer Science+Business Media, LLC 2012

Abstract We provide new exact solutions to the Einstein–Maxwell system of
equations which are physically reasonable. The spacetime is static and spherically
symmetric with a charged matter distribution. We utilise an equation of state which is
quadratic relating the radial pressure to the energy density. Earlier models, with linear
and quadratic equations of state, are shown to be contained in our general class of solu-
tions. The new solutions to the Einstein–Maxwell are found in terms of elementary
functions. A physical analysis of the matter and electromagnetic variables indicates
that the model is well behaved and regular. In particular there is no singularity in
the proper charge density at the stellar centre unlike earlier anisotropic models in the
presence of the electromagnetic field.

Keywords Relativistic charged fluids · Equations of state ·
Einstein–Maxwell equations

1 Introduction

The study of charged relativistic objects in general relativity is achieved by solving the
Einstein–Maxwell system of equations and imposing conditions for physical accept-
ability. This is not easy to achieve because of the nonlinearity of the field equations.
The exact solutions found have many applications in relativistic astrophysics. The
models generated have been used in the description of neutron stars and black hole
formation by Ray et al. [1] and de Felice et al. [2]. Particular models have also helped
in the establishment of the absolute stability limit for charged spheres by Giuliani et
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al. [3] and Bohmer and Harko [4]. Several models of charged relativistic matter have
been used to study strange stars by Mak and Harko [5], Bombaci [6], Komathiraj and
Maharaj [7] and Thirukkanesh and Maharaj [8]. Charged models have been also used
in the description of strange quark matter by Discus et al. [9], hybrid protoneutron
stars by Nicotra et al. [10], and bare quark stars by Usov et al. [11]. A geometric
approach is to assume the existence of a group of conformal motions on spacetime;
exact solutions have been found by Mak and Harko [12] for strange quark matter and
Esculpi and Aloma [13] for anisotropic relativistic charged matter by assuming the
existence of a conformal killing vector in static spherically symmetric spacetimes.

Models with an equation of state are desirable in the description of realistic astro-
physical matter. However most explicit solutions of the Einstein–Maxwell system that
have been found do not satisfy this property. There have been some attempts made
recently to find exact analytic solutions of the Einstein–Maxwell system with a linear
equation of state. These include the treatments of Ivanov [14], Sharma and Maharaj
[15], and Thirukkanesh and Maharaj [8]. Particular solutions with a quadratic equation
of state, relating the radial pressure to the energy, where found by Feroze and Sidd-
iqui [16]. This is an important advance since the complexity of the model is greatly
increased because of the nonlinearity of the radial pressure in terms of the energy
density. However the investigations mentioned above all suffer from the undesirable
property of possessing a singularity in the property charge density at the centre of
sphere. An essential requirement for a well behaved electromagnetic field is regular-
ity of the proper charge density throughout the matter distribution, particularly at the
stellar centre. The importance of this feature has been highlighted in the analysis of
Varela et al. [17] whose treatment offers a general approach of dealing with anisotropic
charged matter with linear or nonlinear equations of state. It is desirable to eliminate
the singularity in the charge density for a detailed and complete analysis of physical
properties of charged compact objects.

Our results may be helpful in the study of compact stars and gravitational collapse
relating to neutron stars and black holes. In this regard we refer to particular papers
some of which have static spherical geometry and others are dynamical. Novikov [18]
showed in the case of spherical geometry that collapse of electrically charged matter
may replaced by expansion and infinite densities are avoided. A general treatment of
collapsing charged matter was completed by Bekenstein [19] who showed that non-
zero pressure plays a significant role. The analysis of Raychaudhuri [20] for charged
dust distributions showed that conditions for collapse and oscillation depend on the
ratio of matter density to charge density. If this ratio is large, corresponding to weakly
charged dust spheres, then shell crossings cannot be avoided in gravitational collapse
as proved by Ori [21]. Krasinski and Bolejko [22] showed that there exist initial con-
ditions for a charged dust sphere with finite radius so that a full cycle of pulsation can
be completed by the outer layer with no internal singularity. A full and comprehensive
analysis of charged, dissipative collapse is provided by Di Prisco et al. [23] for the
free-streaming and diffusion approximations. A related and detailed analysis in the
gravitational collapse of a charged medium was performed by Kouretsis and Tsagas
[24] where the role of Raychaudhuri equation is highlighted. Exact solutions with an
equation of state, such the quadratic case considered in this paper, are helpful in such
studies.
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The objective of this paper is to find new exact solutions of the Einstein–Maxwell
field equations with a charged anisotropic matter distribution and a quadratic equa-
tion of state. We indicate that particular models found in the past with an equation of
state are part of our general analytical framework. Previous solutions with a linear or
quadratic equation of state are regained in our treatment. We ensure that the charge
density is regular at the centre of the compact body and the physical criteria are satis-
fied. In Sect. 2, we give the Einstein–Maxwell field equations for a static spherically
symmetric line element as an equivalent system of differential equations utilizing a
transformation due to Durgapal and Bannerji [25]. In Sect. 3, we present new exact
solutions to the Einstein–Maxwell system with a quadratic equation of state. The solu-
tion is regular at the centre of the compact object. This analysis extends the treatment
of Thirukkanesh and Maharaj [8], and Feroze and Siddiqui [16]. Known solutions with
an equation of state are presented in Sect. 4, as particular cases of our new results. In
Sect. 5, a physical analysis of the new solutions is performed; the matter variables and
the electromagnetic quantities are plotted. We summarise the results obtained in this
paper.

2 Field equations

In standard coordinates the line element for a static spherically symmetric spacetime,
modelling the interior of the relativistic object, has the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

We take the energy momentum tensor to be of the form

Ti j = diag

(
−ρ − 1

2
E2, pr − 1

2
E2, pt + 1

2
E2, pt + 1

2
E2

)
, (2)

where the quantity pt is the tangential pressure, pr is the radial pressure, ρ is the
density, and E is the electric field intensity. Then the Einstein–Maxwell equations can
be written in the form

1

r2

[
r(1 − e−2λ)

]′ = ρ + 1

2
E2, (3)

− 1

r2 (1 − e−2λ) + 2ν′

r
e−2λ = pr − 1

2
E2, (4)

e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
= pt + 1

2
E2, (5)

σ = 1

r2 e−λ(r2 E)′, (6)

where primes represent differentiation with respect to r. The quantity σ represents the
proper charge density. We are utilising units where the coupling constant 8πG

c2 = 1
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and the speed of light c = 1. The mass within a radius r of the sphere is

M(r) = 1

2

r∫
0

ω2ρ(ω)dω. (7)

We now introduce a new independent variable x and define new functions y and Z so
that

x = Cr2, Z(x) = e−2λ(r), A2 y2(x) = e2ν(r), (8)

where A and C are constants. We assume an equation of state of the general form
pr = pr (ρ) for the matter distribution. We take the quadratic form

pr = γρ2 + αρ − β, (9)

relating the radial pressure pr to the energy density ρ. In the above α, β, and γ are con-
stants. Then the Einstein–Maxwell equations governing the gravitational behaviour of
a charged anisotropic sphere, with a quadratic equation of state, are represented by

ρ

C
= 1 − Z

x
− 2Ż + E2

2C
, (10)

pr = γρ2 + αρ − β, (11)

pt = pr + , (12)



C
= 4x Z

ÿ

y
+ 2[x Ż + 2Z ] ẏ

y
− α

[
(1 − Z)

x
− 2Ż − E2

2C

]

−Cγ

[
(1 − Z)

x
− 2Ż − E2

2C

]2

+ Ż − E2

2C
+ β

C
, (13)

ẏ

y
= (1 − Z)(1 + α)

4Z
− (1 + α)E2

8C Z
− α Ż

4Z
− β

4C Z

+Cγ

4Z

[
(1 − Z)

x
− 2Ż − E2

2C

]2

, (14)

σ 2

C
= 4Z

x

(
x Ė + E

)2
, (15)

where dots denote differentiation with respect to the variable x . Equations (10)–(15)
are similar to the field equations of Thirukkanesh and Maharaj [8]; however in this
case the equation of state is quadratic. The quantity  = pt − pr is called the measure
of anisotropy and vanishes for isotropic pressures. The nonlinear system as given in
(10)–(15) consists of six independent equations in six variables involving the matter
and electromagnetic quantities ρ, pr , pt ,, E, σ and the two gravitational poten-
tials y and Z. The nonlinearity of the Einstein–Maxwell system (10)–(15) has been
increased, when compared with many earlier treatments, because of the appearance
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Regular models with quadratic equation of state 1423

of the quadratic term in (11); when γ = 0 then there is a linear equation of state. In
addition Eq. (14) now contains terms with E4 increasing the complexity of system
since γ �= 0 in general.

3 New solutions

To integrate the Einstein–Maxwell system we make the particular choices

Z = 1 + bx

1 + ax
, (16)

E2

C
= k(3 + ax) + sa2x2

(1 + ax)2 . (17)

The gravitational potential Z is well behaved and finite at the origin. The electric field
intensity E is continuous, regular at the origin and approaches a constant value for
increasing values of x. The constants a, b, k and s are real. The general analytic func-
tional forms for Z and E regain particular cases studied in the past with an equation
of state.

On substituting (16) and (17) into (14) we obtain the first order equation

ẏ

y
= (1 + α)(a − b)

4[1 + (a − b)x] + α(a − b)

2(1 + ax)[1 + bx] − β(1 + ax)

4C[1 + bx]
− (1 + α)[k(3 + ax) + sa2x2]

8(1 + ax)[1 + bx] + Cγ [(3 + ax)(2a − ab − k) − sa2x2]2

16(1 + ax)(1 + bx)
,

(18)

for the metric function y. In spite of complexity of Eq. (18) it can be solved in general.
On integrating (18) we get

y = D(1 + ax)m[1 + bx]n exp [F(x)] , (19)

where D is the constant of integration. The function F(x) is given explicitly by

F(x) = γ [2(a − b) − k]2
[

2(2b − a)(1 + ax) + (b − a)

8(b − a)2(1 + ax)2

]

−Csγ

[
(a − b)2(ax + 2) − a(2a + s)(1 + ax)

4(a − b)(1 + ax)2

]

−Csγ

[
(a − b)(4k + s) + (2k(b − 3a) + 3bs)(1 + ax)

32(a − b)2(1 + ax)2

]

+ ax

16bC
[C2s2γ − 2Cs(1 + α) − 4β]. (20)
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The constants m and n have the form

m = − (1 + α)(s + 2k)

8(b − a)
+ α

2
+ γ [2(a − b) − k]2

[
b2

(b − a)3 + b

(b − a)2 + 1

4

]

+ Csγ

8(a − b)3

[
(a − b)[2s(a − b) + a + b] + 3ab(k − 2b) − b2k

+2b3(2a − 1)
]

n = (1 + α)

8b
[2(a − b) − k] + (1 + α)k − 2α(a − b)

4(b − a)
+ β(a − b)

4Cb2

+γ [2(a − b) − k]2
[

b2

(b − a)3 + b

(b − a)2 + 1

4

]
+ Csa2(1 + α)

8b2(b − a)

+ Csγ

16b2(b − a)3

[
a4(s + 4b) + (k + 2b)(6a2b2 − 2a3b)

]
.

Then we can generate an exact model for the Einstein–Maxwell system (10)–(15) in
the form

e2λ = 1 + ax

1 + bx
, (21)

e2ν = A2 D2 (1 + ax)2m [1 + bx]2n exp[2F(x)], (22)

ρ

C
= (2a − 2b − k)(3 + ax) − sa2x2

2(1 + ax)2 , (23)

pr = γρ2 + αρ − β, (24)

pt = pr + , (25)



C
= 4x(1 + bx)

1 + ax

[
m(m − 1)a2

(1 + ax)2 + 2mnab

(1 + ax)(1 + bx)
+ 2maḞ(x)

1 + ax

+b2n(n − 1)

(1 + bx)2 + 2nbḞ(x)

1 + bx
+ F̈(x) + Ḟ(x)2

]
+

[
−2(a − b)x

(1 + ax)2 + 4(1 + bx)

(1 + ax)

]

[
am

1 + ax
+ bn

1 + bx
+ Ḟ(x)

]
− Cγ

[
C(2(a − b) − k)(3 + ax) − Csa2x2

2(1 + ax)2

]2

− 1

2(1 + ax)2

[
2C(a − b) + k(3 + ax) + sa2x2 − 2β

C
(1 + ax)2

]

−α

[
(2(a − b) − k)(3 + ax) − sa2x2

2(1 + ax)2

]
, (26)

E2

C
= k(3 + ax) + sa2x2

(1 + ax)2 , (27)

σ 2

C
=

C[1 + bx]
(√

k(a2x2 + 3ax + 6) + 2
√

sax
√

3 + ax(2 + ax)
)2

x(3 + ax)(1 + ax)5
, (28)

123



Regular models with quadratic equation of state 1425

where F(x) is given by (20). We observe that the exact solution (21)–(28) of the Ein-
stein–Maxwell system has been written solely in terms of elementary functions. For
this solution the mass function is given by

M(x) = 1

8C3/2

[ [(12a(a − b) − 6ak)x + s(15 + 10ax − 2a2x2)]x1/2

3a(1 + ax)

−5s arctan(
√

ax)

a3/2

]
. (29)

The gravitational potentials, matter variables and electromagnetic variables are well
behaved and regular in the stellar interior. However in general there is a singularity in
the charge density at the centre which is evident in (28). This singularity is avoidable
when k = 0, so that we have

σ 2

C
= 4Csa2x[1 + bx](2 + ax)2

(1 + ax)5
. (30)

At the centre of the star x = 0 and the charge density vanishes.

4 Known solutions

We have found a general class of exact solutions to the Einstein–Maxwell system with
a quadratic equation of state. It is interesting to observe that for particular parameter
values we can regain uncharged anisotropic and isotropic models (k = 0, s = 0) from
our general solution (21)–(28). We regain the following particular cases of physical
interest.

4.1 Feroze and Siddiqui model

This is a special case of our general solution with the quadratic equation of state pr

= γρ2 + αρ − β. If we set s = 0, C = 1 and A2 D2 = B, then we regain the line
element

ds2 = B(1 + ar2)m(1 + br2)n exp[2F(r)]dt2 + 1 + ar2

1 + br2 dr2

+r2(dθ2 + sin2 θdφ2), (31)

where

F(x) = −βar2

4b
+ γ [2(a − b) − k]2

[
2(2b − a)(1 + ar2) + (b − a)

8(b − a)2(1 + ar2)2

]
,

m = α

2
− (1 + α)k

4(b − a)
+ γ [2(a − b) − k]2

[
b2

(b − a)3 + b

(b − a)2 + 1

4

]
,
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n = (1 + α)

8b
[2(a − b) − k] + (1 + α)k − 2α(a − b)

4(b − a)
+ β(a − b)

4b2

+γ [2(a − b) − k]2
[

b2

(b − a)3 + b

(b − a)2 + 1

4

]
.

The line element (31) was found by Feroze and Siddiqui [16] which was the first model
with quadratic equation of state. Some minor misprints in [16] have been corrected in
our result. This solution may be used to model a compact body.

4.2 Thirukkanesh and Maharaj model

If we set γ = 0 then we have the linear equation of state pr = αρ − β. Also setting
C = 1, s = 0 and b = a − b̃, we get the line element

ds2 = A2 D2(1 + ar2)2m[1 + (a − b̃)r2]2n exp

[ −aβr2

2(a − b̃)

]
dt2

+ 1 + ar2

1 + (a − b̃)r2
dr2 + r2(dθ2 + sin2 θdφ2), (32)

where

m = 2αb̃ − (1 + α)k

4b̃
,

n = 1

8b̃(a − b̃)2

[
2a2(k(1 + α) − 2αb̃) − ab̃(5k(1 + α) − 2b̃(1 + 5α))

+b̃2(3k(1 + α) − 2b̃(1 + 3α) + 2β)
]
.

The metric (32) was found by Thirukkanesh and Maharaj [8]. This solution may be
used to model realistic charged compact spheres and strange stars with quark matter
in the presence of electromagnetic field.

4.3 Sharma and Maharaj model

If we set γ = 0, β = αρ̃, then we regain the linear equation of state pr = α(ρ − ρ̃)

where ρ̃ is the density at the surface. By setting k = 0, s = 0, b = a − b̃, C = 1 and
A2 D2 = B we find the following form of the line element

ds2 = −B(1 + ar2)2m[1 + (a − b̃)r2]2n exp

( −aβr2

2(a − b̃)

)
dt2

+ 1 + ar2

1 + (a − b̃)r2
dr2 + r2(dθ2 + sin2 θdφ2), (33)
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where

m = α

2
,

n = 5ab̃α − 2a2α − 3b̃2α + ab̃ − b̃2 + b̃β

4(a − b̃)2
.

The line element (33) represents an uncharged anisotropic sphere and was found by
Sharma and Maharaj [15]. It may be used to describe strange stars with a linear equa-
tion of state with quark matter.

4.4 Lobo model

If we set γ = 0, β = 0, then we obtain the linear equation of state pr = αρ. On
setting k = 0, s = 0, b = a − b̃, a = 2b̃, C = 1 and A2 D2 = B we regain the line
element

ds2 = −(1 + 2b̃r2)2m(1 + b̃r2)2ndt2 +
(

1 + 2b̃r2

1 + b̃r2

)
dr2

+r2(dθ2 + sin2 θdφ2). (34)

where

m = α

2
,

n = 1 − α

4
.

The metric (34) was first found by Lobo [26] which represents uncharged anisotropic
matter. This solution serves as a stellar interior with α < − 1

3 and may be matched to
the Schwarzchild exterior for dark energy stars.

4.5 Isotropic models

We observe that  �= 0 in general and the model remains anisotropic. However, we
can show for particular parameter values that  = 0 in the general solution (21)–(28).
If we set b = (a − 1), k = 0, s = 0, a = 0, then we obtain

m = α

2

n = 1

4C
[β − (1 + 3α)C]

 = x

4C(1 − x)
[β − 3(1 + α)C][β − (1 + 3α)C]. (35)
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Two different cases arise from (35) by setting  = 0. Firstly, we observe that when
β = 0 and α = −1 then  = 0. The equation of state becomes pr (= pt ) = −ρ.
With the line element

ds2 = −
(

1 + r2

R2

)
dt2 +

(
1 + r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (36)

where we have set A = D = 1 and C = 1
R2 . We mention that the metric (36) is

the isotropic uncharged de Sitter model. Secondly, we observe that when β = 0 and
α = − 1

3 then  = 0. The equation of state becomes pr (= pt ) = − 1
3ρ with the line

element

ds2 = −A2dt2 +
(

1 + r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (37)

where D = 1 and C = 1
R2 . The metric (37) is the isotropic uncharged Einstein model.

5 Physical analysis

We show that the exact solutions of the Einstein–Maxwell system found in Sect. 3 are
well behaved by generating graphical plots of matter and electromagnetic variables.
We used the software package Mathematica [27] and we make the particular choices
C = 1, a = 2.5, b = 2, γ = 0.01, α = 0.33, s = 0.017 and k = β = 0. We
generated the plots for the energy density (Fig. 1), radial pressure (Fig. 2), electric
field intensity (Fig. 3), charge density (Fig. 4), mass (Fig. 5), speed of sound (Fig. 6),
tangential pressure (Fig. 7) and the measure of anisotropy (Fig. 8). The energy den-
sity ρ is a finite and monotonically decreasing function. The radial pressure pr is
similarly well behaved and continuous. The electric field intensity E is initially small
and approaches a maximum value as the boundary is approached. The proper charge
density σ is nonsingular at the origin, increases and then decreases after reaching a
maximum value. The mass function is a strictly increasing function which is contin-
uous and finite. The speed of sound is less than the speed of light and causality is
maintained throughout the stellar interior. The radial pressure is decreasing and does
reach a finite value of the radial coordinate. The tangential pressure is also a decreas-
ing function. The measure of anisotropy is a decreasing function as the boundary is
approached and remains finite in the interior. Thus all the matter variables, electro-
magnetic variables and the gravitational potentials are nonsingular and regular in the
region containing the stellar centre. In particular the proper charge density σ is finite
at the centre unlike earlier treatments.

It is desirable to study comprehensively the stability of our new models; this is
a objective for the future reseach. The solutions generated may be matched to the
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Fig. 1 Energy density

Fig. 2 Radial pressure

Fig. 3 Electric field intensity
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Fig. 4 Charge density

Fig. 5 Mass

Fig. 6 Speed of sound
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Fig. 7 Tangential pressure

Fig. 8 Measure of anisotropy

exterior Reissner-Nordstrom spacetime

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (38)

across the boundary r = �. This generates the following conditions

1 − 2M

� + Q2

�2 = A2 y2(C�2), (39)

and

(
1 − 2M

� + Q2

�2

)−1

= 1 + aC�2

1 + bC�2 , (40)

relating the constants a, b, A, C, α, β and γ . There are sufficients number of free
parameters to ensure the continuity of the metric coefficients across the boundary of
the star. It is possible to study the astrophysical significance of the exact solutions to the
Einstein–Maxwell equations found in this paper. This is the object of future research.
We point out that for suitable parameter values we regain the mass M = 1.433M⊙
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1432 S. D. Maharaj, P. Mafa Takisa

of Dey et al. [28–30] corresponding to a strange star model when there is no electro-
magnetic field. Therefore the solutions found in this paper may be used to generalise
earlier results and to model charged relativistic strange and quark stars.

Our aim in this paper was to find new regular exact solutions to the Einstein–Max-
well system for spherically symmetric gravitational field with an equation of state.
In particular we selected a quadratic equation of state relating the energy density to
the radial pressure. The new models presented in this paper may be used to model
relativistic compact objects in astrophysics.
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