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Abstract Logarithmic corrections to the extremal black hole entropy can be com-
puted purely in terms of the low energy data—the spectrum of massless fields and their
interaction. The demand of reproducing these corrections provides a strong constraint
on any microscopic theory of quantum gravity that attempts to explain the black hole
entropy. Using quantum entropy function formalism we compute logarithmic correc-
tions to the entropy of half BPS black holes in N = 2 supersymmetric string theories.
Our results allow us to test various proposals for the measure in the OSV formula,
and we find agreement with the measure proposed by Denef and Moore if we assume
their result to be valid at weak topological string coupling. Our analysis also gives the
logarithmic corrections to the entropy of extremal Reissner–Nordstrom black holes in
ordinary Einstein–Maxwell theory.
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1 Introduction and summary

Recent years have seen considerable progress towards an understanding of the black
hole entropy beyond the original formula due to Bekenstein and Hawking relating the
entropy to the area of the event horizon. In particular Wald’s formula gives a prescrip-
tion for computing the black hole entropy in a classical theory of gravity with higher
derivative terms, possibly coupled to other matter fields [1–4]. In the extremal limit
this leads to a simple algebraic procedure for determining the near horizon field con-
figurations and the entropy [5,6]. A proposal for computing quantum corrections to
this formula was suggested in [7,8] by exploiting the presence of Ad S2 factors in the
near horizon geometry of extremal black holes. In this formulation, called the quantum
entropy function formalism, the degeneracy associated with the black hole horizon is
given by the string theory partition function Z Ad S2 in the near horizon geometry of the
black hole. Such a partition function is divergent due to the infinite volume of Ad S2,
but the rules of Ad S2/C FT1 correspondence gives a precise procedure for removing
this divergence. While in the classical limit this prescription gives us back the expo-
nential of the Wald entropy, it can in principle be used to systematically calculate the
quantum corrections to the entropy of an extremal black hole.

In this paper our main focus will be on logarithmic corrections to the black hole
entropy. These arise from one loop quantum corrections to Z Ad S2 involving massless
fields and are insensitive to the details of the ultraviolet properties of the theory. On the
other hand, being corrections to the black hole entropy, they give us non-trivial infor-
mation about the microstates of the black hole. For this reason they can be regarded
as an infrared window into the microphysics of black holes. In two previous papers
[9,10] we used the quantum entropy function to compute logarithmic corrections to the
entropy of 1/8 BPS and 1/4 BPS black holes in N = 8 and N = 4 supersymmetric
string theories respectively and found results in perfect agreement with the micro-
scopic results of [11–26]. In this paper we use this formalism to compute logarithmic
correction to the entropy of half BPS black holes in N = 2 supersymmetric string
theories. As in [9,10] we consider the limit in which all components of the charge
become large at the same rate. In this limit we find that for a theory with nV massless
vector multiplets and nH massless hypermultiplets, the entropy including logarithmic
correction is given by

AH

4G N
+ 1

12
(23 + nH − nV ) ln

AH

G N
+ O(1), (1.1)

where AH is the area of the event horizon and G N is the Newton’s constant. The
O(1) terms include functions of ratios of charges, and also contains terms carrying
inverse powers of charges.1 Note that while the result depends on the number of vector

1 Thus if we take another limit in which some ratios of charges become large then we may get additional
logarithmic corrections.
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Logarithmic corrections 1209

and hypermultiplet fields, it does not depend on the details of the interaction involv-
ing these fields through the prepotential and the metric on the hypermultiplet moduli
space. Eq. (1.1) is consistent with the version of the OSV formula [27] given in [28] if
we take their result to be valid at weak topological string coupling. However (1.1) is
in apparent disagreement with the measure proposed in [29,30]. A detailed discussion
on this can be found in Sect. 9. For STU model [31,32] we have nH = 4 and nV = 3,
leading to a logarithmic correction of 2 ln(AH/G N ) to the entropy. This agrees with
the result of [10].

We also give for comparison the result of [9,10] for supersymmetric black hole
entropies in N = 4 and N = 8 supersymmetric theories:

N = 4 : AH

4G N
+ O(1)

N = 8 : AH

4G N
− 4 ln

AH

G N
+ O(1).

(1.2)

Note that the coefficient given in (1.1) is proportional to the gravitationalβ-function
in N = 2 supergravity/string theory given in [33–36]. However this relation does not
hold universally. For example in the N = 8 supersymmetric theory the gravitational
β-function vanishes [33] but the logarithmic correction to the entropy given in (1.2)
does not vanish. The precise relation will be discussed in Sect. 7.

Our analysis also gives the result for the logarithmic correction to the entropy
of an extremal Reissner–Nordstrom black hole in ordinary non-supersymmetric
Einstein–Maxwell theory. The result is − 241

45 ln AH
G N

. If the theory in addition contains
nS massless scalars, nF massless Dirac fermions and nV additional Maxwell fields,
all minimally coupled to background gravitational field but not to the background
electromagnetic flux, then the net entropy is given by

AH

4G N
− 1

180
(964 + nS + 62nV + 11nF ) ln

AH

G N
+ O(1). (1.3)

We emphasize that in this formula nV is the number of additional minimally coupled
Maxwell field. Thus if we just had an extremal Reissner–Nordstrom black hole in
Einstein gravity coupled to a single Maxwell field then nV = 0 in our convention.

Various other earlier approaches to computing logarithmic corrections to black
hole entropy can be found in [37–53]. Of these the method advocated in [41], and
subsequently developed further in [53] and reviewed in [54], is closest to the one
we are following; so we have given a detailed comparison between the two methods
below Eq. (3.31). For now we would like to mention that the method of [41,53,54]
would correctly reproduce the dependence on nS, nV and nF for extremal Reissner–
Nordstrom black holes in (1.3) but will fail to give the constant term 964 correctly.
This is due to the fact that the constant term comes from fluctuations of the metric
and the gauge field under which the black hole is charged, and for these fields the
analysis of [41,53,54] would be insufficient on two counts: first it does not take into
account correctly the mixing between these fields due to the presence of the gauge
field flux in the near horizon geometry of the black hole, and second it fails to take
into account correctly the effect of integration over the zero modes of these fields.
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1210 A. Sen

The naive application of the analysis of [41,53,54] would also fail to get the result
(1.1) or (1.2) for the supersymmetric black holes in N = 2, 4, 8 supergravity for
which both the mixing between the fields and the integration over the zero modes play
a crucial role. As we discuss in Sect. 7, the effect of mixing between the fields can
be incorporated by augmenting the analysis of [41,53,54] by supersymmetry—a fact
already anticipated in [33]. However the effect of zero mode integration still needs to
be taken into account separately.

References [55,56] attempted an exact evaluation of Z Ad S2 using localization meth-
ods. The general formula for the logarithmic correction to the half BPS black hole
entropy in these theories, described in (1.1), shows that Z Ad S2 receives non-trivial
contribution from not only the vector multiplets but also the gravity multiplet and the
hypermultiplets. This makes the evaluation of this partition function a much more
challenging problem, but also a more interesting one.

Before concluding the introduction we would like to discuss the region of validity
of our formulæ. There are two independent questions: for which range of charges is
our analysis valid and in which region of the moduli space is our analysis valid? As
we have already mentioned, our analysis will be valid in the limit when all compo-
nents of the charge are scaled uniformly, so that the four dimensional near horizon
geometry becomes weakly curved and the internal space remains at a fixed shape and
size as we scale the charges. The precise limit may be taken as follows. First we take
a black hole solution in the N = 2 supergravity with finite area event horizon and
regular attractor values of the vector multiplet moduli, but do not require the charges
to be quantized. We then scale all the charges carried by this black hole by some large
number� and at the end shift the charges by finite amounts to nearby integers in such
a way that the final charge vector is primitive. In this limit the area of the horizon
and hence the entropy scale as �2 and the vector multiplet moduli remain fixed at
regular values. To determine the chamber in the moduli space where our results are
valid, note that our result is based on the analysis of the near horizon geometry of
a single black hole. Thus we need to work in the attractor domain where the enig-
matic configurations discussed in [28] are absent. Even in this case the total index
receives contribution from multicentered scaling solutions besides the single centered
black hole. In order that our result for single centered black hole entropy gives the
dominant contribution we need to ensure that the contribution to the index from the
scaling solutions are either absent or subleading. We discuss this point in detail in
Sect. 8.

A related issue arises for extremal Reissner–Nordstrom black holes whose entropy
is given by (1.3). Due to the existence of multicentered black holes with each cen-
ter carrying a fraction of the total charge, the index receives contribution not only
from single centered black holes but also from multi-centered configurations. This
can be avoided by considering a dyonic configuration carrying a primitive charge vec-
tor instead of a purely electrically charged configuration. Since the Einstein-Maxwell
theory is duality invariant, our result (1.3) will continue to be valid in such a situation,
but the multicentered configurations are avoided since the total charge vector, being
primitive, can no longer be split into multiple charge vectors which are proportional
to each other. (A complete proof of this is still lacking however; see the discussion in
Sect. 8.)
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Logarithmic corrections 1211

A final point about notation: while in the macroscopic description we compute the
entropy of the black hole, on the microscopic side we always compute an appropriate
index. It was argued in [57,58] that the entropy of the single centered black hole also
represents the logarithm of the index carried by the same black hole. For this reason
we shall use the word entropy and logarithm of the index interchangeably throughout
our discussion.

The rest of the paper is organized as follows. Sections 2 and 3 contains mostly
review of known material. In Sect. 2 we describe the general strategy for comput-
ing logarithmic corrections to the entropy of an extremal black hole. In Sect. 3 we
illustrate this by calculating the logarithmic corrections to the entropy due to masless
scalar, fermion and vector fields, assuming that they only couple minimally to the
background metric and is not affected by the any other background field if present.
In particular for the extremal Reissner–Nordstrom black hole this analysis does not
apply to the gauge field which has non-zero background field strength since due to the
Maxwell term in the action such gauge fields will be affected by the background flux.
In Sect. 4 we apply the method reviewed in Sect. 2 to compute the logarithmic correc-
tion to the entropy of an extremal Reissner–Nordstrom black hole. This is important
for our analysis since the bosonic sector of pure N = 2 supergravity is described by
ordinary Einstein-Maxwell theory and consequently the results of this section describe
the bosonic contribution to the logarithmic correction to BPS black hole entropy in
pure N = 2 supergravity. In Sect. 5 we augment this result by computing the loga-
rithmic correction to BPS black hole entropy due to the fermionic fields of N = 2
supergravity. Adding the results of Sects. 4 and 5 we arrive at the result given in (1.1)
for nH = nV = 0. In Sect. 6 we apply the same method to compute the logarithmic
correction to the entropy of a BPS black hole in a general supergravity theory with
arbitrary number of vector and hypermultiplets. This leads to (1.1). In Sect. 7 we dis-
cuss an alternative but equivalent method for deriving the same results, making use of
the supersymmetry of the theory. This method is simpler, but requires certain assump-
tion about possible supersymmetric one loop counterterms in N = 2 supergravity
theory. One could in principle elevate this into a rigorous analysis—at the same level
as that in Sects. 4–6—by classifying all possible four derivative supersymmetric terms
in the action that could be generated as one loop correction in N = 2 supergravity.
In Sect. 8 we explore if multi-centered scaling solutions could invalidate our result
by generating new configurations whose entropy is of the same order or larger than
the single center black hole entropy we analyze. Although we do not have any rig-
orous result we argue that it is extremely unlikely. In Sect. 9 we carry out a detailed
comparison of our results with different versions of the OSV formula for black hole
entropy which have been proposed in the literature. While our result agrees with that
of [28] assuming its validity in the scaling limit we are studying, it disagrees with
the proposal of [29]. We argue however this disagreement can be rectified by certain
changes in the proposed formulæ of [29] without violating any basic principle used in
arriving at these results. In Appendix A we collect the results for eigenfunctions and
eigenvalues of the laplacian on Ad S2 × S2 for various fields. In Appendix B we collect
some useful mathematical identities used in our analysis. Finally in Appendix C we
demonstrate that in a general N = 2 supergravity theory coupled to a set of vector and
hypermultiplet fields, the action that describes the fluctuations of various fields around
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the BPS black hole background to quadratic order has a universal form that depends
only on the number of vector and hypermultiplet fields but not on the details of their
interaction e.g. the prepotential for the vector multiplet and the moduli space metric
for the hypermultiplet. This has been used in the analysis of Sect. 6 and is responsible
for the universal form of (1.1) that does not depend on the details of the interaction.

2 General strategy

In this section we shall review the general strategy for computing logarithmic correc-
tions to the entropy of extremal black holes. We shall focus on spherically symmetric
extremal black holes in four dimensions, but the method we describe is easily gener-
alizable to non-spherical (rotating) black holes.

Suppose we have an extremal black hole with near horizon geometry Ad S2 × S2,
with equal radius of curvature a of Ad S2 and S2. Then the Euclidean near horizon
metric takes the form

ds2 = a2(dη2 + sinh2 η dθ2)+ a2(dψ2 + sin2 ψdφ2). (2.1)

We shall denote by xμ all four coordinates on Ad S2 × S2, by xm the coordinates
(η, θ) on Ad S2 and by xα the coordinates (ψ, φ) on S2 and introduce the invariant
antisymmetric tensors εαβ on S2 and εmn on Ad S2 respectively, computed with the
background metric (2.1):

εψφ = a2 sinψ, εηθ = a2 sinh η. (2.2)

All indices will be raised and lowered with the background metric gμν defined in (2.1).
Let Z Ad S2 denote the partition function of string theory in the near horizon geom-

etry, evaluated by carrying out functional integral over all the string fields weighted
by the exponential of the Euclidean action S, with boundary conditions such that
asymptotically the field configuration approaches the near horizon geometry of the
black hole.2 Since in Ad S2 the asymptotic boundary conditions fix the electric fields,
or equivalently the charges carried by the black hole [7], and allow the constant modes
of the gauge fields to fluctuate, we need to include in the path integral a boundary term
exp(−i

∮ ∑
k qk A(k)μ dxμ)where A(k)μ are the gauge fields and qk are the corresponding

electric charges carried by the black hole [7]. Thus we have

Z Ad S2 =
∫

d� exp

(

S − i
∮ ∑

k

qk A(k)μ dxμ
)

, (2.3)

2 Our definition of the Euclidean action includes a minus sign so that the path integral is weighted by eS
instead of e−S .
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Logarithmic corrections 1213

where � stands for all the string fields. Ad S2/C FT1 correspondence tells us that the
full quantum corrected entropy SB H is related to Z Ad S2 via [7]:

eSB H −E0 L = Z Ad S2 , (2.4)

where E0 is the energy of the ground state of the black hole carrying a given set of
charges, and L denotes the length of the boundary of Ad S2 in a regularization scheme
that renders the volume of Ad S2 finite by putting an infrared cut-off η ≤ η0. Equa-
tion (2.4) is valid in the limit of large L and allows us to compute SB H from the
knowledge of Z Ad S2 .

Let�Le f f denote the one loop correction to the four dimensional effective lagrang-
ian density evaluated in the background geometry (2.1). Then the one loop correction
to Z Ad S2 is given by

exp

⎡

⎣

η0∫

0

dη

2π∫

0

dθ

π∫

0

dψ

2π∫

0

dφ
√

det g�Le f f

⎤

⎦

= exp
[
8π2 a4 (cosh η0 − 1)�Le f f

]
. (2.5)

Here we have used the fact that due to the SO(2, 1) × SO(3) isometry of Ad S2 ×
S2,�Le f f is independent of the coordinates of Ad S2 and S2. Since the length of
the boundary, situated at η = η0, is given by L = 2πa sinh η0, the term propor-
tional to cosh η0 in the exponent of (2.5) can be written as −L�E0 + O (

L−1
)

where
�E0 = −4πa3�Le f f has the interpretation of the shift in the ground state energy.
The L-independent contribution in the exponent can be interpreted as the one loop
correction to the black hole entropy [7]. Thus we have

�SB H = −8π2a4�Le f f . (2.6)

While the term in the exponent proportional to L and hence �E0 can get further cor-
rections from boundary terms in the action, the L-independent part �SB H is defined
unambiguously. This reduces the problem of computing one loop correction to the
black hole entropy to that of computing one loop correction to Le f f . We shall now
describe the general procedure for calculating �Le f f .

Suppose we have a set of massless fields3 {φi } where the index i could run over
several scalar fields, or the space-time indices of tensor fields. Let { f (i)n (x)} denote an
orthonormal basis of eigenfunctions of the kinetic operator expanded around the near
horizon geometry, with eigenvalues {κn}:

∫
d4x

√
det g Gi j f (i)n (x) f ( j)

m (x) = δmn, (2.7)

3 Here by massless field we mean any field whose mass is of order a−1 or less.
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1214 A. Sen

where gμν is the Ad S2 × S2 metric and Gi j is a metric in the space of fields induced
by the metric on Ad S2 × S2, e.g. for a vector field Aμ,Gμν = gμν . Then the heat
kernel K i j (x, x ′) is defined as

K i j (x, x ′; s) =
∑

n

e−κn s f (i)n (x) f ( j)
n (x ′). (2.8)

In (2.7), (2.8) we have assumed that we are working in a basis in which the eigenfunc-
tions are real; if this is not the case then we need to replace one of the f (i)n ’s by f (i)∗n .
Among the f (i)n ’s there may be a special set of modes for which κn vanishes. We shall
denote these zero modes by the special symbol g(i)� (x), and define

K̄ i j (x, x ′) =
∑

�

g(i)� (x) g( j)
� (x ′). (2.9)

Defining

K (0; s) = Gi j K i j (x, x; s), K̄ (0) = Gi j K̄ i j (x, x; s), (2.10)

and using orthonormality of the wave-functions, we get

∫
d4x

√
det g

(
K (0; s)− K̄ (0)

) =
∑

n

′
e−κn s, (2.11)

where
∑′

n denotes sum over the non-zero modes only. Note that due to homogeneity
of Ad S2 × S2 the right hand sides of (2.10) do not depend on x . The contribution of
the non-zero modes of the massless fields to the one loop effective action can now be
expressed as

�S = −1

2

∑

n

′
ln κn = 1

2

∞∫

ε

ds

s

∑

n

′
e−κns

= 1

2

∞∫

ε

ds

s

∫
d4x

√
det g

(
K (0; s)− K̄ (0)

)
, (2.12)

where ε is an ultraviolet cut-off which we shall take to be of order one, i.e. string scale.4

Identifying this as the contribution to
∫

d4x
√

det g�Le f f we get the contribution to
�Le f f from the non-zero modes:

�L(nz)
e f f = 1

2

∞∫

ε

ds

s

(
K (0; s)− K̄ (0)

)
. (2.13)

4 Throughout this paper we shall assume that the horizon values of all the moduli fields are of order unity
so that string scale and Planck scale are of the same order. This sets G N ∼ 1.
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The logarithmic contribution to the entropy—term proportional to ln a—arises from
the 1 � s � a2 region in the s integral. If we expand K (0; s) in a Laurent series
expansion in s̄ = s/a2 around s̄ = 0, and if K0 denotes the coefficient of the constant
mode in this expansion, then using (2.6) and (2.13) we see that the net logarithmic
correction to the entropy from the non-zero modes will be given by

− 8π2a4 (
K0 − K̄ (0)

)
ln a = −4π2a4 (

K0 − K̄ (0)
)

ln AH , (2.14)

where AH = 4πa2 is the area of the event horizon.
The contribution to Z Ad S2 from integration over the zero modes can be evaluated

as follows.5 First note that we can use (2.9), (2.10) to define the number of zero modes
Nzm :

∫
d4x

√
det g K̄ (0) =

∑

�

1 = Nzm . (2.15)

In fact often the matrix K̄ i j takes a block diagonal form in the field space, with dif-
ferent blocks representing zero modes of different sets of fields. In that case we can
use the analog of (2.15) to define the number of zero modes of each block. If these
different blocks are labelled by different sets {Ar } then the number of zero modes
belonging to the set Ar will be given by

N (r)
zm =

∫
d4x

√
det g K̄ r (0) = 8π2a4 K̄ r (0) (cosh η0 − 1) ,

(2.16)
K̄ r (0) ≡

∑

�∈Ar

Gi j g
(i)
� (x) g( j)

� (x).

Typically these zero modes are associated with certain asymptotic symmetries—gauge
transformation with parameters which do not vanish at infinity. In this case we can
evaluate the integration over the zero modes by making a change of variables from
the coefficients of the zero modes to the parameters labelling the (super-)group of
asymptotic symmetries. Suppose for the zero modes in the r ’th block the Jacobian for
the change of variables from the fields to supergroup parameters gives a factor of aβr

for each zero mode. Then the net a dependent contribution to Z Ad S2 from the zero
mode integration will be given by

a
∑

r βr N (r)
zm = exp

[

8π2a4 (cosh η0 − 1) ln a
∑

r

βr K̄ r (0)

]

. (2.17)

Again the coefficient of cosh η0 can be interpreted as due to a shift in the energy E0,
whereas the η0 independent term has the interpretation of a contribution to the black

5 Some discussion on the effect of zero modes on the ultraviolet divergent contribution to the black hole
entropy can be found in [59,60].
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hole entropy. This gives the following expression for the logarithmic correction to the
entropy from the zero modes:

− 8π2a4 ln a
∑

r

βr K̄ r (0). (2.18)

Adding this to (2.14) we get

�SB H = −4π2a4 ln AH

(

K0 +
∑

r

(βr − 1)K̄ r (0)

)

. (2.19)

We shall refer to the term proportional to
∑

r (βr − 1)K̄ r (0) as the zero mode contri-
bution although it should be kept in mind that only the term proportional to βr arises
from integration over the zero modes, and the −1 term is the result of subtracting
the zero mode contribution from the heat kernel to correctly compute the result of
integration over the non-zero modes.

The contribution from the fermionic fields can be included in the above analysis as
follows. Let {ψ i } denote the set of fermion fields in the theory. Here i labels the inter-
nal indices or space-time vector index (for the gravitino fields) but the spinor indices
are suppressed. Without any loss of generality we can take the ψ i ’s to be Majorana
spinors satisfying ψ̄ i = (ψ i )T C̃ where C̃ is the charge conjugation operator. Then
the kinetic term for the fermions have the form

− 1

2
ψ̄ iDi jψ

j = −1

2
(ψ i )T C̃Di jψ

j , (2.20)

for some appropriate operator D. We can now proceed to define the heat kernel of
the fermions in terms of eigenvalues of D in the usual manner, but with the following
simple changes. Since the integration over the fermions produce (det D)1/2 instead of
(det D)−1/2, we need to include an extra minus sign in the definition of the heat kernel.
Also since the fermionic kinetic operator is linear in derivative, it will be convenient
to first compute the determinant of D2 and then take an additional square root of the
determinant. This is implemented by including an extra factor of 1/2 in the definition
of the heat kernel.6 We shall denote by K f

0 the constant part of the fermionic heat
kernel in the small s expansion after taking into account this factor of −1/2. For anal-
ysis of the zero modes however we need to work with the kinetic operator and not its
square since the zero mode structure may get modified upon taking the square e.g.,
the kinetic operator may have blocks in the Jordan canonical form which squares to
zero, but the matrix itself may be non-zero.7 Let us denote by K̄ f (0) the total fermion
zero mode contribution to the heat kernel. This must be subtracted from the total heat

6 For this it is important to work with Majorana or Dirac fermions but not Weyl fermions since the action
of D changes the chirality of the state. Thus det(D2) �= (det D)2 acting on a Weyl fermion if the action of
D on the left and the right moving fermions are different.
7 This problem would not arise if we work with C̃D instead of D since C̃D is represented by an anti-
symmetric matrix. However for other reasons it is convenient to work with D instead of C̃D.
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kernel. Thus we arrive at an expression similar to (2.14) for the fermionic non-zero
mode contribution to the entropy:

− 4π2a4
(

K f
0 − K̄ f (0)

)
ln AH , (2.21)

Next we need to carry out the integration over the zero modes. Taking into account
the extra factor of −1/2 in the definition of the fermionic heat kernel we see that the
analog of (2.16) for the total number of fermion zero modes N ( f )

zm now takes the form

N ( f )
zm = −16π2a4 K̄ f (0) (cosh η0 − 1) . (2.22)

Let us further assume that integration over each fermion zero modes gives a factor of
a−β f /2 for some constantβ f . Then the total a-dependent contribution from integration
over the fermion zero modes is given by

exp
[
8π2a4 (cosh η0 − 1) β f K̄ f (0) ln a

]
. (2.23)

As usual the coefficient of cosh η0 can be interpreted as due to a shift in the energy E0,
whereas the η0 independent term has the interpretation of a contribution to the black
hole entropy. Combining this with the contribution (2.21) from the non-zero modes
we arive at the following expression for the logarithmic correction to the entropy from
the fermion zero modes:

�SB H = −4π2a4 ln AH

(
K f

0 + (β f − 1)K̄ f (0)
)
. (2.24)

In later sections we shall describe the computation of K (0; s) and K̄ r (0) for various
fields, as well as of the coefficients βr for gauge fields, metric and the gravitinos.

3 Simple examples with minimally coupled massless fields

We shall now review some simple applications of the results of the previous section
by computing logarithmic corrections to the black hole entropy due to minimally cou-
pled scalar, vector and fermion fields.8 First consider the example of a massless scalar
whose only interaction with other fields is a coupling to gravity via minimal coupling.
Let us denote by K s(x, x ′; s) the heat kernel associated with such a scalar. It follows
from (2.8) and the fact that �Ad S2×S2 = �Ad S2 +�S2 that the heat kernel of a massless
scalar field on Ad S2 × S2 is given by the product of the heat kernels on Ad S2 and S2,
and in the x ′ → x limit takes the form [62]

K s(0; s) = K s
Ad S2

(0; s)K s
S2(0; s). (3.1)

8 Analysis of logarithmic correction to the black hole entropy due to massless scalars with non-minimal
coupling to background gravity can be found in [61]. However for our analysis we also need to deal with
the case where the fluctuations in various fields are coupled to background fluxes. These will be discussed
in later sections.
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K s
S2 and K s

Ad S2
in turn can be calculated using (2.8) since we know the eigenfunctions

and the eigenvalues of the Laplace operator on these respective spaces. The eigenfunc-
tions fλ,� on Ad S2 are described in (A.1). Since fλ,� vanishes at η = 0 for � �= 0, only
the � = 0 eigenfunctions will contribute to K s

Ad S2
(0; s). At η = 0 fλ,0 has the value√

λ tanh(πλ)/
√

2πa2. The corresponding eigenvalue of −�Ad S2 is (λ2+ 1
4 )/a

2. Thus
(2.8) gives

K s
Ad S2

(0; s) = 1

2π a2

∞∫

0

dλ λ tanh(πλ) exp

[

−s

(

λ2 + 1

4

)

/a2
]

. (3.2)

On S2 the eigenfunctions are Ylm(ψ, φ)/a and the corresponding eigenvalues are
−l(l + 1)/a2. Since Ylm vanishes at ψ = 0 for m �= 0, and Yl0 = √

2l + 1/
√

4π at
ψ = 0 we have

K s
S2(0; s) = 1

4πa2

∑

l

e−sl(l+1)/a2
(2l + 1). (3.3)

We can bring this to a form similar to (3.2) by expressing it as

1

4π i a2 es/4a2
∮

dλ̃ λ̃ tan(πλ̃) e−sλ̃2/a2
, (3.4)

where
∮

denotes integration along a contour that travels from ∞ to 0 staying below the
real axis and returns to ∞ staying above the real axis. By deforming the integration
contour to a pair of straight lines through the origin—one at an angle κ below the
positive real axis and the other at an angle κ above the positive real axis—we get

K s
S2(0; s) = 1

2πa2 es/4a2
Im

eiκ×∞∫

0

λ̃ dλ̃ tan(πλ̃) e−sλ̃2/a2
, 0 < κ � 1. (3.5)

Combining (3.3) and (3.2) we get the heat kernel of a scalar field on Ad S2 × S2:

K s(0; s) = 1

8π2a4

∞∑

l=0

(2l + 1)

∞∫

0

dλ λ tanh(πλ) exp

[

−s̄λ2 − s̄

(

l + 1

2

)2
]

= 1

4π2a4

∞∫

0

dλ λ tanh(πλ) Im

eiκ×∞∫

0

λ̃ dλ̃ tan(πλ̃) exp
[
−s̄λ2 − s̄λ̃2

]
,

(3.6)

where

s̄ = s/a2. (3.7)
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In order to find the logarithmic correction to the entropy we need to expand K s(0; s)
in a power series expansion in s̄ and pick the coefficient K s

0 of the constant term in
this expansion. With the help of (B.1), (B.2) we get:

K s
Ad S2

(0; s) = 1

4πa2 s̄
e−s̄/4

×
[

1 +
∞∑

n=0

(−1)n

n! (2n + 1)! s̄n+1

π2n+2

1

22n

(
2−2n−1 − 1

)
ζ(2n + 2)

]

= 1

4πa2 s̄
e−s̄/4

(

1 − 1

12
s̄ + 7

480
s̄2 + O(s̄3)

)

, (3.8)

K s
S2(0; s) = 1

4πa2 s̄
es̄/4

×
[

1 −
∞∑

n=0

1

n! (2n + 1)! s̄n+1

π2n+2

1

22n

(
2−2n−1 − 1

)
ζ(2n + 2)

]

= 1

4πa2 s̄
es̄/4

(

1 + 1

12
s̄ + 7

480
s̄2 + O(s̄3)

)

. (3.9)

Substituting (3.8) and (3.9) into (3.1) we get

K s(0; s) = 1

16π2a4 s̄2

(

1 + 1

45
s̄2 + O(s4)

)

. (3.10)

This gives K s
0 = 1/720π2a4. Equation (A.12) shows that for the scalar all the eigen-

values of the kinetic operator −� are positive and hence there are no zero modes.
Hence, using (2.19) we get the logarithmic contribution to the entropy from a mini-
mally coupled scalar to be

�SB H = − 1

180
ln AH . (3.11)

Next we consider the case of a Maxwell field Aμ whose only coupling is via the
minimal coupling to the background metric. The action of such a field is given by

SA = −1

4

∫
d4x

√
det g FμνFμν, (3.12)

where Fμν ≡ ∂μAν − ∂ν Aμ is the gauge field strength. Adding a gauge fixing term

Sg f = −1

2

∫
d4x

√
det g (DμAμ)2, (3.13)

we can express the action as

SA + Sg f = −1

2

∫
d4x

√
det g Aμ(�A)μ, (3.14)
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where

(� A)μ ≡ −� Aμ + Rμν Aν, �Aμ ≡ gρσ DρDσ Aμ. (3.15)

A vector in Ad S2 × S2 decomposes into a (vector, scalar) plus a (scalar, vector),
with the first and the second factors representing tensorial properties in Ad S2 and S2

respectively. Furthermore, on any of these components the action of the kinetic oper-
ator can be expressed as �Ad S2 +�S2 , with � defined as in (3.15) for vectors and as
−� for scalars. Thus we can construct the eigenfunctions of � by taking the product
of appropriate eigenfunctions of �Ad S2 and �S2 , and the corresponding eigenvalue
of � on Ad S2 × S2 will be given by the sum of the eigenvalues of �Ad S2 and �S2 .
This gives

K v(0; s) = K v
Ad S2

(0, s)K s
S2(0; s)+ K s

Ad S2
(0, s)K v

S2(0; s). (3.16)

Thus we need to compute K v
Ad S2

(0, s) and K v
S2(0; s). Finally, quantization of gauge

fields also requires us to introduce two anticommuting scalar ghosts whose kinetic
operator is given by the standard laplacian −� in the harmonic gauge. They give a
net contribution of −2K s(0; s) to the heat kernel.

To find K v
S2 we use the basis functions given in (A.2). These have � eigenvalue

κ
(k)
1 and hence the contribution from any of these two eigenfunctions to the vector

heat kernel K v
S2(x, x; s) is given by (κ(k)1 )−1 e−κ(k)1 s gμν∂μUk(x)∂νUk(x). Now since

K v
S2(x, x; s) is independent of x after summing over the contribution from all the

states, we could compute it by taking the volume average of each term. Taking a vol-
ume average allows us to integrate by parts and gives the same result as the volume

average of (κ(k)1 )−1 e−κ(k)1 s Uk(x)(−�)Uk(x) = e−κ(k)1 s Uk(x)2. This is the same as the
contribution from Uk to the scalar heat kernel. Thus the net contribution to K v

S2(0, s)

from the pair of basis states given in (A.2) is given by 2K s
S2(0; s) − 1/2πa2, where

the subtraction term −1/2πa2 accounts for the absence of the contribution from the
l = 0 modes. Similarly the contribution from the basis states (A.3) to K v

Ad S2
(0; s) is

given by 2K s
Ad S2

(0; s). We must add to this the contribution from the discrete modes

given in (A.4). Using (A.5) we see that this contribution is given by 1/2πa2, leading
to K v

Ad S2
(0; s) = 2K s

Ad S2
(0; s) + 1/2πa2. Thus we get the net contribution to the

K (0; s) from the vector field, including the ghosts, to be:

K v(0, s)=
(

2K s
S2(0; s)− 1

2πa2

)

K s
Ad S2

(0; s)+
(

2K s
Ad S2

(0; s)+ 1

2πa2

)

K s
S2(0; s)

−2K s
S2(0; s)K s

Ad S2
(0; s). (3.17)

Using (3.8), (3.9) we get

K v(0, s) = 1

8π2a4

(
1

s̄2 + 31

45
+ O(s̄4)

)

, (3.18)

leading to K v
0 = 31/360π2a4.
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Gauge fields also have zero modes arising from the product of a−1Y00(ψ, φ) with
the discrete modes ∂m�

(�) given in (A.4). Using (2.10) and (A.5) we get the contri-
bution to K̄ from these zero modes to be

K̄ v(0) = a−2
∑

�

(Y00(ψ, φ))
2 gmn∂m�

(�)(x)∂n�
(�)(x) = 1

8π2a4 . (3.19)

We could also derive the expression for as follows. It follows from (2.16) that
8π2a4 K̄ v(0)(cosh η0 − 1) has the interpretation of the total number of gauge field
zero modes. This in turn is given by the number of discrete modes N1 on Ad S2 given
in (A.6) since the gauge field zero modes are obtained by taking the product of the
unique l = 0 mode of a scalar in S2 and the discrete modes of the vector field in Ad S2.
Thus we have 8π2a4 K̄ v(0) = 1.

We now need to compute the coefficient βv appearing in (2.19) for the zero modes
of the vector fields. This computation proceeds as follows. First we express the metric
gμν on Ad S2 × S2 as a2g(0)μν where g(0)μν is independent of a. The path integral over
Aμ is normalized such that

∫
[D Aμ] exp

[

−
∫

d4x
√

det g gμν AμAν

]

= 1, (3.20)

i.e.

∫
[D Aμ] exp

[

−a2
∫

d4x
√

det g(0) g(0)μν AμAν

]

= 1. (3.21)

From this we see that up to an a independent normalization constant, [D Aμ] actu-
ally corresponds to integration with measure

∏
μ,x d(a Aμ(x)). On the other hand the

gauge field zero modes are associated with deformations produced by the gauge trans-
formations with non-normalizable parameters: δAμ ∝ ∂μ�(x) for some functions
�(x) with a-independent integration range. Thus the result of integration over the
gauge field zero modes can be found by first changing the integration over the zero
modes of (a Aμ) to integration over � and then picking up the contribution from the
Jacobian in this change of variables. This gives a factor of a from integration over
each zero mode of Aμ. It now follows from the definition of βr given in the paragraph
below (2.16) that we have

βv = 1. (3.22)

Equation (2.19) now gives the net logarithmic contribution to SB H from the minimally
coupled vector field to be

− 4π2a4 ln AH
(
K v

0 + (βv − 1)K̄ v(0)
) = −31

90
ln AH . (3.23)

Note that the term proportional to K̄ v(0) does not contribute since βv = 1.
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Next we consider the case of a massless Dirac fermion, again with only interaction
being minimal coupling to the metric on Ad S2 × S2. The eigenfunctions and eigen-
values of the square of the Dirac operator are given by the direct product of (χ±

l.m, η
±
l,m)

given in (A.18) with (χ±
k (λ), η

±
k (λ)) given in (A.22). We can compute the heat kernel

for the fermion using the relations:

∑

m

(
(χ+

l,m)
†χ+

l,m + (χ−
l,m)

†χ−
l,m + (η+

l,m)
†η+

l,m + (η−
l,m)

†η−
l,m

)
= 1

πa2 (l + 1),

∑

k

(
(χ+

k (λ))
†χ+

k (λ)+ (χ−
k (λ))

†χ−
k (λ)+ (η+

k (λ))
†η+

k (λ)+ (η−
k (λ))

†η−
k (λ)

)

= 1

πa2 λ coth(πλ). (3.24)

The first of these relations is derived by evaluating it at ψ = 0 where only the m = 0
terms contribute whereas the second relation is derived by evaluating it at η = 0 where
only the k = 0 terms contribute. Using this we get the contribution to K (0; s) from
the fermion fields to be

K f (0; s) = − 1

π2a4

∞∫

0

dλe−s̄λ2
λ coth(πλ)

∞∑

l=0

(l + 1) e−s̄(l+1)2

= − 1

π2a4

∞∫

0

dλ λ coth(πλ)

eiκ×∞∫

0

dλ̃ λ̃ cot(πλ̃) e−s̄λ̃2−s̄λ2
. (3.25)

Note that we have included a minus sign in the heat kernel to account for the fermionic
nature of the fields. Since we are squaring the kinetic operator we should have also
gotten a factor of 1/2, but this is compensated for by a factor of 2 arising out of the
complex nature of the fields. In other words when we expand a Dirac fermion in the
basis (χ±

l,m, η
±
l,m)⊗ (χ±

k (λ), η
±
k (λ)), the coefficients of expansion are arbitrary com-

plex numbers, and hence we double the number of integration variables. Using (B.3),
(B.4) we now get

K f (0; s) = − 1

4π2a4s̄2

(

1 − 11

180
s̄2 + O(s̄4)

)

, (3.26)

leading to K f
0 = 11/720π2a4. Since there are no zero modes for the fermions, (2.19)

leads to the following contribution to the black hole entropy due to a minimally coupled
massless Dirac fermion:

− 11

180
ln AH . (3.27)

If instead we choose to work with Majorana fermions then (3.27) is replaced by
− 11

360 ln AH .
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Our analysis shows that if we have a set of nS minimally coupled massless scalar
fields, nV minimally coupled Maxwell fields and nF minimally coupled massless
Dirac fields, then they lead to a net logarithmic contribution of

�SB H = − 1

180
ln AH (nS + 62nV + 11nF ) (3.28)

to the black hole entropy. We shall now describe an alternative method for arriving at
this result. First note that in all the cases discussed above only the K0 term in (2.19) is
responsible for the logarithmic correction; the contribution proportional to (βr −1)K̄ r

vanishes either due to the vanishing of K̄ r due to absence of zero modes (as in the
case of scalars and fermions) or due to the vanishing of βr − 1 (as in the case of gauge
fields). On the other hand one can show that [63–69] the contribution to K0—the
constant term in the small s̄ expansion of the heat kernel—is given by

K0 = − 1

90π2 (nS + 62nV + 11nF )E − 1

30π2 (nS + 12nV + 6nF )I, (3.29)

where

E = 1

64

(
Rμνρσ Rμνρσ − 4RμνRμν + R2

)

I = − 1

64

(

Rμνρσ Rμνρσ − 2RμνRμν + 1

3
R2

)

.

(3.30)

For the metric (2.1) we have I = 0 and E = −1/8a4. Thus we get

K0 = 1

720π2a4 (nS + 62nV + 11nF ). (3.31)

Substituting this into (2.19) we recover (3.28).
The result (3.28) agrees with earlier results on logarithmic corrections to the extre-

mal black hole entropy computed e.g. in [41,53,54]. This will not be the case for the
results derived in later sections, so it is important to understand the relation between the
two computations. First [41,53,54] do not use the quantum entropy function for their
computation, but use the relation between the entanglement entropy and the partition
function in the presence of a conical defect. But as argued in [37,70] the entropy com-
puted by this method gives the same result computed using the K0 given in (3.29)—so
this is not a coincidence. Second, as we have seen in the analysis described above
the zero modes conspire in such a way that the result is controlled completely by
the coefficient K0 arising in the small s̄ expansion of the heat kernel. If this had not
been the case then we would have to account for the extra contribution proportional
to K̄ r (0)(βr − 1) which is absent in the analysis of [41,53,54]. As we shall see in
the next few sections, K̄ r (0)(βr − 1) will be non-vanishing when we are considering
fluctuations of the metric or gravitino degrees of freedom. Third, in arriving at (3.28)
we have analyzed fields which couple to gravity minimally without any coupling to
any background flux. This however is not always the case, e.g. whenever there is any
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background flux, e.g. for Reissner–Nordstrom black holes, the kinetic term of the
metric and some gauge fields get additional contribution due to the background flux
which is not captured in the simple formula given in (3.29). A similar effect occurs
the the fermionic sector. It may be possible to generalize (3.29) and hence the analysis
of [41,53,54] to such cases, but the results currently available in [41,53,54] are not
sufficient to compute correctly the logarithmic correction to the extremal black hole
entropy due to metric and gravitino fluctuations, and other fields with non-trivial cou-
pling to the background flux. It will be interesting to generalize the earlier analysis of
[41,53,54] to incorporate the effect of the zero modes and the background flux, and
see if the results for logarithmic correction to the entropy agree with those given in
Sects. 4–6.

4 Extremal Reissner–Nordstrom black holes

We now consider the Einstein-Maxwell theory with the action

S =
∫ √

det g Lb, Lb = [
R − FμνFμν

]
, (4.1)

where R is the scalar curvature computed with the metric gμν and Fμν = ∂μAν−∂ν Aμ
is the gauge field strength. Note that we have set G N = 1/16π . The near horizon geom-
etry of an extremal electrically charged Reissner–Nordstrom solution in this theory is
given by (see e.g. [23])

ds2 ≡ ḡμνdxμdxν = a2(dη2 + sinh2 ηdθ2)+ a2(dψ2 + sin2 ψdφ2),

F̄mn = i a−1 εmn . (4.2)

The parameter a is related to the electric charge q via the relation q = a. The classical
Bekenstein–Hawking entropy of this black hole is given by

SB H = 4π AH = 16π2a2 = 16π2q2. (4.3)

Since this theory possesses an electric-magnetic duality symmetry, the result for the
entropy of a dyonic black hole carrying electric charge q and magnetic charge p can
be found from that of an electrically charged black hole by replacing q by

√
q2 + p2.

This holds for the classical entropy given in (4.3) as well as the logarithmic correction
that will be discussed below.

To compute logarithmic corrections to the entropy of this black hole we consider
fluctuations of the metric and gauge fields of form

gμν = ḡμν + hμν, Aμ = Āμ + 1

2
Aμ,

Fμν = F̄μν + 1

2
(∂μAν − ∂νAμ) ≡ F̄μν + 1

2
fμν. (4.4)

In subsequent discussions all indices will be raised and lowered by the background
metric ḡ. Substituting (4.4) into (4.1), adding to this a gauge fixing term
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Lg f = −1

2
gρσ

(

Dμhμρ − 1

2
Dρ hμμ

)(

Dν hνσ − 1

2
Dσ hνν

)

− 1

2
DμAμDνAν,

(4.5)

and throwing away total derivative terms, we get the total Lagrangian density for the
fluctuating fields:

Lb + Lg f = constant − 1

4
hμν

(
�̃h

)μν + 1

2
Aμ(ḡ

μν� − Rμν)Aν

+a−2
(

1

2
hmnhmn − 1

2
hαβhαβ + hmαhmα + 1

4
(hαα − hm

m)
2
)

−2ia−1εmn fαmhαn − i

2
a−1 εmn fmn

(
hγγ − h p

p

)
, (4.6)

where

(
�̃h

)
μν

= −�hμν − Rμτhτν − Rντh τ
μ − 2Rμρντhρτ + 1

2
ḡμν ḡρσ � hρσ

+R hμν + (
ḡμνRρσ + Rμν ḡρσ

)
hρσ − 1

2
R ḡμν ḡρσ hρσ . (4.7)

In this formula all components of the Riemann and Ricci tensor and the curvature
scalar are computed with the background metric ḡμν . To this we must also add the
Lagrangian density for the ghost fields [9]:

Lghost = [
bμ

(
ḡμν� + Rμν

)
cν + b�c − 2 bF̄μν Dμcν

]
. (4.8)

We now need to find the eigenmodes and eigenvalues of the kinetic operator and then
calculate the determinant. We follow the same strategy as in [9,10], i.e. first expand
the various fields as linear combinations of the eigenmodes described in Appendix A,
substitute them into the action (4.6), (4.8), and then find the eigenvalues of the kinetic
operator. For this we can work at fixed l and λ values since at the quadratic level
the modes carrying different l and λ values do not mix. This simplifies the problem
enormously since at fixed values of l and λ the kinetic operator reduces to a finite
dimensional matrix M(l + 1

2 , λ). The net contribution to K (0; s) can then be com-
puted using the formula

K (0; s) = 1

8π2a4

∞∑

l=0

(2l + 1)

∞∫

0

dλ λ tanh(πλ) T resM(l+ 1
2 ,λ)

= 1

4π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ tan(πλ̃)

∞∫

0

dλ λ tanh(πλ) T resM(̃λ,λ). (4.9)

It will be convenient to introduce a new matrix M via the relation:

M =
{
−(κ1 + κ2) I + a−2 M

}
, (4.10)
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where I is the identity matrix and

κ1 = a−2l(l + 1) = a−2
(

λ̃2 − 1

4

)

, κ2 = a−2
(

λ2 + 1

4

)

. (4.11)

Substituting this into (4.9) we get the first contribution to K (0; s) which we denote
by K̃ B

(1)(0; s):9

K̃ B
(1)(0; s) = 1

4π2a4

eiκ×∞∫

0

dλ̃ λ̃ tan(πλ̃)

∞∫

0

dλ λ tanh(πλ) e−s̄(λ2+̃λ2) T r(es̄ M ).

(4.12)

We can now carry out the small s̄ expansion by expanding the last term as

T r(es̄ M ) =
∞∑

n=0

1

n! s̄n T r(Mn) (4.13)

and using (B.1), (B.2) to evaluate the integrals. (4.12) is not the complete contribution
however, since for l = 0 and 1 some modes will be absent due to the constraints on the
modes mentioned below (A.2), (A.7). This requires a subtraction term which we shall
call K̃ B

(2). Finally we also have to include the contribution from the discrete modes

given in (A.4), (A.9) which we shall denote by K B
(3).

Our first task will be to find the matrix M . For this we expand the various fields as

Aα = 1√
κ1

(
C1∂α u + C2εαβ∂

β u
)
, Am = 1√

κ2

(
C3∂m u + C4εmn∂

n u
)
,

hmα = 1√
κ1κ2

(
B1 ∂α∂m u + B2 εmn∂α∂

nu + B3 εαβ ∂
β∂mu + B4 εαβ εmn ∂

β∂nu
)
,

hαβ = 1√
2
(i B5 + B6) gαβ u + 1

√
κ1 − 2a−2

(
Dαξβ + Dβξα − gαβ Dγ ξγ

)
,

hmn = 1√
2
(i B5 − B6) gmn u + 1

√
κ2 + 2a−2

(
Dm ξ̂n + Dn ξ̂m − gmn D p ξ̂p

)
,

ξα = 1√
κ1

(
B7∂α u + B8 εαβ∂

β u
)
, ξ̂m = 1√

κ2

(
B9∂m u + B0 εmn∂

n u
)
.

(4.14)

9 The superscript B stands for bosonic fields. Of course in the Einstein–Maxwell theory all physical fields
are bosonic and hence this symbol is redundant, but eventually we shall regard this as the bosonic sector of
N = 2 supergravity. The ‘tilde’ on K stands for the fact that we have overcounted the contribution from
the l = 0 and l = 1 sectors by ignoring the constraints mentioned below (A.2), (A.7). Again this notation
has been used keeping in mind a similar notation to be used in Sect. 5 for the fermionic sector of N = 2
supergravity.
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Here u denotes the product of Ylm(ψ, φ)/a and a basis vector fλ,�(η, θ) given in (A.1)
for some fixed (l, λ). Bi ’s and Ci ’s are constants labelling the fluctuations. Substituting
this into the action we can compute the matrix M of the kinetic operator. The result is

1

2

( �B �C) M
( �B

�C
)

= −1

2
(κ1 + κ2)

[
4∑

i=1

C2
i +

6∑

i=1

B2
i

]

− 1

2
(κ1 + κ2 − 4 a−2)(B2

7 + B2
8 )

−1

2
(κ1 + κ2 + 4a−2)(B2

9 + B2
0 )

+a−2
4∑

i=1

B2
i − 2ia−2 B5 B6 − a−2(B2

7 + B2
8 )+ a−2(B2

9 + B2
0 )+ 2a−2 B2

6

−2ia−1
[
−√

κ1C3 B2 + √
κ1C4 B1 + √

κ2C1 B2 + √
κ2C2 B4 + √

2κ2 B6C4

]
.

(4.15)

The matrix M and hence the matrix M defined via (4.10), (4.15) has block diago-
nal form and is easy to diagonalize. First of all we note the the modes labelled by
B3, B7, B8, B9 and B0 do not mix with any other mode and the modes B4 and C2 only
mix with each other but not with any other mode. The modes B2,C1 and C3 mix with
each other but not with any other mode. Finally the modes B5, B6,C4 and B1 mix
with each other but not with any other mode. The eigenvalues of M in these different
sectors are given by

B3 : 2, B7 : 2, B8 : 2, B9 : −2, B0 : −2, B4,C2 : 1 ± i
√

4κ2a2 − 1,

B2,C1,C3 : 0, 1 ± i
√

4a2(κ1 + κ2)− 1

B5, B6,C4, B1 : Eigenvalues of

⎛

⎜
⎜
⎝

0 −2i 0 0
−2i 4 −2ia

√
2κ2 0

0 −2ia
√

2κ2 0 −2ia
√
κ1

0 0 −2ia
√
κ1 2

⎞

⎟
⎟
⎠ .

(4.16)

From this we get

T r(M) = 12,

T r(M2) = 36 − 32λ2 − 16̃λ2,

T r(M3) = 24 − 144λ2 − 48̃λ2,

T r(M4) = 68 − 464λ2 + 192λ4 − 112̃λ2 + 192λ2̃λ2 + 64̃λ4.

(4.17)

Substituting this into (4.12) and carrying our the λ, λ̃ integrals using (B.1), (B.2) we
get the constant term in the small s̄ expansion of K̃ B

(1)(0; s) to be
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K̃ B
(1)(0; s) : 337

360π2a4 . (4.18)

We now need to remove the contribution due to the modes which are absent for
l = 0 and l = 1. For l = 1 the modes B7 and B8 are absent due to the constraint men-
tioned below (A.7). The removed eigenvalues of M are 2 and 2, and so those of M are
−a−2(λ2+ 1

4 ) and −a−2(λ2+ 1
4 ). For l = 0 the modes C1,C2, B1, B2, B3, B4, B7, B8

are absent due to the constraint mentioned below (A.2). The removed eigenvalues of
M are:

B1 : 2, B3 : 2, B7 : 2, B8 : 2, B4,C2 : 1 ± 2iλ, B2,C1 : 1 ± 2iλ. (4.19)

This gives a net subtraction term

K̃ B
(2)(0; s) = − 1

8π2a4

∞∫

0

dλ λ tanh πλ e−s̄λ2
e−s̄/4

[
6 + 2es̄(1+2iλ)

+ 2es̄(1−2iλ) + 4e2s̄
]
. (4.20)

The first term inside the square bracket is the contribution from the l = 1 modes while
the other terms represent contribution from the l = 0 modes. Again by expanding the
term inside the square bracket in a power series expansion in s̄ and using (B.1) we get
the s̄ independent contribution to K̃ B

(2) in the small s̄ expansion to be

K̃ B
(2)(0; s) : 1

24π2a4 . (4.21)

Next we need to include the contribution due to the discrete modes. For this we
expand the fields as

Am = E1vm + E2εmnv
n,

hmα = 1√
κ1

(
E3∂αvm + Ẽ3εmn∂αv

n + E4εαβ∂
βvm + Ẽ4εαβεmn∂

βvn) (4.22)

hmn = a√
2

(
Dm ξ̂n + Dn ξ̂m − gmn D p ξ̂p

)
, ξ̂m = E5vm + Ẽ5εmnv

n,

and

hmn = E6wmn . (4.23)

Here vm is the product of a spherical harmonic with one of the vectors in (A.3) and
wmn is the product of a spherical harmonic with one of the basis vectors given in
(A.9). Following the strategy of [9,10], we have taken vm to be a real basis vector, and
regarded vm and εmnvn as independent. This effectively doubles the number of modes
and hence we need to halve the contribution from each mode. Thus for example the
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contribution to the heat kernel on Ad S2 from each of these basis vectors is now given
by a half of (A.5), i.e. 1/4πa2 since the net contribution is shared between vm and
εmnvn . There is no mixing between the modes described in (4.22) and (4.23); hence
we can compute their contributions separately. Substituting (4.22) into the action we
get the kinetic term to be

−1

2
κ1 (E

2
1 + E2

2)− 1

2

4∑

i=3

(κ1 − 2a−2)(E2
i + Ẽ2

i )− 1

2
(κ1 + 2a−2)(E2

5 + Ẽ2
5)

+2ia−1√κ1
(
E1 Ẽ3 − E2 E3

)

≡ −1

2
κ1

(

E2
1 + E2

2 +
5∑

i=3

(E2
i + Ẽ2

i )

)

+ 1

2
a−2

(
�E �̃E

)
M̂

( �E
�̃E

)

(4.24)

Eigenvalues of M̂ defined through (4.24) are given by

E4 : 2, Ẽ4 : 2, E5 : −2, Ẽ5 : −2, (E1, Ẽ3) : 1 ± i
√

4l2 + 4l − 1,

(E2, E3) : 1 ± i
√

4l2 + 4l − 1. (4.25)

For l = 0 however the modes E3, Ẽ3, E4, Ẽ4 carrying M̂ eigenvalues 2, 2, 2, 2 are
absent due to the condition mentioned below (A.2). Finally the mode (4.23) gives a
kinetic term

− 1

2
κ1 E2

6 . (4.26)

Combining these results we get the net contribution to the heat kernel from the discrete
modes to be

K B
(3)(0; s) = 1

16π2a4

[ ∞∑

l=0

{

(2l + 1)e−s̄l(l+1)
(

2e2s̄ + 2e−2s̄ + 2es̄(1+i
√

4l2+4l−1)

+2es̄(1−i
√

4l2+4l−1)
)}

− 4 e2s̄ + 6
∞∑

l=0

(2l + 1)e−s̄l(l+1)
]

= 1

4π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ tan πλ̃ e−s̄λ̃2
es̄/4

(

e2s̄ + e−2s̄ + es̄(1+i
√

4̃λ2−2)

+es̄(1−i
√

4̃λ2−2) + 3

)

− 1

4π2a4 e2s̄ (4.27)

The first line represents the contribution from the eigenvalues (4.25) and the second
line represents the effect of removing the four l = 0 modes. The third line represents
the contribution from the mode E6 with kinetic term given in (4.26). We can evaluate
the integral by expanding the terms inside ( ) in the fourth and fifth lines in a power
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series expansion in s̄ and using (B.2). The result for the constant term in the small s̄
expansion of K B

(3) is:

K B
(3) : − 5

24π2a4 . (4.28)

Next we turn to the ghost fields. The last term in (4.8) describes mixing between the
fields b and cν , but this has no effect on the determinant since the mixing matrix has
an upper triangular form. Thus we can separately evaluate the contribution from the
(b, c) fields and (bμ, cν) fields. The contribution from the b, c ghosts associated with
the U (1) gauge field is negative of that of two scalars. This gives the first contribution
from the ghosts:

K ghost
(1) = − 1

2π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ tan πλ̃

∞∫

0

dλ λ tanh πλ e−s̄ (λ2+̃λ2). (4.29)

For finding the contribution due to the bμ, cμ ghosts associated with general coordinate
invariance, we expand them in modes:

bα = A
1√
κ1
∂αu + B

1√
κ1
εαβ∂

βu,

bm = C
1√
κ2
∂mu + D

1√
κ2
εmn∂

nu,

cα = E
1√
κ1
∂αu + F

1√
κ1
εαβ∂

βu,

cm = G
1√
κ2
∂mu + H

1√
κ2
εmn∂

nu.

(4.30)

Substituting this into the first term in (4.8) we get the ghost kinetic term:

(κ1 + κ2 − 2a−2)(AE + B F)+ (κ1 + κ2 + 2a−2)(CG + DH). (4.31)

This gives the second contribution to the heat kernel of the ghosts

K ghost
(2) = − 1

8π2a4

∞∑

l=0

(2l + 1)

∞∫

0

dλ λ tanh πλ e−s̄ λ2− 1
4 s̄−s̄l(l+1))

[

4e−2s̄ + 4e2s̄
]

=− 1

4π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ tan πλ̃

∞∫

0

dλ λ tanh πλ e−s̄ (λ2+̃λ2)

[

4e−2s̄ +4e2s̄
]

.

(4.32)
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We need to subtract from this the contribution due to the absent modes A, B, E, F for
l = 0. This is given by

K ghost
(3) = 1

2π2a4

∞∫

0

dλ λ tanh πλ e−s̄ λ2
e2s̄− 1

4 s̄ . (4.33)

Finally we need to include the contribution due to the discrete modes where we take
bm and cm to be proportional to vm . This gives the final contribution to the ghost heat
kernel:

K ghost
(4) = − 1

2π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ tan πλ̃ e−s̄ λ̃2
e−2s̄+ 1

4 s̄ (4.34)

The small s expansion of (4.29), (4.32)–(4.34) can be found by standard method
described above and we get the following constant terms in the small s expansion:

K ghost
(1) : − 1

360π2a4

K ghost
(2) : − 91

90π2a4

K ghost
(3) : 5

12π2a4

K ghost
(4) : 5

12π2a4 .

(4.35)

Adding all the contributions in (4.18), (4.21), (4.28) and (4.35) we get the total con-
tribution to the constant term in the small s̄ expansion of the heat kernel

K B
0 = 53

90π2a4 . (4.36)

Next we turn to the contribution due to the zero modes. We first need to remove
from K B

0 the contribution due to the zero modes and then compute the contribution to
Z Ad S2 from integration over the zero modes. The combined effect of these is encoded
in the

∑
r (βr − 1)K̄ r (0) term in (2.19). Thus we need to compute βr and K̄ r (0) due

to various zero modes. The relevant zero modes come from the gauge field Aμ and
the metric hμν which we shall label by r = v and r = m respectively. We can identify
these zero modes by examining the discrete mode contribution (4.27) to K (0; s). First

of all note that for l = 0 the (2l +1)es̄(−l(l+1)+1+i
√

4l2+4l−1) term becomes a constant
signalling the presence of a zero mode. Working backwards we can identify them as
due to the modes E1, E2 of the gauge field Aμ. Since this term gives a contribution
of 1/8π2a4 to K (0; s) we have K̄ v(0) = 1/8π2a4. But we have seen that βv = 1 for
the gauge fields and hence these zero modes do not contribute to

∑
r (βr − 1)K̄ r (0).

The other zero modes come from the 3(2l + 1)e−l(l+1)s̄ term in (4.27) in the l = 0
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sector and the (2l + 1)e−l(l+1)s̄+2s̄ term in the l = 1 sector. The former corresponds
to the modes represented by E6 while the latter correspond to the modes represented
by E5, Ẽ5. By examining (4.22), (4.23) we see that both are modes of the metric.
Physically the former represent deformations associated with the asymptotic Virasoro
symmetries of the Ad S2 metric, while the latter are the zero modes of the SU (2) gauge
fields obtained from the dimensional reduction on S2. The total contribution from these
modes to K (0, s) is given by 6/8π2a4 and hence we have K̄ m(0) = 3/4π2a4.

To complete the analysis we need to compute βm associated with the metric defor-
mation. For this we proceed as in (3.20), (3.21). The path integral over the metric
fluctuation hμν is normalized as

∫
[Dhμν] exp

[

−
∫

d4x
√

det g gμνgρσ hμρhνσ

]

= 1, (4.37)

i.e.

∫
[Dhμν] exp

[

−
∫

d4x
√

det g(0) g(0)μνg(0)ρσ hμρhνσ

]

= 1. (4.38)

Thus the correctly normalized integration measure, up to an a independent constant,
is
∏

x,(μν) dhμν(x). We now note that the zero modes are associated with diffeo-
morphisms with non-normalizable parameters: hμν ∝ Dμξν + Dνξμ, with the dif-
feomorphism parameter ξμ(x) having a independent integration range. Thus the a
dependence of the integral over the metric zero modes can be found by finding the
Jacobian from the change of variables from hμν to ξμ. Lowering of the index of ξμ

gives a factor of a2, leading to a factor of a2 per zero mode. Thus we have βm = 2
and hence the contribution to

∑
r (βr − 1)K̄ r (0) from the zero modes of the metric is

given by

(2 − 1)
3

4π2a4 = 3

4π2a4 . (4.39)

Adding (4.39) to (4.36) and substituting this into (2.19), we get the net contribution
to the logarithmic correction to the entropy of an extremal Reissner–Nordstrom black
hole:

�SB H = −241

45
ln AH . (4.40)

If in addition the theory contains nS minimally coupled massless scalar, nF min-
imally coupled massless Dirac fermion and nV minimally coupled Maxwell fields,
then the total logarithmic correction to SB H is given by the sum of (3.28) and (4.40):

�SB H = − 1

180
(964 + nS + 62nV + 11nF ) ln AH . (4.41)
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5 Half BPS black holes in pure N = 2 supergravity

We shall now consider half BPS black holes in pure N = 2 supergravity [71]. This
requires adding to the Einstein–Maxwell action described in the previous section the
fermionic action of a pair of Majorana spinors ψμ and ϕμ satisfying

ψ̄μ = ψT
μ C̃, ϕ̄μ = ϕT

μ C̃, (5.1)

for eachμ. Here C̃ is the charge conjugation operator defined in (A.27). The quadratic
part of the fermionic action is given by

S f =
∫

d4x
√

det g L f ,

L f = −1

2
ψ̄μγ

μνρDνψρ − 1

2
ϕ̄μγ

μνρDνϕρ + 1

2
Fμνψ̄μϕν + 1

4
Fρσ ψ̄μγ

μνρσ ϕν

−1

2
Fμνϕ̄μψν − 1

4
Fρσ ϕ̄μγ

μνρσψν. (5.2)

For quantization we need to add to this a gauge fixing term

Lg f = 1

4
ψ̄μγ

μγ νDνγ
ρψρ + 1

4
ϕ̄μγ

μγ νDνγ
ρϕρ, (5.3)

and a ghost action

Lghost =
2∑

r=1

[ ¯̃br �
μDμc̃r + ¯̃er �

μDμẽr

]
. (5.4)

Here for each r (r = 1, 2) b̃r , c̃r and ẽr represent spin half bosonic ghosts. The two
values of r correspond to two local supersymmetries which the theory possesses, b̃r

and c̃r are the standard Fadeev–Popov ghosts, and ẽr is a special ghost originating due
to the unusual nature of the gauge fixing terms we have used [9].

The sum of L f and Lg f , evaluated in the background (4.2), can be expressed as

L f + Lg f = −1

2

[
ψ̄αK(1)

α + ψ̄mK(2)
m + ϕ̄αK(3)

α + ϕ̄mK(4)
m

]
(5.5)

where

K(1)
α = −1

2
γ n( �DS2 + σ3 �DAd S2)γαψn − 1

2
γ β

(�DS2 + σ3 �DAd S2

)
γαψβ

+ i a−1ε βα σ3τ3ϕβ

K(2)
m =−1

2
γ β( �DS2 +σ3 �DAd S2)γmψβ− 1

2
γ n (�DS2 +σ3 �DAd S2

)
γmψn − i a−1ε n

m ϕn

K(3)
α = −1

2
γ n( �DS2 + σ3 �DAd S2)γαϕn − 1

2
γ β

(�DS2 + σ3 �DAd S2

)
γαϕβ

− i a−1ε βα σ3τ3ψβ
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K(4)
m =−1

2
γ β( �DS2 +σ3 �DAd S2)γmϕβ− 1

2
γ n (�DS2 +σ3 �DAd S2

)
γmϕn + i a−1ε n

mψn .

(5.6)

We now expand the fermion fields in the basis described in Appendix A. As in the
case of the bosonic fields we can work at fixed values of l and λ. Let χ denote the
product of χ+

l,m or η+
l,m defined in (A.18) and χ+

k (λ) or η+
k (λ) defined in (A.22). Then

χ satisfies

�DS2χ= iζ1 χ, �DAd S2χ= iζ2 χ, ζ1 =(l + 1)/a ≥ 1/a, ζ2 = λ/a ≥ 0. (5.7)

Furthermore, using Eqs. (5.7) and the representation of the γ -matrices given in (A.14)
we get

ε βα γβ = iσ3γα, εαβDβχ = −iσ3 Dαχ − ζ1σ3γαχ,

ε n
m γn = iτ3γm, εmn Dnχ = −iτ3 Dmχ − ζ2τ3σ3γmχ.

(5.8)

The basis functions involving χ−
l,m and η−

l,m will be represented as σ3χ
+
l,m and σ3η

+
l,m

respectively; thus we shall not include them separately. Similarly the basis functions
χ−

k (λ) and η−
k (λ) will be represented as τ3χ

+
k (λ) and τ3η

+
k (λ). We now introduce the

modes of ψμ and ϕμ via the expansion

ψα = b1γαχ + b2σ3γαχ + b3 Dαχ + b4σ3 Dαχ

+b′
1γατ3χ + b′

2σ3γατ3χ + b′
3τ3 Dαχ + b′

4σ3τ3 Dαχ

ψm = c1γmχ + c2σ3γmχ + c3σ3 Dmχ + c4 Dmχ

+c′
1γmτ3χ + c′

2σ3γmτ3χ + c′
3σ3τ3 Dmχ + c′

4τ3 Dmχ

ϕα = g1γαχ + g2σ3γαχ + g3 Dαχ + g4σ3 Dαχ

+g′
1γατ3χ + g′

2σ3γατ3χ + g′
3τ3 Dαχ + g′

4σ3τ3 Dαχ

ϕm = h1γmχ + h2σ3γmχ + h3σ3 Dmχ + h4 Dmχ

+h′
1γmτ3χ + h′

2σ3γmτ3χ + h′
3σ3τ3 Dmχ + h′

4τ3 Dmχ (5.9)

where bi , b′
i , ci , c′

i , gi , g′
i , hi , h′

i are constants. Substituting this into (5.6) we get

K(1)
α = B1γαχ + B2σ3γαχ + B3 Dαχ + B4σ3 Dαχ

+B ′
1γατ3χ + B ′

2σ3γατ3χ + B ′
3τ3 Dαχ + B ′

4σ3τ3 Dαχ

K(2)
m = C1γmχ + C2σ3γmχ + C3σ3 Dmχ + C4 Dmχ

+C ′
1γmτ3χ + C ′

2σ3γmτ3χ + C ′
3σ3τ3 Dmχ + C ′

4τ3 Dmχ

K(3)
α = G1γαχ + G2σ3γαχ + G3 Dαχ + G4σ3 Dαχ

+G ′
1γατ3χ + G ′

2σ3γατ3χ + G ′
3τ3 Dαχ + G ′

4σ3τ3 Dαχ

K(4)
m = H1γmχ + H2σ3γmχ + H3σ3 Dmχ + H4 Dmχ

+H ′
1γmτ3χ + H ′

2σ3γmτ3χ + H ′
3σ3τ3 Dmχ + H ′

4τ3 Dmχ (5.10)
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where

B1 = −iζ1b1 + 1

2
ζ 2

1 b3 + 1

2
ζ1ζ2b4 + iζ1c1 − 1

2
ζ1ζ2c3 + 1

2

(

ζ 2
2 + 1

a2

)

c4

−a−1g′
1 − i ζ1a−1g′

3

B2 = iζ1b2 + 1

2
ζ1ζ2b3 − 1

2
ζ 2

1 b4 + iζ1c2 − 1

2

(

ζ 2
2 + 1

a2

)

c3 − 1

2
ζ1ζ2c4

− a−1g′
2 − i ζ1a−1g′

4

B3 = iζ2b4 − 2c1 − iζ2c3 + a−1g′
3

B4 = iζ2b3 − 2c2 − iζ2c4 + a−1g′
4

C1 = −iζ2b2 + 1

2

(

ζ 2
1 − 1

a2

)

b3 + 1

2
ζ1ζ2b4 − iζ2c2 − 1

2
ζ1ζ2c3 + 1

2
ζ 2

2 c4

− a−1h′
1 + i ζ2a−1h′

3

C2 = iζ2b1 − 1

2
ζ1ζ2b3 + 1

2

(

ζ 2
1 − 1

a2

)

b4 − iζ2c1 + 1

2
ζ 2

2 c3 + 1

2
ζ1ζ2c4

− a−1h′
2 + i ζ2a−1h′

4

C3 = 2b2 + iζ1b4 − iζ1c3 − a−1h′
3

C4 = −2b1 − iζ1b3 + iζ1c4 − a−1h′
4

B ′
1 = −iζ1b′

1 + 1

2
ζ 2

1 b′
3 − 1

2
ζ1ζ2b′

4 + iζ1c′
1 + 1

2
ζ1ζ2c′

3 + 1

2

(

ζ 2
2 + 1

a2

)

c′
4

− a−1g1 − i ζ1a−1g3

B ′
2 = iζ1b′

2 − 1

2
ζ1ζ2b′

3 − 1

2
ζ 2

1 b′
4 + iζ1c′

2 − 1

2

(

ζ 2
2 + 1

a2

)

c′
3 + 1

2
ζ1ζ2c′

4

− a−1g2 − i ζ1a−1g4

B ′
3 = −iζ2b′

4 − 2c′
1 + iζ2c′

3 + a−1g3

B ′
4 = −iζ2b′

3 − 2c′
2 + iζ2c′

4 + a−1g4

C ′
1 = iζ2b′

2 + 1

2

(

ζ 2
1 − 1

a2

)

b′
3 − 1

2
ζ1ζ2b′

4 + iζ2c′
2 + 1

2
ζ1ζ2c′

3 + 1

2
ζ 2

2 c′
4

− a−1h1 − i ζ2a−1h3

C ′
2 = −iζ2b′

1 + 1

2
ζ1ζ2b′

3 + 1

2

(

ζ 2
1 − 1

a2

)

b′
4 + iζ2c′

1 + 1

2
ζ 2

2 c′
3 − 1

2
ζ1ζ2c′

4

− a−1h2 − iζ2a−1h4

C ′
3 = 2b′

2 + iζ1b′
4 − iζ1c′

3 − a−1h3

C ′
4 = −2b′

1 − iζ1b′
3 + iζ1c′

4 − a−1h4

G1 = −iζ1g1 + 1

2
ζ 2

1 g3 + 1

2
ζ1ζ2g4 + iζ1h1 − 1

2
ζ1ζ2h3 + 1

2

(

ζ 2
2 + 1

a2

)

h4

+ a−1b′
1 + i ζ1a−1b′

3
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G2 = iζ1g2 + 1

2
ζ1ζ2g3 − 1

2
ζ 2

1 g4 + iζ1h2 − 1

2

(

ζ 2
2 + 1

a2

)

h3 − 1

2
ζ1ζ2h4

+ a−1b′
2 + i ζ1a−1b′

4

G3 = iζ2g4 − 2h1 − iζ2h3 − a−1b′
3

G4 = iζ2g3 − 2h2 − iζ2h4 − a−1b′
4

H1 = −iζ2g2 + 1

2

(

ζ 2
1 − 1

a2

)

g3 + 1

2
ζ1ζ2g4 − iζ2h2 − 1

2
ζ1ζ2h3 + 1

2
ζ 2

2 h4

+ a−1c′
1 − i ζ2a−1c′

3

H2 = iζ2g1 − 1

2
ζ1ζ2g3 + 1

2

(

ζ 2
1 − 1

a2

)

g4 − iζ2h1 + 1

2
ζ 2

2 h3 + 1

2
ζ1ζ2h4

+ a−1c′
2 − i ζ2a−1c′

4

H3 = 2g2 + iζ1g4 − iζ1h3 + a−1c′
3

H4 = −2g1 − iζ1g3 + iζ1h4 + a−1c′
4

G ′
1 = −iζ1g′

1 + 1

2
ζ 2

1 g′
3 − 1

2
ζ1ζ2g′

4 + iζ1h′
1 + 1

2
ζ1ζ2h′

3 + 1

2

(

ζ 2
2 + 1

a2

)

h′
4

+ a−1b1 + i ζ1a−1b3

G ′
2 = iζ1g′

2 − 1

2
ζ1ζ2g′

3 − 1

2
ζ 2

1 g′
4 + iζ1h′

2 − 1

2

(

ζ 2
2 + 1

a2

)

h′
3 + 1

2
ζ1ζ2h′

4

+ a−1b2 + i ζ1a−1b4

G ′
3 = −iζ2g′

4 − 2h′
1 + iζ2h′

3 − a−1b3

G ′
4 = −iζ2g′

3 − 2h′
2 + iζ2h′

4 − a−1b4

H ′
1 = iζ2g′

2 + 1

2

(

ζ 2
1 − 1

a2

)

g′
3 − 1

2
ζ1ζ2g′

4 + iζ2h′
2 + 1

2
ζ1ζ2h′

3 + 1

2
ζ 2

2 h′
4

+ a−1c1 + i ζ2a−1c3

H ′
2 = −iζ2g′

1 + 1

2
ζ1ζ2g′

3 + 1

2

(

ζ 2
1 − 1

a2

)

g′
4 + iζ2h′

1 + 1

2
ζ 2

2 h′
3 − 1

2
ζ1ζ2h′

4

+ a−1c2 + i ζ2a−1c4

H ′
3 = 2g′

2 + iζ1g′
4 − iζ1h′

3 + a−1c3

H ′
4 = −2g′

1 − iζ1g′
3 + iζ1h′

4 + a−1c4. (5.11)

We can express this as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�B
�C
�G
�H
�B ′
�C ′
�G ′
�H ′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�b
�c
�g
�h
�b′
�c′
�g′
�h′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.12)
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where M is a 32 × 32 matrix. If we introduce the matrix M1 through

M2 = −(ζ 2
1 + ζ 2

2 )I32 + a−2M1, (5.13)

then the fermionic contribution to the heat kernel from the l ≥ 1, i.e. ζ1 ≥ 2/a modes
will be given by

K f
(1)(0; s)=− 1

8π2a4 ,

∞∑

l=1

(l + 1)

∞∫

0

dλ λ coth πλ e−s̄
(
(l+1)2+λ2

) ∞∑

n=0

s̄n

n! T r(Mn
1).

(5.14)

Note the normalization factor 1/8 instead of 1 as in (3.25). A factor of 1/4 can be traced
to the fact that in the analog of (3.24) we should no longer include the χ−’s or η−’s
in the sum since in the basis of expansion (5.9), (5.10) we have included, besides χ ,
the states σ3χ, τ3χ and σ3τ3χ . Another factor of 1/2 arises from the fact that we are
dealing with Majorana fermions instead of Dirac fermions.

In (5.14) we have not included the l = 0 contribution. This is due to the fact
that for l = 0, i.e. ζ1 = a−1 the modes Dαχ and γαχ are related by (A.30). Thus
we can set b3 = b4 = b′

3 = b′
4 = g3 = g4 = g′

3 = g′
4 = 0 and replace the expressions

for B1, B2, B ′
1, B ′

2,G1,G2,G ′
1,G ′

2 by those of B1 + i B3/2a, B2 + i B4/2a, B ′
1 +

i B ′
3/2a, B ′

2 + i B ′
4/2a,G1 + iG3/2a,G2 + iG4/2a,G ′

1 + iG ′
3/2a,G ′

2 + iG ′
4/2a

respectively. This gives a 24 × 24 matrix M̃ relating (B1, B2, B ′
1, B ′

2,C1, . . . ,C4,

C ′
1, . . . ,C ′

4,G1,G2,G ′
1,G ′

2, H1, . . . , H4, H ′
1, . . . , H ′

4) to (b1, b2, b′
1, b′

2, c1, . . . , c4,

c′
1, . . . , c′

4, g1, g2, g′
1, g′

2, h1, . . . , h4, h′
1,

. . . , h′
4). Let us introduce the matrix M̃1 via:

M̃2 = −(a−2 + ζ 2
2 )I24 + a−2M̃1. (5.15)

Then the contribution from the l = 0 modes will be given by

K f
(2)(0; s) = − 1

8π2a4

∞∫

0

dλ λ coth πλ e−s̄
(
1+λ2

) ∞∑

n=0

s̄n

n! T r(M̃n
1). (5.16)

We can now write

K f
(1)(0; s)+ K f

(2)(0; s) = K̃ f
(1)(0; s)+ K̃ f

(2)(0; s), (5.17)
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where

K̃ f
(1)(0; s) = − 1

8π2a4

∞∑

l=0

(l + 1)

∞∫

0

dλ λ coth πλ e−s̄
(
(l+1)2+λ2

) ∞∑

n=0

s̄n

n! T r(Mn
1)

=− 1

8π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ cot πλ̃

∞∫

0

dλ λ coth πλ e−s̄ (λ2+̃λ2)
∞∑

n=0

s̄n

n! T r(Mn
1),

(5.18)

and

K̃ f
(2)(0; s)=− 1

8π2a4

∞∫

0

dλλ coth πλe−s̄
(
1+λ2

) ∞∑

n=0

s̄n

n!
[
T r(M̃n

1)−T r(Mn
1)|l=0

]
.

(5.19)

Finally we have to include the contribution from the discrete modes obtained by
taking ψm to be a linear combination of the product of the modes given in (A.31)
and (A.18). The contribution from these modes may be analyzed by setting λ = i
i.e. ζ2 = i/a, bi = b′

i = gi = g′
i = 0 for 1 ≤ i ≤ 4, and ci+2 = 2aci , c′

i+2 =
2ac′

i , hi+2 = 2ahi , h′
i+2 = 2ah′

i for i = 1, 2 in (5.11). Equation (5.11) now gives
Bi = B ′

i = Gi = G ′
i = 0 for 1 ≤ i ≤ 4, and Ci+2 = 2aCi ,C ′

i+2 = 2aC ′
i , Hi+2 =

2aHi , H ′
i+2 = 2aH ′

i for i = 1, 2, and we get a 8 × 8 matrix M̂ that relates the
constants Ci ,C ′

i , Hi , H ′
i to ci , c′

i , hi , h′
i for i = 1, 2. We again introduce the matrix

M̂1 via:

M̂2 = −(−a−2 + ζ 2
1 )I8 + a−2M̂1. (5.20)

Then the contribution to the heat kernel from the fermionic discrete modes will be
given by:

K f
(3)(0; s) = − 1

8π2a4

∞∑

l=0

(l + 1) e−s̄(l+1)2+s̄
∞∑

n=0

s̄n

n! T r(M̂n
1)

= − 1

8π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ cot πλ̃ es̄
(
1−̃λ2

) ∞∑

n=0

s̄n

n! T r(M̂n
1). (5.21)

Explicit computation gives

T r(M1) = −32

T r(M2
1) = 128 + 64(l + 1)2 + 64λ2

T r(M3
1) = −512 − 384(l + 1)2 − 384λ2 (5.22)
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T r(M4
1) = 2048 + 2048(l + 1)2 + 256(l + 1)4

+2048λ2 + 512(l + 1)2λ2 + 256λ4,

T r(M̃1) = −32

T r(M̃2
1) = 192 + 64λ2 (5.23)

T r(M̃3
1) = −896 − 384λ2

T r(M̃4
1) = 4352 + 2560λ2 + 256λ4,

and

T r(M̂1) = −16

T r(M̂2
1) = 32 + 32(l + 1)2

T r(M̂3
1) = −64 − 192(l + 1)2

T r(M̂4
1) = 128 + 768(l + 1)2 + 128(l + 1)4.

(5.24)

Substituting these into Eqs. (5.18), (5.19) and (5.21) and using Eqs. (B.3), (B.4) we
get the following constant terms in the small s̄ expansions of the heat kernels:

K̃ f
(1) : 11

180π2a4 , (5.25)

K̃ f
(2) : − 5

12π2a4 , (5.26)

and

K f
(3) : − 5

12π2a4 . (5.27)

Finally the six Majorana ghost fields give a contribution equal to that of three min-
imally coupled Dirac fermions but with opposite sign. Thus using (3.26) we get the
constant term in the heat kernel from the ghost fields to be:

K f
ghost : − 11

240π2a4 (5.28)

Adding up the contributions (5.25)–(5.28) we get the total fermionic contribution to
the constant term in K (0; s):

K f
0 = − 589

720π2a4 . (5.29)

To this we have to add the extra contribution due to the zero modes. These modes
arise in the sector containing the discrete modes with l = 0. The kinetic operator in
this sector is represented by the matrix M̂ defined above (5.20). Explicit computation
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shows that for l = 0, i.e. ζ1 = 1 this matrix has the form:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−i 0 0 0 0 0 1 0
0 i 0 0 0 0 0 1
0 0 −i 0 1 0 0 0
0 0 0 i 0 1 0 0
0 0 −1 0 −i 0 0 0
0 0 0 −1 0 i 0 0

−1 0 0 0 0 0 −i 0
0 −1 0 0 0 0 0 i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.30)

This has four zero eigenvalues, representing four zero modes. Equation(5.21) now
shows that the net contribution to K (0; s) from these zero modes is given by
−1/2π2a4. This is to be identified as the contribution K̄ f (0) in (2.21) that must
be subtracted from the heat kernel.

It remains to calculate the constant β f that appears in (2.24). It was shown in [10]

that the effect of fermion zero mode integration is to add back to K f
0 three times the

contribution that we subtract, i.e. we have β f = 3. For completeness we shall briefly
recall the argument. First following an argument similar to the one given below (3.21)
for the gauge fields, one can show that the path integral measure for the gravitino
fields ψμ corresponds to

∏
μ,x d(aψμ(x)). To evaluate the integral we note that the

fermion zero mode deformations correspond to local supersymmetry transformation
(δψμ ∝ Dμε) with supersymmetry transformation parameters ε which do not van-
ish at infinity. Now since the anti-commutator of two supersymmetry transformations
correspond to a general coordinate transformation with parameter ξμ = ε̄γ με, and
since γ μ ∼ a−1, we conclude that ε0 = a−1/2ε provides a parametrization of the
asymptotic supergroup in an a-independent manner. Writing δ(aψμ) ∝ a3/2 Dμε0,
and using the fact that the integration over the supergroup parameter ε0 produces an
a independent result, we now see that each fermion zero mode integration produces
a factor of a−3/2. Comparing this with the definition of β f given below (2.22) we get
β f = 3.

Using (2.24) we now see that the net logarithmic contribution to the entropy from
the gravitino fields is given by

− 4π2a4 ln AH

(

− 589

720π2a4 − 1

2π2a4 (3 − 1)

)

= (1309/180) ln AH . (5.31)

Adding this to the bosonic contribution given in (4.40) we get a net contribution of

23

12
ln AH , (5.32)

to the black hole entropy.
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6 Half BPS black holes in N = 2 supergravity coupled to matter fields

We shall now consider a more general N = 2 supergravity theory containing nV vector
multiplets and nH hypermultiplets. Since at quadratic order in the expansion around
the near horizon background the fluctuations in the vector multiplet fields do not mix
with the fluctuations in the hypermultiplet fields, we can evaluate separately the loga-
rithmic correction to the entropy due to the vector multiplets and the hypermultiplets.
The action involving these fields can be found in [72].

Let us begin with the vector multiplet fields. Suppose we have an N = 2 supergrav-
ity theory coupled to nV vector multiplets. The coupling of the vector multiplet fields
to supergravity will be described by the prepotential F( �X) which is a homogeneous
function of degree 2 in nV + 1 complex variables X0, . . . , XnV , with Xk/X0 having
the interpretation of the nV complex scalars in the nV vector multiplets. Now it has
been shown in Appendix C that with the help of a symplectic transformation we can
introduce new special coordinates Z A (0 ≤ A ≤ nV ) in the vector multiplet moduli
space such that

1. In the near horizon geometry Zk = 0 for k = 1, . . . , nV .
2. The prepotential in the new coordinate system has the form:

F = − i

2

(

(Z0)2 −
nV∑

k=1

(Zk)2

)

+ · · · , (6.1)

where · · · denotes terms which are cubic and higher order in the Zk’s and hence
do not effect the action up to quadratic order in the fluctuations around the near
horizon geometry.

3. The only non-vanishing background electromagnetic field in the near horizon
geometry is F0

mn of the form:

F0
mn = −2ia−1εmn, m, n ∈ Ad S2, (6.2)

in the gauge Z0 = 1. Here a denotes the radii of the near horizon Ad S2 and S2.

With this choice of the prepotential, the relevant part of the bosonic action can be
computed using the general formulæ given e.g. in [72]. We work in the gauge Z0 = 1
and define a set of complex scalar fields φk through the equation:

Zk = 1

2
φk = 1

2
(φk

R + iφk
I ). (6.3)

Up to quadratic order in the fluctuations in the near horizon geometry the action given
in [72] takes the form:
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∫
d4x

√
det g

[

R − 1

2
∂μφ

k
R∂

μφk
R − 1

2
∂μφ

k
I ∂
μφk

I

−1

4

{

1 + 1

2

∑

k

(
(φk

R)
2 − (φk

I )
2
)
}

F0μνF0μν

−1

4
FkμνFk

μν − 1

2
φk

R F0μνFk
μν + 1

2
φk

I F̃0μνFk
μν + · · ·

]

, (6.4)

where · · · denotes terms cubic and higher order in the fluctuations and

F̃0μν = 1

2
iεμνρσ F0

ρσ , εmnαβ = εmnεαβ. (6.5)

Comparing (6.2) with (4.2) (or (6.4) with (4.1)) we see that F0
μν can be identified

as −2Fμν where Fμν is the graviphoton field strength appearing in §4. The bosonic
fields in the vector multiplet are the real scalar fields φk

R,I and the vector fields Ak
μ

whose field strengths are given by Fk
μν . In the background (6.2) the action involving

these fields to quadratic order is given by:

∫
d4x

√
det g

[

− 1

4
FkμνFk

μν − 1

2
∂μφ

k
R∂

μφk
R − 1

2
∂μφ

k
I ∂
μφk

I + a−2
nV∑

k=1

((φk
R)

2

−(φk
I )

2)+ i a−1φk
Rε

mn Fk
mn + a−1 φk

I εαβFk
αβ

]

. (6.6)

Note the mass terms for the scalars and the mixing between the vector and the scalar
fields appearing in the last two terms. This has exactly the same structure as the one
which appeared in the analysis of the matter multiplet fields in N = 4 supergravity in
[9]. Thus we can borrow the result of [9], which shows that the net contribution to the
heat kernel from these fields, after taking into account the effect of the ghost fields, is
given by 4K s(0; s) for each vector multiplet, with K s given in (3.10). Since βv = 1
we do not need to give any special treatment to the zero modes of the vector fields.

Let us now turn to the contribution from the fermions in the vector multiplet. Each
vector multiplet contains two Majorana fermions or equivalently one Dirac fermion.
It can be shown using the results of [72] that for quadratic prepotential of the type we
have, the kinetic operator of the vector multiplet fermions is the standard Dirac oper-
ator in the Ad S2 × S2 background metric. Thus the heat Kernel is given by K f (0; s)
given in (3.25). As a result the net contribution to the heat Kernel from each vector
multiplet field is given by

4K s(0; s)+ K f (0; s) = 4

720π2a4 + 11

720π2a4 + · · · = 1

48π2a4 + · · · , (6.7)

where as usual · · · represent terms containing other powers of s. This corresponds to
a contribution to the entropy of − 1

12 ln AH per vector multiplet.
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Let us now turn to the hypermultiplet fields consisting of four real scalars and a pair
of Weyl fermions. The four scalars are minimally coupled to the background gravita-
tional field without any coupling to the graviphoton flux, and give a contribution of
4K s(0; s). Each hypermultiplet contains a pair of Weyl fermions ζa (a = 1, 2) whose
action in the Lorentzian theory, to quadratic order, is given by [72]

− 1

2
ζ̄ a �Dζa + 1

4
ζ̄ aεab�μνF0μν ζ b + h.c., (6.8)

where ε =
(

0 1
−1 0

)

, �μν = 1
4 [γ μ, γ ν], and ζa and ζ̄ a are related as

ζ̄ a = (ζa)
† γ 0 = (ζ a)T C̃, (6.9)

C̃ being the charge conjugation operator. In writing down (6.8) we have already used
the fact that for the background we are considering F0

μν is the only non-vanishing field
strength. (6.9) can be taken as the definition of ζ a in terms of ζa . Since ζ a defined via
(6.9) has opposite chirality of ζa , we can define a Majorana spinor χa via

χa = ζa + ζ a, (6.10)

and express the action as

− 1

2
χ̄a �Dχa + 1

4
χ̄aεab�μνF0μν χb. (6.11)

This can now be continued to Euclidean space with χ̄a ≡ (χa)T C̃ . Using the explicit
form of the γ matrices given in (A.14) and the background value of F0

μν given in (6.2)
we get

− 1

2
χ̄a �Dχa − 1

2
a−1χ̄aεabτ3χ

b. (6.12)

Thus the kinetic operator is given by

δab �D + a−1εabτ3 = D1 + D2, D1 ≡ δab �DS2 + a−1εabτ3,

D2 ≡ δab σ3 �DAd S2 . (6.13)

Since D1 and D2 anti-commute we have (D1 + D2)
2 = (D1)

2 + (D2)
2. The eigen-

values of D2
2 are given by −λ2/a2. On the other hand since � DS2 has eigenvalues

±i(l +1)a−1, and −a−1εabτ3 has eigenvalues ±i a−1, and these operators act on dif-
ferent spaces, the eigenvalues of D1 are given by ±i(l+1±1)a−1. Thus (D1)

2+(D2)
2

has eigenvalues −(l + 1 ± 1)2/a2 − λ2/a2 and the net contribution to the heat kernel
from the two Majorana fermions in the hypermultiplet is given by
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− 1

2π2a4

∞∫

0

dλe−s̄λ2
λ coth(πλ)

∞∑

l=0

(l + 1)
[
e−s̄(l+2)2 + e−s̄ l2

]
. (6.14)

We can evaluate this in two different ways—either by shifting l → l ∓ 1 in the two
terms as in [9], or by directly expressing this as a double integral and using Eqs. (B.3),
(B.4). We shall follow the second approach and express (6.14) as

− 1

2π2a4 Im

eiκ×∞∫

0

dλ̃ λ̃ cot(πλ̃)

∞∫

0

dλ λ coth(πλ)e−s̄λ̃2−s̄λ̃2
[
e−2s̄λ̃−s̄ +e2s̄λ̃−s̄

]
.

(6.15)

The terms in the square bracket can now by expanded in a power series in s̄ and we
can evaluate the integrals using (B.3), (B.4). The resulting constant term in the small
s̄ expansion of the expression is given by −19/720π2a4. Combining this with the
contribution 4/720π2a4 from the bosonic contribution 4K s(0; s), we get

K hyper (0; s) = − 1

48π2a4 + · · · . (6.16)

This corresponds to a contribution of 1
12 ln AH per hypermultiplet. Combining (5.32)

with the results of this section we see that an N = 2 supergravity theory with nV

vector multiplets and nH hypermultiplets will have a logarithmic correction to the
entropy given by

1

12
(23 + nH − nV ) ln AH . (6.17)

7 Local method, duality anomaly and ensemble choice

In this section we shall discuss an alternative derivation of the results for N = 2
supergravity using local methods. Indeed, with hindsight we could have read out these
results from those in [33] which computed the trace anomalies due to various fields in
gauged supergravity theories. For this we begin with the generalized version of (3.29)
including the effect of n3/2 Majorana spin 3/2 field and n2 spin 2 fields. Then (3.29)
takes the form [64–69] (for a recent review see [54])10

K0 = − 1

90π2 (nS + 62nV + 11nF )E − 1

30π2 (nS + 12nV + 6nF

−233

6
n3/2 + 424

3
n2)I, (7.1)

10 For metric and spin 3/2 fields the individual coefficients multiplying E and I are gauge dependent [64]
but the coefficient of Rμνρσ Rμνρσ is gauge independent. As we shall see, this will be the only relevant
coefficient that enters our analysis.
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E = 1

64

(
Rμνρσ Rμνρσ − 4RμνRμν + R2

)
,

(7.2)

I = − 1

64

(

Rμνρσ Rμνρσ − 2RμνRμν + 1

3
R2

)

.

Now in the near horizon background we are interested in, we also have background
gauge fields besides the background metric, and so we cannot apply (7.1) directly.
But we can try to use supersymmetry to find the supersymmetric completion of these
terms. Of these since E is a topological term, it is supersymmetric by itself and does
not require the addition of any other term. On the other hand supersymmetrization of
I has been carried out in [73–75]. Although the resulting action is quite complicated,
it is known that supersymmetrization of I , evaluated in the near horizon background
of the black hole [75–80], takes the same value as −E [6,81] even though I itself
vanishes in the near horizon geometry and E does not vanish.11 Thus for our analysis
we can replace the supersymmetrized I by −E on the right hand side of (7.1). This
gives

K0 = − 1

90π2 (−2nS + 26nV − 7nF + 233

2
n3/2 − 424n2)E . (7.3)

Using E = −1/8a4 for the Ad S2 × S2 background, we get

K0 = 1

720π2a4 (−2nS + 26nV − 7nF + 233

2
n3/2 − 424n2). (7.4)

These coefficients agree with those given in [33]. Using this result we can reproduce
all the results of the previous sections for N ≥ 2 supergravity theories correctly. For
example for the hypermultiplet we have nS = 4, nF = 1 leading to K0 = −1/48π2a4

in agreement with (6.16). On the other hand for vector multiplets we have nV = 1,
nS = 2 and nF = 1 leading to K0 = 1/48π2a4 in agreement with (6.7). For the
N = 2 supergravity multiplet we have n2 = 1, n3/2 = 2 and nV = 1 leading to
K0 = −11/48π2a4. This agrees with the sum of (4.36) and (5.29). For N = 4 super-
gravity multiplet we have n2 = 1, n3/2 = 4, nV = 6, nF = 2 and nS = 2 leading
to K0 = 1/4π2a4 and for N = 8 supergravity we have n2 = 1, n3/2 = 8, nV =
28, nF = 28 and nS = 70, leading to K0 = 5/4π2a4. These results agree with the
corresponding results in [10]. In each of these cases however, the effect of zero modes
needs to be accounted for separately.

Even though this analysis appears to be simpler than the one carried out in the
previous sections, it requires us to assume that there are no other local four deriva-
tive supersymmetric terms that could contribute to K0, or, if such terms are present,
they must vanish when evaluated in the near horizon geometry of the black hole.12

In contrast the analysis of the previous sections does not require any such assumption

11 This could be due to the fact that supersymmetrization of I and −E are equivalent via a field redefinition
since they have the same coefficient of the Rμνρσ Rμνρσ term, but we shall not need this stronger result.
12 For a recent discussion on possible higher derivative terms in N = 2 supergravity, see [82].
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since we compute the complete contribution to K0 in the near horizon geometry of
the black hole.

[66] found an ambiguity in computing the coefficient of E in the trace anom-
aly: if we replace a field by its dual field—e.g., a scalar field by a 2-form field—the
coefficient of E changes. A recent discussion on this in the context of black hole
entropy can be found in [83]. This has been understood as due to the contribution to
the trace anomaly from the zero modes [33,84]. Using this ambiguity [33] suggested
replacing the scalar field by the 2-form field since that is what appears naturally in
string theory. The resulting contribution to K0 agrees with the result of direct string
computation in [34–36], and would also produce correctly the coefficient of the log
term in (1.1) without having to give special treatment to the zero modes. This proce-
dure of replacing a scalar by a 2-form field would also reproduce correctly the zero
result given in (1.2) for N = 4 supersymmetric theories. This however is a coinci-
dence; it just so happens that the extra term we get by first removing the contribution
from the metric and the gravitino zero modes to the heat kernel and then carrying
out separately the integration over these zero modes is the same as the extra term
we get in computation of the coefficient of E if we replace the scalar field by a 2-
form field. A similar replacement for type II string theory on a torus (where several
scalars need to be replaced by 2-form fields and we also need to include the con-
tribution from some non-dynamical 3-form fields) will give zero coefficient of the
logarithmic correction [33] while the correct coefficient as given in (1.2) is −4. In
contrast the procedure we suggest gives the correct answer matching the microscopic
results in the N = 4 and 8 supersymmetric theories where the microscopic results are
known.

Also note that our procedure for computing the coefficient of the logarithmic cor-
rection does not suffer from the ambiguity described in the previous paragraph, since
we remove the zero mode contribution from the heat kernel completely, and then
integrate separately over the zero modes of the physical fields. Even in this case
one might have expected an ambiguity depending on which duality frame we use,
since the zero modes over which we integrate depend on this frame. This is how-
ever fixed by the physical problem at hand. Let us for example consider adding to
the theory a non-dynamical 3-form field. In this case the non-zero mode contribu-
tion to the heat kernel vanishes, but integration over the zero modes could produce
non-zero contribution. To be more specific, the dimensional reduction of the 3-form
field on S2 gives a gauge field on Ad S2 which has a set of zero modes. If we are to
integrate over these zero modes then we would get some additional logarithmic cor-
rection to the entropy. However in this case the ensemble that it represents will have
the charge associated with this gauge field fixed. This will correspond to membrane
charge wrapped on S2. This is not a physical gauge charge from the point of view of an
asymptotic observer in the four dimensional Minkowski space-time and hence should
not be fixed in the ensemble. This is turn shows that we should not be integrating
over the zero modes of the gauge fields sourced by this membrane charge. Thus we
see that the physical ensemble we want to calculate the entropy in automatically fixes
the duality frame. This in turn fixes the relevant zero modes over which we need to
integrate.
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8 Multi-centered black hole solutions

Our analysis of logarithmic corrections refers to single centered black hole solu-
tions only. However the microscopic counting formula does not distinguish between
the contributions from single and multi-centered contributions—it simply counts
the total index/degeneracy for a given total charge. Thus if we are to compare our
results with the result of microscopic counting when such results become avail-
able, we need to either include the contribution from multi-centered black holes or
argue that such contributions are small compared to that of single centered black
holes.

There are two types of multi-centered black hole solutions we can consider. If the
total charge carried by the black hole is non-primitive, i.e. can be written as an inte-
gral multiple of another charge vector, then the total charge can be distributed among
multiple centers, carrying parallel charge vectors. These solutions exist for arbitrary
values of the asymptotic values of the moduli scalar fields. Furthermore in this case
the positions of the centers are arbitrary, and the centers can come arbitrarily close
to each other producing an intermediate Ad S2 × S2 throat associated with the near
horizon geometry of the single centered black hole carrying the same total charge. As
we go down the throat, it splits into multiple Ad S2 × S2 throats each carrying a frac-
tion of the total flux vector, and representing the near horizon geometry of individual
centers. This phenomenon is known as the anti-de Sitter fragmentation [85] via Brill
instantons [86]. This can however be avoided by taking the total charge vector to be
primitive since in this case it is not possible for the total charge vector to split into a
set of parallel charge vectors.

The second class of multi-centered solutions arise from the mechanism discussed
in [28,87–89]. In this case the charges carried by the centers are not parallel and
there are certain constraints among the relative distances between the centers. The
(non-)existence of these solutions depends on the asymptotic values of the moduli
scalar fields, and most of these solutions cease to exist if we set the asymptotic val-
ues of the moduli fields to be equal to their attractor values—the values they take
in the near horizon geometry of a single centered black hole carrying the same total
charge. Nevertheless [28] pointed out the existence of a class of solutions which exist
even when the asymptotic values of the scalar fields are set equal to their attrac-
tor values. These solutions are known as scaling solutions since in one corner of
the space of parameters labelling these solutions the distances between the cen-
ters go to zero. This leads to a phenomenon similar to anti-de Sitter fragmentation
[90].

The existence of these scaling solutions could cause potential problem for com-
paring our macroscopic results with any microscopic result since we need to add the
contribution from the scaling solutions to the single centered entropy before compar-
ing it to the microscopic results. A general formula for computing the contribution to
the index from these solutions was given in [91] generalizing the results of [92,93]. It
takes the form

f ({�q(i)}, { �p(i)})
∏

i

d(�q(i), �p(i)), (8.1)
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when the charges carried by the individual centers are not identical. Here (�q(i), �p(i))
denote the electric and the magnetic charge vectors carried by the i th center, d(�q, �p) is
the contribution to the index from a single centered black hole carrying charge (�q, �p)
and f ({�q(i), �p(i)}) is a function of the charges carried by all the centers, representing
the contribution to the index from the quantum system describing the relative motion
between the centers. When some of the centers carry identical charges the result gets
modified [91], but not in a way that invalidates our discussion below. The contribution
from these configurations could dominate the single centered contribution in two ways:
the number of such multi-centered configurations could be exponentially large, giving
a contribution to the entropy that is of the same order or larger that that of the sin-
gle centered contribution to the entropy, or individual terms could dominate over the
entropy of single centered black holes. For the special case of D6-D̄6-D0 systems the
number of configurations was estimated in [93], and although it grows exponentially
with the charge, the power of the charge in the exponent was found to be smaller than
2. Given the rarity of scaling solutions to be discussed shortly, we believe that this is
probably a generic features of these solutions. Furthermore there can also be cancela-
tions between the contributions from different configurations if they contribute to the
index with opposite signs. In order to estimate the contribution from the individual
terms we use the result of [91] from which it follows that while the index of indi-
vidual centers could grow exponentially with the charges, the function f ({�q(i), �p(i)})
grows polynomially with the charges. Thus in order for (8.1) to dominate or be of the
same order as the contribution from the single centered black hole,

∑
i ln |d(�q(i), �p(i))|

should either exceed or be of the same order as ln
∣
∣d
(∑

i �q(i),∑i �p(i)
)∣∣—the latter

representing the contribution to the entropy from a single centered black hole with total
charge

(∑
i �q(i),∑i �p(i)

)
. For this reason it is important to classify all the scaling solu-

tions carrying a given total charge and examine if their contribution could dominate
or be of the same order as the contribution from a single centered black hole.13

Let us now review the condition under which the scaling solutions exist. We shall
describe the solution in the limit when all the centers come close to each other since
the (non-)existence of the solution in this limit will imply (non-)existence of the whole
family. If we define

αi j = �q(i) · �p( j) − �q( j) · �p(i), (8.2)

and �x(i) denotes the position of the i-th center, then these positions are constrained by
the requirement [28]:

∑

j, j �=i

αi j

|�x(i) − �x( j)| = 0 ∀ i. (8.3)

For three centered black hole this translates to the condition that α12, α23 and α31 have
the same sign and satisfy the triangle inequality so that they form three sides of a

13 It has been suggested by Frederik Denef that the sum of the classical entropies of the individual centers
could not possibly exceed that of the single centered black hole since this will violate the holographic bound.
Although there is no direct proof of this, some special cases have been discussed in [94].

123



Logarithmic corrections 1249

triangle. Another requirement comes from the regularity of the metric. Let the entropy
of a single centered BPS black hole carrying charge (�q, �p) be denoted by π

√
D(�q, �p).

Then the regularity condition takes the form

D(�h(�x), �g(�x)) > 0 ∀ �x, �h(�x) ≡
∑

i

�q(i)
|�x − �x(i)| , �g(�x) ≡

∑

i

�p(i)
|�x − �x(i)| . (8.4)

Note that while (8.3) is independent of the details of the theory e.g. the prepotential,
(8.4) is sensitive to the details of the theory since the function D(�q, �p) depends on
the prepotential. There are further requirements, e.g. the matrix multiplying the gauge
kinetic term, which is a function of the vector multiplet scalars, must be positive
definite everywhere in space. These conditions also depend on the prepotential.

For two centered black holes (8.3) requires α12 to vanish. In this case the function
f ({�q(i), �p(i)}) turns out to be proportional to α12 and as a result two centered scaling
solutions do not contribute to the index. However there are plenty of solutions to (8.3)
involving three or more centers, giving rise to potential contributors to the index. The
condition (8.4) as well as the requirement of a positive definite gauge kinetic term
has been less studied since this has to be done on a case by case basis as it depends
on the details of the theory. Manschot et al. [91] considered a special example of a
theory with a single vector multiplet with prepotential −(X1)3/6X0 and found that
a 3-centered solution to (8.3), with each center described by a regular event horizon,
fails to satisfy (8.4). This leads us to suspect that the scaling solutions may be rare
and may not be a potential competitor to the contribution to the index from a single
centered black hole. We shall now describe the results for some simple systems.

First we consider pure supergravity, or more generally supergravity coupled to
hypermultiplets but no vector multiplets. Such theories can arise from type IIB string
theory on Calabi–Yau manifolds which do not admit any deformation of the complex
structure. In this case we do not expect any non-singular multi-centered solutions with
non-parallel charges since the only forces are due to gravity and electromagnetism, and
for non-parallel charges the gravitational force wins over the electromagnetic force.
This argument of course ignores the non-linear effects of gravity and in order to have a
convincing result we need to analyze the possibility of simultaneous solutions to (8.3),
(8.4). In this case the charge vectors are one dimensional and D(q, p) ∝ (q2 + p2).
Thus the only way (8.4) can fail is if the functions h(�x) and g(�x) both vanish at the
same point, i.e. the surfaces f (�x) = 0 and g(�x) = 0 intersect. It was shown in [94]
that for three centered solutions these surfaces always intersect, showing the absence
of scaling solutions. For larger number of centers a general proof of absence does not
exist, but none have been found so far in numerical searches.

We have also examined the solution to (8.4) in the one vector multiplet model with
prepotential −(X1)3/6X0. Here we have [95]

D(p0, p1, q1, q0) = 1

9

[
3(q1 p1)2 − 18q0 p0 q1 p1 − 9q2

0 (p
0)2 − 6(p1)3 q0

+ 8p0 (q1)
3
]
. (8.5)

In this case there are known examples of scaling solutions satisfying (8.4), e.g. the D6-
D̄6-D0 system discussed in [28,91–93]. These solutions by themselves have individual
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centers carrying zero entropy, but by adding sufficiently small amount of charges
to each center we can ensure that the each center has non-zero (although small)
entropy and yet the solution continues to satisfy the condition (8.4).14 Nevertheless it
is instructive to explore how pervasive these solutions are. For this we have randomly
generated the charges carried by the three centers and picked among them those sets
for which α12, α23 and α31 satisfy the triangle inequality and the discriminant D is
positive for each center as well as for the total charge carried by all the centers. For
each of these sets we then test the positivity of D( �f (�x), �g(�x)) as a function of �x . We
find that in each of the 30 examples generated this way, D fails to be positive in some
region of space.

While we do not have any rigorous result, the results reviewed in this section indi-
cate that scaling solutions satisfying (8.3) and (8.4) simultaneously are rare. This in
turn gives us reason to hope that at least in some of the theories the contribution from
the single centered black holes dominate the index, and we can directly compare our
results for logarithmic corrections to the microscopic results. It will clearly be useful
to have a better analytic understanding of the problem.

9 Comparison with the OSV formula

In this section we shall compare our result with various versions of the OSV formula
[27]. In a nutshell an OSV type formula is a proposal for the asymptotic expansion
of the black hole entropy in the large charge limit, giving the expression for the
entropy as a function of the charges to all orders in an expansion in inverse powers
of charges. In particular any such formula will give a definite predictions for the log-
arithmic corrections to the entropy which are the first subleading corrections to the
Bekenstein–Hawking entropy. Thus it can be compared with (1.1).

We begin with the version of the OSV formula proposed in [28]. Although this for-
mula was derived for a limit of the charges different from the one we are considering,
we shall go ahead with the assumption that it is valid also in the limit in which all
the charges are scaled uniformly i.e. for ‘weak topological string coupling’ and at the
attractor point in the moduli space where single centered black hole gives the dominant
contribution to the entropy. If the theory has nV vector multiplets and is described by
the prepotential F(X0, . . . , XnV ), then the relevant part of the formula for the index
of a single centered black hole carrying electric charges {qI } and magnetic charges
{pI } is given by

eSB H = constant ×
∫ nV∏

I=0

dφ I e−πφ I qI |gtop|−2 e−K |Ztop|2, (9.1)

where

e−K = i(X̄ I FI − X I F̄I ), X I = φ I + i pI , (9.2)

Ztop =
(gtop

2π

)χ/24
exp[−i

π

2
F(X)+ · · · ] (9.3)

14 I wish to thank Frederik Denef for suggesting this construction.
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and

gtop = 4π

X0 . (9.4)

χ is the euler character of the Calabi–Yau threefold on which type IIA string theory is
compactified to produce the N = 2 supersymmetric string theory. It is related to nH

and nV via:

χ = 2(nV − nH + 1). (9.5)

The
(
gtop/2π

)χ/24 factor was not present explicitly in the original OSV definition
of Ztop but first made its appearance in [96]. · · · in (9.3) denotes additional terms
containing non-negative powers of gtop and non-trivial functions of Xk/X0 and will
not be relevant for our analysis. Finally it must be mentioned that the analysis of [28]
was carried out for p0 = 0 i.e., real gtop.

Let us now consider the limit in which all the charges are scaled by a large param-
eter �: (q I , pI ) → (�q I ,�pI ). Under this rescaling AH → �2 AH . We now try
to evaluate the integration over φ I using saddle point method. To leading order the
relevant saddle point lies at the extremum of

− πφ I qI + π Im F, (9.6)

and sets φ I —the real parts of X I —to be equal to the attractor values of the electric
fields given in (C.9) in the w = 8 gauge. Since F is a homogeneous function of
degree 2 in the X I ’s and since q I and Im(X I ) = pI scale as �, it follows that the
saddle point values of φ I also scale as �. Furthermore since the second derivatives
of ImF with respect to φ I scale as �0, the determinant from the φ integral has no �
dependence. Finally e−K scales as�2 and gtop scales as�−1. From (9.1) we now see
that in the large � limit

eSB H = C(�q, �p) e−πφ I qI +π Im F �(4− χ
12 )

= C(�q, �p) exp

[

−πφ I qI + π Im F + 1

12
(23 − nV + nH ) ln�2

]

, (9.7)

where C(�q, �p) represents sum of terms which scale as�n for n ≤ 0. The −πφ I qI +
π Im F term has to be evaluated at the saddle point and gives the classical Beken-
stein–Hawking entropy AH/4G N . Since this scales as �2, we can replace ln�2 by
ln(AH/G N ) at the cost of redefining the order one multiplicative factor C(�q, �p). This
precisely agrees with (1.1).

There are other proposals for modifying the OSV formula by introducing an addi-
tional measure. For example at the order in which we are working, the measure used in
[29,30] differs from that of [28] by a multiplicative factor of exp

[(
2 − χ

24

)
K
]
. This

makes the measure a homogeneous function of degree zero in the X I ’s and predicts
zero coefficient of the logarithmic correction in contradiction to (1.1).
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Given that the OSV formula has played an important role in our search for an
exact/approximate formula for the black hole entropy in N = 2 supersymmetric string
theories, it will be useful to explore in some detail the significance of possible agree-
ment and disagreement between different formulæ. The original proposal of OSV [27]
made use of the observation that the Wald entropy of a black hole in N = 2 string the-
ory, corrected by higher derivative terms [77,78], is given by the Legendre transform of
ln |Ztop|2 where Ztop is the topological string partition function. OSV then suggested
that the exact index is given by the Laplace transform of |Ztop|2—this reduces to the
exponential of the Legendre transform of ln |Ztop|2 in the saddle point approximation.
There were however indications that this cannot be completely correct (see e.g. [15,96–
98]), one needs to include additional measure factor in the integral while performing the
Laplace transform. If we are allowed to choose the measure freely then any correction
to the leading entropy can be encoded in an appropriate factor in the measure, at least
order by order in an expansion in inverse powers of charges. Thus in order to make OSV
formula useful one must have an a priori description of the measure. Denef and Moore
[28] derived the measure from an indirect microscopic analysis of the degeneracy of
D4–D2–D0 system wrapped on appropriate cycles of a Calabi–Yau manifold.15 Modu-
lar invariance of the partition function allowed them to use Rademacher expansion and
express the partition function in terms of the index associated with polar states—states
carrying special charge vectors—and they then identified the polar states which give
dominant contribution to the entropy. However since their analysis only keeps a subset
of the terms in the full Rademacher expansion, there are error terms. It was found that
while the error terms are small for a certain range of charges (in particular when the
D0-brane charge is large), in general there is no guarantee that they will be small when
all the charges are scaled uniformly. Indeed it will require surprising cancellations for
their formula to be valid for this range of charges. Thus while the agreement of our
Eq. (1.1) with [28] indicates that such cancellations might be present, at present we
should treat this agreement as accidental. It is however encouraging to note that there
have been independent indications that such cancellations might take place [102].

In contrast [29,98] started from a different perspective, using symplectic invariance
as the basic principle.16 OSV formula treats electric and magnetic charges differently,
and to generalize this to a symplectic invariant from refs. [29,98] had to begin with
an integral that involves double the number of integration variables. They then recov-
ered the OSV type integral by integrating out half of the variables using saddle point
approximation. However symplectic invariance by itself does not completely fix the
form of the original integrand—this has to be fixed using the knowledge of the effec-
tive action. Using the known local terms in the one loop effective action and their
effect on the black holes entropy [29] suggested a specific measure that differs from
the measure of [28] by a factor of exp

[(
2 − χ

24

)
K
]

to the order at which we are ana-

15 For other attempts to derive OSV conjecture see [99–101].
16 Symplectic invariance does not necessarily refer to a symmetry of the OSV formula, but represents the
fact that we could change the electric and magnetic charges by a symplectic transformation and at the same
time change the prepotential according to the specified rules without changing the value of the integral. In
special cases when the prepotential remains invariant under such a transformation, the transformation may
be a genuine duality symmetry of the theory.
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lyzing the entropy. However since K is invariant under a symplectic transformation,
we could multiply the original integrand of [29] by a factor of exp

[− (
2 − χ

24

)
K
]

without violating symplectic invariance. Then to this order the results of [29] and [28]
would agree and will both be consistent with (1.1). Multiplying the integrand of [29]
by exp

[− (
2 − χ

24

)
K
]

corresponds to adding to the effective action a non-local but
symplectic invariant term beyond the local terms considered in [29].

In fact the quantum entropy function formalism that we are using for computing
the entropy is designed to precisely take into account the contribution to the black
hole entropy from both the local and the non-local terms in the 1PI effective action.
The effect of local terms can also be taken into account using Wald’s formula, and for
these quantum entropy function will give the same result as Wald’s formula. However
Wald’s formula is not directly applicable to the non-local terms in the effective action.
Quantum entropy function takes such corrections into account by directly evaluating
the path integral of string theory in the near horizon geometry which, by virtue of the
intrinsic curvature of Ad S2, comes with an automatic infrared cut-off. This allows us
to treat the non-local terms as corrections to the local effective Lagrangian density.
This can be seen from Eq. (2.13)—it describes a correction to Le f f which has log-
arithmic dependence on the radius of curvature a of Ad S2 but is otherwise infrared
finite. The logarithmic dependence on a shows that these terms are non-analylic in the
a → ∞ i.e., flat space limit. The other ingredient of [29]—symplectic invariance—is
also implicitly built in our formalism since quantum entropy function is expressed as
a functional integral over all the fields in the theory. Symplectic transformation can
be implemented explicitly at the level of path integral, and using this we can formally
transform the expression for the quantum entropy function written in one duality frame
to the expression written in another duality frame.

Thus we conclude that while our result is in conflict with the explicit form for the
OSV integral that appears in [29], there is no disagreement between the basic prin-
ciples of [29] and the quantum entropy function formalism. The cause of the explicit
disagreement can be traced to certain non-local terms in the one loop effective action
which have been included in our analysis but were not present in [29]. On the other
hand the agreement of our result with that of [28] seems somewhat accidental since
the latter was derived for a different scaling limits of charges instead of the uniform
scaling limit used here, and at a different point in the moduli space where multi-cen-
tered black holes could give dominant contribution to the index. It will be interesting
to explore if due to some underlying miraculous cancellation the formula given in [28]
could be an exact asymptotic expansion of the index of a single centered black hole
in the large charge limit, giving the result to all orders in inverse powers of �. While
order by order analysis is not suited for this study, localization methods discussed in
[55,56] could help prove or disprove such a claim.
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Appendix A: The basis functions in Ad S2 × S2

In this appendix we shall review the results on eigenfunctions and eigenvalues of the
Laplacian operator � ≡ gμνDμDν on Ad S2 and S2 for different tensor and spinor
fields following [62,103–105]. First consider the Laplacian acting on the scalar fields.
On S2 the normalized eigenfunctions of −� are just the usual spherical harmonics
Ylm(ψ, φ)/a with eigenvalues l(l + 1)/a2. On the other hand on Ad S2 the δ-function
normalized eigenfunctions of −� are given by [103]17

fλ,�(η, θ) = 1√
2π a2

1

2|�|(|�|)!

∣
∣
∣
∣
∣

�
(
iλ+ 1

2 + |�|)
�(iλ)

∣
∣
∣
∣
∣

ei�θ sinh|�| η

F

(

iλ+ 1

2
+ |�|,−iλ+ 1

2
+ |�|; |�| + 1;− sinh2 η

2

)

,

� ∈ Z, 0 < λ < ∞, (A.1)

with eigenvalue
( 1

4 + λ2
)
/a2. Here F denotes hypergeometric function.

The normalized basis of vector fields on S2 may be taken as

1
√
κ
(k)
1

∂αUk,
1

√
κ
(k)
1

εαβ∂
βUk, (A.2)

where {Uk} denote normalized eigenfunctions of the scalar Laplacian with eigenvalue
κ
(k)
1 . The basis states given in (A.2) have eigenvalue of −� equal to κ(k)1 − a−2. Note

that for κ(k)1 = 0, i.e. for l = 0,Uk is a constant and ∂αUk vanishes. Hence these
modes do not exist for l = 0.

Similarly a normalized basis of vector fields on Ad S2 may be taken as

1
√
κ
(k)
2

∂m Wk,
1

√
κ
(k)
2

εmn∂
nWk, (A.3)

where Wk are the δ-function normalized eigenfunctions of the scalar Laplacian with
eigenvalue κ(k)2 . The basis states given in (A.3) have eigenvalues of −� equal to

κ
(k)
2 + a−2. There are also additional square integrable modes of eigenvalue a−2,

given by [103]

A=d�(�), �(�) = 1√
2π |�|

[
sinh η

1 + cosh η

]|�|
ei�θ , �=±1,±2,±3, . . . . (A.4)

These are not included in (A.3) since the �(�) given in (A.4) is not normalizable. d�
given in (A.4) is self-dual or anti-self-dual depending on the sign of �. Thus we do not

17 Although often we shall give the basis states in terms of complex functions, we can always work with a
real basis by choosing the real and imaginary parts of the function.
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get independent eigenfunctions from ∗d�(�). However we can also work with a real
basis in which we take dRe(�(�)) and dIm(�(�)) ∝ ∗dRe(�(�)) as the independent
basis states for � > 0. The basis states (A.4) satisfy

∑

�

gmn∂m�
(�)∗(x)∂n�

(�)(x) = 1

2πa2 . (A.5)

We have derived this using the fact that due to homogeneity of Ad S2 this sum is inde-
pendent of x , and that at η = 0 only the � = ±1 terms contribute to the sum. Thus the
total number of such discrete modes of spin 1 field on Ad S2 is given by

N1 =
∫

Ad S2

d2x
√

gAd S2

∑

�

gmn∂m�
(�)∗(x)∂n�

(�)(x)

= 1

2π

η0∫

0

sinh η dη
∫

dθ = cosh η0 − 1. (A.6)

A similar choice of basis can be made for a symmetric rank two tensor representing
the graviton fluctuation. For example on S2 we can choose a basis of these modes to
be

1√
2

gαβUk,
1

√
2(κ(k)1 − 2a−2)

[
Dαξβ + Dβξα − Dγ ξγ gαβ

]
, (A.7)

where ξα denotes one of the two vectors given in (A.2). The first set of states have −�
eigenvalue κ(k)1 and the second set of states have −� eigenvalue κ(k)1 − 4a−2. Note

that for κ(k)1 = 2a−2, i.e., for l = 1, the second set of states given in (A.7) vanishes
since the corresponding ξα’s label the conformal Killing vectors of the sphere.

On Ad S2 the basis states for a symmetric rank two tensor may be chosen as

1√
2

gmnWk,
1

√
2(κ(k)2 + 2a−2)

[
Dm ξ̂n + Dn ξ̂m − D p ξ̂p gmn

]
, (A.8)

where ξ̂m denotes one of the two vectors given in (A.3), or the vector given in (A.4).
The first set of states have −� eigenvalue κ(k)2 and the second set of states have −�
eigenvalue κ(k)2 + 4a−2. Besides these there is another set of square integrable modes
of eigenvalue 2a−2 of −�, given by [103]

hmn = w(�)mn,

w(�)mndxmdxn = a√
π

[ |�|(�2 − 1)

2

]1/2
(sinh η)|�|−2

(1 + cosh η)|�|
ei�θ

×(dη2 + 2 i sinh η dηdθ − sinh2 η dθ2) � ∈ Z, |�| ≥ 2. (A.9)
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Locally these can be regarded as deformations generated by a diffeomorphism on
Ad S2, but these diffeomorphisms themselves are not square integrable. The basis
states (A.9) satisfy

∑

�

gmng pqw(�)∗mp (x)w
(�)
nq (x) = 3

2πa2 . (A.10)

We have derived this using the fact that due to homogeneity of Ad S2 this sum is inde-
pendent of x , and that at η = 0 only the � = ±2 terms contribute to the sum. Thus as
in (A.6) the total number of such discrete modes is given by

N2 = 3 cosh η0 − 3. (A.11)

We can construct the basis states of various fields on Ad S2 × S2 by taking the
product of the basis states on S2 and Ad S2. For example for a scalar field the basis
states will be given by the product of Ylm(ψ, φ) with the states given in (A.1), and
satisfy

� fλ,k(η, θ) Ylm(ψ, φ)=− 1

a2

{

l(l + 1)+λ2+ 1

4

}

fλ,k(η, θ) Ylm(ψ, φ). (A.12)

For a vector field on Ad S2 × S2 the basis states will contain two sets. One set will be
given by the product of Ylm(ψ, φ) and (A.3) or (A.4). The other set will contain the
product of the functions (A.1) on Ad S2 and the vector fields (A.2) on S2. The basis
states for a symmetric rank two tensor field on Ad S2 × S2 can be constructed in a
similar manner.

Finally we turn to the basis states for the fermion fields. Consider a Dirac spinor on
Ad S2 × S2. It decomposes into a product of a Dirac spinor on Ad S2 and a Dirac spinor
on S2. We use the following conventions for the vierbeins and the gamma matrices

e0 = a sinh η dθ, e1 = a dη, e2 = a sinψ dφ, e3 = a dψ, (A.13)

γ 0 = −σ3 ⊗ τ2, γ 1 = σ3 ⊗ τ1, γ 2 = −σ2 ⊗ I2, γ 3 = σ1 ⊗ I2, (A.14)

where σi and τi are two dimensional Pauli matrices acting on different spaces and I2
is 2 × 2 identity matrix. In this convention the Dirac operator on Ad S2 × S2 can be
written as

�DAd S2×S2 =�DS2 + σ3 �DAd S2 , (A.15)

where

�DS2 = a−1
[

−σ 2 1

sinψ
∂φ + σ 1 ∂ψ + 1

2
σ 1 cotψ

]

, (A.16)
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and

�DAd S2 = a−1
[

−τ 2 1

sinh η
∂θ + τ 1 ∂η + 1

2
τ 1 coth η

]

. (A.17)

The eigenstates of �DS2 are given by [106]

χ±
l,m = 1√

4πa2

√
(l − m)!(l + m + 1)!

l! e
i
(

m+ 1
2

)
φ

×
⎛

⎝
i sinm+1 ψ

2 cosm ψ
2 P(m+1,m)

l−m (cosψ)

± sinm ψ
2 cosm+1 ψ

2 P(m,m+1)
l−m (cosψ)

⎞

⎠ ,

η±
l,m = 1√

4πa2

√
(l − m)!(l + m + 1)!

l! e
−i

(
m+ 1

2

)
φ

×
⎛

⎝
sinm ψ

2 cosm+1 ψ
2 P(m,m+1)

l−m (cosψ)

±i sinm+1 ψ
2 cosm ψ

2 P(m+1,m)
l−m (cosψ)

⎞

⎠ ,

l,m ∈ Z, l ≥ 0, 0 ≤ m ≤ l, (A.18)

satisfying

�DS2χ
±
l,m = ±i a−1 (l + 1) χ±

l,m, �DS2η
±
l,m = ±i a−1 (l + 1) η±

l,m . (A.19)

Here Pα,βn (x) are the Jacobi Polynomials:

P(α,β)n (x) = (−1)n

2n n! (1 − x)−α(1 + x)−β dn

dxn

[
(1 − x)α+n(1 + x)β+n] . (A.20)

χ±
l,m and η±

l,m provide an orthonormal set of basis functions, e.g.

a2
∫

S2

(
χ±

l,m

)†
χ±

l ′,m′ sinψ dψ dφ = δll ′δmm′ (A.21)

etc.

123



1258 A. Sen

The eigenstates of �DAd S2 are given by [106]

χ±
k (λ) = 1√

4πa2

∣
∣
∣
∣
∣

� (1 + k + iλ)

�(k + 1)�
( 1

2 + iλ
)

∣
∣
∣
∣
∣

e
i
(

k+ 1
2

)
θ

×
⎛

⎝
i λ

k+1 coshk η
2 sinhk+1 η

2 F
(
k + 1 + iλ, k + 1 − iλ; k + 2;− sinh2 η

2

)

± coshk+1 η
2 sinhk η

2 F
(
k + 1 + iλ, k + 1 − iλ; k + 1;− sinh2 η

2

)

⎞

⎠ ,

η±
k (λ) = 1√

4πa2

∣
∣
∣
∣
∣

� (1 + k + iλ)

�(k + 1)�
( 1

2 + iλ
)

∣
∣
∣
∣
∣

e
−i

(
k+ 1

2

)
θ

×
⎛

⎝
coshk+1 η

2 sinhk η
2 F

(
k + 1 + iλ, k + 1 − iλ; k + 1;− sinh2 η

2

)

±i λ
k+1 coshk η

2 sinhk+1 η
2 F

(
k + 1 + iλ, k + 1 − iλ; k + 2;− sinh2 η

2

)

⎞

⎠ ,

k ∈ Z, 0 ≤ k < ∞, 0 < λ < ∞, (A.22)

satisfying

�DAd S2χ
±
k (λ) = ±i a−1 λχ±

k (λ), �DAd S2η
±
k (λ) = ±i a−1 λ η±

k (λ). (A.23)

χ±
k (λ) and η±

k (λ) provide an orthonormal set of basis functions on Ad S2, e.g.,

a2
∫

sinh η dη dθ (χ±
k (λ))

† χ±
k′ (λ′) = δkk′δ(λ− λ′), (A.24)

etc.
The basis of spinors on Ad S2 × S2 can be constructed by taking the direct product

of the spinors given in (A.18) and (A.22). Let ψ1 denotes an eigenstate of �DS2 with
eigenvalue iζ1 = ±ia−1(l + 1) and ψ2 denotes an eigenstate of �DAd S2 with eigen-
value iζ2 = ±ia−1λ. Since σ3 anti-commutes with �DS2 and commutes with �DAd S2 ,
we have, using (A.15),

�DAd S2×S2 ψ1 ⊗ ψ2 = iζ1ψ1 ⊗ ψ2 + iζ2σ3 ψ1 ⊗ ψ2,

�DAd S2×S2 σ3 ψ1 ⊗ ψ2 = iζ2 ψ1 ⊗ ψ2 − iζ1σ3 ψ1 ⊗ ψ2.
(A.25)

Diagonalizing the 2 × 2 matrix we see that �DAd S2×S2 has eigenvalues ±i
√
ζ 2

1 + ζ 2
2 .

Thus the square of the eigenvalue of �DAd S2×S2 is given by the sum of squares of the
eigenvalues of �DAd S2 and �DS2 , and we have

( �DAd S2×S2)2ψ1 ⊗ ψ2 = −(ζ 2
1 + ζ 2

2 ) ψ1 ⊗ ψ2,

( �DAd S2×S2)2σ3ψ1 ⊗ ψ2 = −(ζ 2
1 + ζ 2

2 ) σ3ψ1 ⊗ ψ2.
(A.26)

By introducing the ‘charge conjugation operator’

C̃ = σ2 ⊗ τ1 (A.27)
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and defining ψ̄ = ψT C̃ , we can express the orthonormality relations (A.21), (A.24)
as

∫
d4x

√
det g

(
χ+

l,m ⊗ χ+
k (λ)

) (
η+

l ′,m′ ⊗ η−
k′ (λ′)

)
= i δl,l ′δm,m′δk,k′δ(λ−λ′),

(A.28)

etc. This is important since eventually we shall be dealing with fields satisfying appro-
priate reality conditions for which ψ̄ will be defined as ψT C̃ .

In our analysis we shall also need to find a basis in which we can expand the
Rarita–Schwinger field �μ. Let us denote by χ the spinor ψ1 ⊗ψ2 where ψ1 and ψ2
are eigenstates of �DS2 and �DAd S2 with eigenvalues iζ1 and iζ2 respectively. Then a
(non-orthonormal set of) basis states for expanding �μ on Ad S2 × S2 can be chosen
as follows:

�α = γαχ, �m = 0,

�α = 0, �m = γmχ,

�α = Dαχ, �m = 0,

�α = 0, �m = Dmχ.

(A.29)

By including all possible eigenstates χ of �DS2 and �DAd S2 we shall generate the com-
plete set of basis states for expanding the Rarita–Schwinger field barring the subtleties
mentioned below.

The first subtlety arises due to the relations

Dαχ
±
0,0 = ± i

2
a−1 γαχ

±
0,0, Dαη

±
0,0 = ± i

2
a−1 γαη

±
0,0. (A.30)

Thus if we take χ = ψ1 ⊗ ψ2 where ψ1 corresponds to any of the states χ±
0,0 or η±

0,0,
and ψ2 is any eigenstate of �DAd S2 , then the basis vectors appearing in (A.29) are not
all independent—the modes in the third row of (A.29) are related to those in the first
row. The second point is that the modes given in (A.29) do not exhaust all the modes of
the Rarita Schwinger operator; there are some additional discrete modes of the form

ξ (k)±m ≡ ψ1 ⊗
(

Dm ± 1

2a
σ3γm

)

χ±
k (i), ξ̂ (k)±m ≡ ψ1 ⊗

(

Dm ± 1

2a
σ3γm

)

η±
k (i),

k = 1, . . .∞, (A.31)

where χ±
k (λ) and η±

k (λ) have been defined in (A.22). Since χ±
k (i) and η±

k (i) are not
square integrable, these states are not included in the set given in (A.29). However
the modes described in (A.31) are square integrable and hence they must be included
among the eigenstates of the Rarita–Schwinger operator. These modes can be shown
to satisfy the chirality projection condition
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τ3

(

Dm ± 1

2a
σ3γm

)

χ±
k (i) = −

(

Dm ± 1

2a
σ3γm

)

χ±
k (i),

τ3

(

Dm ± 1

2a
σ3γm

)

η±
k (i) =

(

Dm ± 1

2a
σ3γm

)

η±
k (i).

(A.32)

Appendix B: Some useful relations

In this appendix we shall collect the results of some useful integrals. Their derivation
has been reviewed in [9,10].

∞∫

0

dλ λ tanh(πλ) e−s̄λ2
λ2n

= 1

2
s̄−1−n�(1 + n)+ 2

∞∑

m=0

s̄m (2m + 2n + 1)!
m! (2π)−2(m+n+1) (−1)m

×(2−2m−2n−1 − 1) ζ(2(m + n + 1)), (B.1)

Im

eiκ×∞∫

0

dλ̃ λ̃ tan(πλ̃) e−s̄λ̃2
λ̃2n

= 1

2
s̄−1−n�(1 + n)+ 2

∞∑

m=0

s̄m (2m + 2n + 1)!
m! (2π)−2(m+n+1)(−1)n+1

×(2−2m−2n−1 − 1) ζ(2(m + n + 1)), (B.2)
∞∫

0

dλ λ coth(πλ) e−s̄λ2
λ2n

= 1

2
s̄−1−n�(1 + n)+ 2

∞∑

m=0

s̄m (2m + 2n + 1)!
m! (2π)−2(m+n+1) (−1)m

×ζ(2(m + n + 1)), (B.3)

Im

eiκ×∞∫

0

dλ̃ λ̃ cot(πλ̃) e−s̄λ̃2
λ̃2n

= 1

2
s̄−1−n�(1 + n)+ 2

∞∑

m=0

s̄m (2m + 2n + 1)!
m! (2π)−2(m+n+1)(−1)n+1

×ζ(2(m + n + 1)). (B.4)

Appendix C: Symplectic transformation of the prepotential

In general the coupling of the vector multiplet fields to supergravity is determined by
a prepotential F(X0, . . . , XnV ) where F is a homogeneous function of degree 2 and
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nV is the number of vector multiplets. A general symplectic transformation takes the
form

Xr → Mrs Xs + Nrs Fs, Fr = Prs Xs + Qrs Fs, 0 ≤ r, s ≤ nV , (C.1)

where Fs = ∂F/∂Xs and

(
M N
P Q

)

is an Sp(2nV + 2) matrix satisfying

MT P − PT M = 0, N T Q − QT N = 0, MT Q − PT N = I. (C.2)

Our goal is to show that by a symplectic transformation we can introduce new coor-
dinates Z0, . . . , ZnV such that at the attractor geometry Zk = 0 for 1 ≤ k ≤ nV and
the prepotential takes the form

F̂ = − i

2

(

(Z0)2 −
nV∑

k=1

(Zk)2

)

+ · · · , (C.3)

where · · · denote terms which are cubic or higher order in Z1, . . . , ZnV . These higher
order terms contain information about the interactions of the theory and hence are
important in the full theory. But the quadratic terms in the fluctuations about the black
hole background are controlled by the terms up to quadratic order in Z1, . . . , ZnV , and
hence for our analysis we can ignore the effects of the cubic and higher order terms.

Since Sp(2nV +2) has 2(nV +1)2 + (nV +1) = 2n2
V +5nV +3 parameters, in the

generic case we can use them to introduce new special coordinates Y 0,Y 1, . . . ,Y nV

such that at the attractor value Y k = 0 for k = 1, . . . , nV . Since Y k are in general
complex, this uses up 2nV of the 2n2

V + 5nV + 3 parameters. We shall denote the new

prepotential by F̌ . If we expand F̌ around the point Y i = 0 the expansion takes the
form:

F̌ = i

2
A(Y 0)2 + BkY kY 0 + i

2
CklY

kY l + · · · , (C.4)

for some complex constants A, Bk,Ckl . The · · · terms are cubic and higher order in
Y 1, . . . ,Y nV and as a result does not affect the terms in the action quadratic in the
fluctuations. In order to arrive at the form (C.3) we need to make another set of sym-
plectic transformations which sets A = 1, Bk = 0 and Ckl = −δkl . This corresponds
to 1 + nV + nV (nV + 1)/2 complex constraints, i.e. n2

V + 3nV + 2 real constraints
and, in the generic case, can be achieved by utilizing n2

V + 3nV + 2 parameters of
Sp(2nV + 2). Adding this to the 2nV constraints which keep the attractor values of
Zk to be fixed at 0, we see that we have (n2

V + 5nV + 2) conditions. This is less than
the number of parameters 2n2

V + 5nV + 3 of Sp(2nV ) and hence is achievable for a
generic choice of the starting prepotential.

We shall now show how to find the required symplectic transformation explicitly
in the case where the form of the prepotential given in (C.4) differs from the one in
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(C.3) by an infinitesimal amount, i.e., when

A = −1 + ε Ã, Bk = ε B̃k, Ckl = δkl + ε C̃kl , (C.5)

for an infinitesimal parameter ε. Now a general symplectic transformation relating the
variables �Z and �Y takes the form

Y r = Mrs Zs + Nrs F̂s, F̌r = Prs Zs + Qrs F̂s, 0 ≤ r, s ≤ n, (C.6)

where

(
M N
P Q

)

is an Sp(2nV + 2)matrix satisfying (C.2). We choose the following

infinitesimal Sp(2nV + 2) matrices:

M = I + εM̃, Q = I + ε Q̃, P = ε P̃, N =ε Ñ , Q̃ =−M̃T , Ñ = Ñ T ,

P̃ = P̃T , M̃i0 = 0, Ñi0 = 0,

2M̃00−i(Ñ00 + P̃00) = Ã, P̃0i + i M̃0i = B̃i , −M̃i j − M̃ ji −i Ñi j −i P̃i j = C̃i j .

(C.7)

The first line ensures that the matrix

(
M N
P Q

)

describes an Sp(2nV + 2) matrix to

order ε. The second line ensures that the attractor point Y i = 0 gets mapped to Zi = 0
for i = 1, . . . , nV . Finally the last line ensures that F̌ computed from (C.6), (C.3)
agrees with (C.4) to first order in ε.

At the end of this process we are still left with n2
V + 1 parameters of Sp(2nV + 2).

These transformations do not change the prepotential but generate electric-magnetic
duality rotation among the Maxwell fields. For example we can still make the sym-
plectic transformation of the form

Z0 → cosα Z0 + sin α F0, F0 → − sin α Z0 + cosα F0, (C.8)

for some constant α without changing the form of the prepotential. This induces an
electric-magnetic duality rotation among the electric and magnetic fields F0

μν and F̃0
μν .

It is instructive to find the electric and magnetic charges {qI , pI } and the near hori-
zon electric field eI (0 ≤ I ≤ nV ) carried by the black hole when the near horizon
background is described by Zk = 0 for k = 1, . . . , nV . For this we use the attractor
equations, derived for two derivative action in [107–109] and for higher derivative
terms in [76–78]. In the convention of [80] we have

a2 = 16

ww̄
,

qI = 4i
(
w̄−1 F̂ I − w−1 F̂I

)

pI = 4i
(
w̄−1 Z̄ I − w−1 Z I

)

eI = 4
(
w̄−1 Z̄ I + w−1 Z I

)
0 ≤ I ≤ nV ,

(C.9)
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where a is the radii of S2 and Ad S2 and w is the background value of an auxiliary
anti-self-dual tensor field T −

μν : T −
mn = −iwεmn for m, n ∈ Ad S2. We shall choose

the gauge Z0 = 1. Since F̂k = i Zk for 1 ≤ k ≤ nV it follows from (C.9) that for
Zk = 0, pk = qk = ek = 0 for 1 ≤ k ≤ nV . If we further choose p0 = 0 with the
help of the duality rotation (C.8), then we see from (C.9) that in the Z0 = 1 gauge w
must be real, and we have

w = 4a−1, q0 = −8w−1 = −2a, e0 = 8w−1 = 2a. (C.10)

The near horizon electromagnetic fields are now given by

Fk
μν = 0 for 1 ≤ k ≤ nV , F0

αβ = 0, F0
mn = −ie0 a−2 εmn = −2ia−1εmn,

μ, ν ∈ Ad S2 × S2, α, β ∈ S2, m, n ∈ Ad S2. (C.11)
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