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Abstract In this paper, we discuss the effects of electromagnetic field on the dynam-
ical instability of a spherically symmetric expansionfree gravitational collapse. Dar-
mois junction conditions are formulated by matching interior spherically symmetric
spacetime to exterior Reissner–Nordström spacetime. We investigate the role of dif-
ferent terms in the dynamical equation at Newtonian and post Newtonian regimes by
using perturbation scheme. It is concluded that instability range depends upon pressure
anisotropy, radial profile of energy density and electromagnetic field, but not on the
adiabatic index �. In particular, the electromagnetic field reduces the unstable region.

Keywords Local anisotropy of pressure · Instability · Electromagnetic field

1 Introduction

The stability/instability of self-gravitating objects has great importance in general rel-
ativity. It is well-known that different ranges of stability would imply different kinds of
evolution in the collapse as well as structure formation of self-gravitating objects. The
adiabatic index � defines the range of instability which is less than 4

3 for a spherically
symmetric distribution of isotropic perfect fluid [1]. Also, it is obvious that a stellar
model can exist only if it is stable against fluctuations. A stable stationary black hole
solution under perturbations tells the final state of dynamical evolution of a gravitating
system.
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1182 M. Sharif, M. Azam

The expansion scalar, �, measures the rate at which small volumes of the fluid
may change. In the expanding sphere, the increase in volume due to increasing area
of external surface must be reimbursed with the increasing area of internal boundary
surface. A similar behavior of surface area can be observed in the case of contraction.
Thus we have to keep � vanishing in each case. Skripkin [2] explored the central
explosion of a spherically symmetric fluid distribution with expansionfree scalar. This
leads to the formation of Minkowskian cavity at the center of the fluid. Eardley and
Smarr [3] investigated that the collapse of self-gravitating fluids would lead to for-
mation of naked singularity for inhomogeneous energy density but to black hole for
homogenous case. It was found that expansionfree model requires locally anisotropic
fluid and inhomogeneous energy density [4–6]. Herrera et al. [7] found that inho-
mogeneous expansionfree dust models with negative energy density has no physical
significance. The same authors [8] discussed cavity evolution in relativistic self-grav-
itating fluid.

Rosseland [9] was the first to study self-gravitating spherically symmetric charged
fluid distribution. Since then many people have considered the effect of electromag-
netic charge on the structure and evolution of self-gravitating systems [10–14]. Di
Prisco et al. [15] explored the effect of charge on the relation between the Weyl ten-
sor and the inhomogeneity of energy density and concluded that Coulomb repulsion
might prevent the gravitational collapse of the sphere. Thirukkanesh and Maharaj [16]
investigated that gravitational attraction is compensated by the Coulomb’s repulsive
force along with gradient pressure in a gravitational collapse. Sharif and Abbas [17]
discussed the effect of electromagnetic field on spherically symmetric gravitational
collapse with cosmological constant. Sharif and Sundas [18] used Misner–Sharp for-
malism to discuss charged cylindrical collapse of anisotropic fluid and found that
electric charge increases the active gravitational mass.

It is evident that anisotropy, free streaming radiation, thermal conduction and shear-
ing viscosity affect the evolution of self-gravitating systems. In literature [19,20], it is
shown that the thermal effects reduce the range of instability. Chan et al. [21] explored
that the instability range depends upon the local anisotropy of the unperturbed fluid.
The same authors [22] found the effects of shearing viscous fluid on the instability
range. Chan [23] studied collapsing radiating star with shearing viscosity and con-
cluded that it would increase anisotropy of pressure as well as the value of effective
adiabatic index. Horvat et al. [24] explored that instability of anisotropic star occurs
at higher surface compactness when the anisotropy of the pressure is present. Herrera
et al. [25] discussed the dynamical instability of expansionfree fluid at Newtonian
and post Newtonian order and found that the range of instability is determined by the
anisotropic pressure and radial profile of the energy density. In a recent paper [26],
this problem has been explored in f (R) gravity.

In this paper, we take spherically symmetric distribution of collapsing fluid along
with electromagnetic field and investigate how electromagnetic field would affect the
range of instability. Darmois Junction conditions [27] are used to match the inte-
rior spherically symmetric spacetime to exterior Reissner–Nordström (RN) spacetime
on the external hypersurface and on the internal hypersurface Minkowski spacetime
within the cavity to the fluid distribution. We find that electromagnetic field, energy
density and anisotropic pressure affect the stability of the system.
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Effects of electromagnetic field 1183

The paper has the following format. In Sect. 2, we discuss Einstein–Maxwell equa-
tions and some basic properties of anisotropic fluid. Section 3 provides the formulation
of junction conditions. In Sect. 4, the perturbation scheme is applied on the field as well
as dynamical equations. We discuss the Newtonian and post Newtonian regimes and
obtain the dynamical equation in Sect. 5. Results are summarized in the last section.

2 Fluid distribution and the field equations

Consider a spherically symmetric distribution of charged collapsing fluid bounded by
a spherical surface �. The line element for the interior region is the most general
spherically symmetric metric given by

ds2− = −A2(t, r)dt2 + B2(t, r)dr2 + R2(t, r)(dθ2 + sin2 θdφ2), (1)

where we assume comoving coordinates inside the hypersurface �. The interior coor-
dinates are taken as x−0 = t, x−1 = r, x−2 = θ, x−3 = φ. It is assumed that the
fluid is locally anisotropic and the energy-momentum tensor for such a fluid is given
by

T −
αβ = (μ + p⊥)uαuβ + p⊥gαβ + (pr − p⊥)χαχβ, (2)

where μ is the energy density, p⊥ the tangential pressure, pr the radial pressure, uα

the four-velocity of the fluid and χα is the unit four-vector along the radial direction.
Using the following definitions in comoving coordinates

uα = A−1δα
0 , χα = B−1δα

1 , (3)

we can write

uαuα = −1, χαχα = 1, χαuα = 0.

The expansion scalar is defined as

� = uα
;α = 1

A

(
Ḃ

B
+ 2

Ṙ

R

)
. (4)

Here dot and prime represent derivatives with respect to t and r respectively.
The Maxwell equations can be written as

Fαβ = φβ,α − φα,β, Fαβ

;β = 4π Jα, (5)

where φα is the four potential and Jα is the four current. The electromagnetic energy-
momentum tensor is given by

Eαβ = 1

4π

(
Fγ

α Fβγ − 1

4
Fγ δ Fγ δgαβ

)
, (6)

123



1184 M. Sharif, M. Azam

where Fαβ is the Maxwell field tensor. Since the charge is at rest with respect to
comoving coordinates, the magnetic field will be zero. Thus we can write

φα = (φ(t, r), 0, 0, 0) , Jα = ξuα, (7)

where ξ is the charge density. The conservation of charge requires

q(r) = 4π

r∫
0

ξ B R2dr (8)

which is the electric charge interior to radius R. Using Eq. (1), the Maxwell equations
(5) yield

φ′′ −
(

A′

A
+ B ′

B
− 2

R′

R

)
φ′ = 4πξ AB2, (9)

φ̇′ −
(

Ȧ

A
+ Ḃ

B
− 2

Ṙ

R

)
φ′ = 0. (10)

Integration of Eq. (9) implies

φ′ = q AB

R2 . (11)

The electric field intensity is defined as

E(t, r) = q

4π R2 . (12)

The Einstein field equations

G−
αβ = 8π

(
T −

αβ + E−
αβ

)
, (13)

for the interior metric gives the following set of equations

8π A2(μ + 2π E2) =
(

2Ḃ

B
+ Ṙ

R

)
Ṙ

R

−
(

A

B

)2
[

2R′′

R
+
(

R′

R

)2

− 2B ′ R′

B R
−
(

B

R

)2
]

, (14)

0 = −2

(
Ṙ′
R

− Ṙ A′

R A
− Ḃ R′

B R

)
, (15)
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Effects of electromagnetic field 1185

8π B2(pr − 2π E2) = −
(

B

A

)2 [2R̈

R
−
(

2 Ȧ

A
− Ṙ

R

)
Ṙ

R

]

+
(

2A′

A
+ R′

R

)
R′

R
−
(

B

R

)2

, (16)

8π R2(p⊥ + 2π E2) = 8π R2(p⊥ + 2π E2) sin−2 θ

= −
(

R

A

)2 [ B̈

B
+ R̈

R
− Ȧ

A

(
Ḃ

B
+ Ṙ

R

)
+ Ḃ Ṙ

B R

]

+
(

R

B

)2 [ A′′

A
+ R′′

R
− A′B ′

AB
+
(

A′

A
− B ′

B

)
R′

R

]
. (17)

The mass function is defined as follows [28]

m(t, r) = R

2
(1 − gαβ R,α R,β) = R

2

(
1 + Ṙ2

A2 − R′2

B2

)
+ q2

2R
. (18)

Differentiating this equation with respect to r and using Eq. (14), we get

m′ = 4πμR′ R2 + 16π2 R2 E(RE ′ + 2R′E). (19)

The proper time and radial derivatives are given by

DT = 1

A

∂

∂t
, DR = 1

R′
∂

∂r
, (20)

where R is the areal radius of the spherical surface. The velocity of the collapsing
fluid is defined by the proper time derivative of R, i.e.,

U = DT R = Ṙ

A
(21)

which is always negative in case of collapse. Using this expression, Eq. (18) can be
written as

Ẽ ≡ R′

B
=
[

1 + U 2 − 2m

R
+
( q

R

)2
]1/2

. (22)

The conservation of energy-momentum tensor yields

(T −αβ + E−αβ);βuα = − 1

A

[
μ̇ + (μ + pr )

Ḃ

B
+ 2(μ + p⊥)

Ṙ

R

]
= 0 (23)

which can be rewritten as

μ̇ + (μ + pr )A� + 2(p⊥ − pr )
Ṙ

R
= 0, (24)
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1186 M. Sharif, M. Azam

and

(T −αβ + E−αβ);βχα = 1

B

[
p′

r + (μ + pr )
A′

A
+ 2(pr − p⊥)

R′

R

− E

R
(4π RE ′ + 8π R′E)

]
= 0. (25)

3 Junction conditions

In this section, we formulate the Darmois junction conditions for the general spher-
ically symmetric spacetime in the interior region and RN spacetime in the exterior
region. The line element for RN spacetime in Eddington–Finkelstein coordinates is
given as

ds2+ = −
(

1 − 2M

ρ
+ Q2

ρ2

)
dν2 − 2dρdν + ρ2(dθ2 + sin2 θdφ2), (26)

where M , Q and ν are the total mass, charge and retarded time respectively. For smooth
matching of the interior and exterior regions, Darmois conditions [27] can be stated
as follows:

1. The continuity of the line elements over �

(
ds2−

)
�

=
(

ds2+
)

�
=
(

ds2
)

�
. (27)

2. The continuity of the extrinsic curvature over �

[
Ki j
] = K +

i j − K −
i j = 0, (i, j = 0, 2, 3). (28)

The boundary surface � in terms of interior and exterior coordinates can be defined
as

f−(t, r) = r − r� = 0, (29)

f+(ν, ρ) = ρ − ρ(ν�) = 0, (30)

where r� is a constant. Using Eqs. (29) and (30), the interior and exterior metrics take
the following form over �

(ds2−)� = −A2(t, r�)dt2 + R2(t, r�)(dθ2 + sin2 θdφ2), (31)

(ds2+)� = −
(

1 − 2M

ρ�

+ Q2

ρ2
�

+ 2
dρ�

dν

)
dν2 + ρ2

�(dθ2 + sin2 θdφ2). (32)
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Effects of electromagnetic field 1187

The continuity of the first fundamental form implies

dt

dτ
= A(t, r�)−1, R(t, r�) = ρ�(ν), (33)

(
dν

dτ

)−2

=
(

1 − 2M

ρ�

+ Q2

ρ2
�

+ 2
dρ�

dν

)
. (34)

For the second fundamental form, we evaluate outward unit normals to � by using
Eqs. (29) and (30) as follows

n−
α = (0, B(t, r�), 0, 0) , (35)

n+
α =

(
1 − 2M

ρ�

+ Q2

ρ2
�

+ 2
dρ�

dν

)− 1
2 (

−dρ�

dν
, 1, 0, 0

)
. (36)

The non-vanishing components of the extrinsic curvature in terms of interior and
exterior coordinates are

K −
00 = −

[
A′

AB

]
�

, K −
22 =

[
R R′

B

]
�

, K −
33 = K −

22 sin2 θ, (37)

K +
00 =

[(
d2ν

dτ 2

)(
dν

dτ

)−1

−
(

dν

dτ

)(
M

ρ2 − Q2

ρ3

)]
�

, (38)

K +
22 =

[(
d2ν

dτ 2

)(
dν

dτ

)−1

−
(

dν

dτ

)(
M

ρ2 − Q2

ρ3

)]
�

, (39)

K +
33 = K +

22 sin2 θ. (40)

Making use of Eqs. (28), (33) and (34), we get

M
�= m(t, r) ⇐⇒ q(r)

�= Q (41)

and

2

(
Ṙ′
R

− Ṙ A′

R A
− Ḃ R′

B R

)
�= − B

A

[
2R̈

R
−
(

2 Ȧ

A
− Ṙ

R

)
Ṙ

R

]

+ A

B

[(
2A′

A
+ R′

R

)
R′

R
−
(

B

R

)2
]

, (42)

where q(r) = Q has been used. Comparing Eq. (42) with Eqs. (15) and (16), we
obtain

pr
�= 0. (43)
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1188 M. Sharif, M. Azam

The expansionfree models require the existence of internal vacuum cavity within
the fluid distribution. The matching of Minkowski spacetime within cavity to the fluid
distribution on �(i) (boundary surface between cavity and fluid) gives

m(t, r)
�(i)= 0, pr

�(i)= 0. (44)

4 The perturbation scheme

This section is devoted to perturb the field equations, Bianchi identities and all the
material quantities by using the perturbation scheme [19,20] upto first order. Initially,
all the quantities have only radial dependence, i.e., fluid is in static equilibrium. After
that, all the quantities and the metric functions have time dependence as well in their
perturbation. These are given by

A(t, r) = A0(r) + λT (t)a(r), (45)

B(t, r) = B0(r) + λT (t)b(r), (46)

R(t, r) = R0(r) + λT (t)c(r), (47)

E(t, r) = E0(r) + λT (t)e(r), (48)

μ(t, r) = μ0(r) + λμ̄(t, r), (49)

pr (t, r) = pr0(r) + λ p̄r (t, r), (50)

p⊥(t, r) = p⊥0(r) + λ p̄⊥(t, r), (51)

m(t, r) = m0(r) + λm̄(t, r), (52)

�(t, r) = λ�̄(t, r), (53)

where 0 < λ � 1. By the freedom allowed in radial coordinates, we choose R0(r) = r .
The static configuration (unperturbed) of Eqs. (14)–(17) is obtained by using Eqs. (45)–
(51) as follows

8π
(
μ0 + 2π E2

0

)
= 1

(B0r)2

(
2r

B ′
0

B0
+ B2

0 − 1

)
, (54)

8π
(

pr0 − 2π E2
0

)
= 1

(B0r)2

(
2r

A′
0

A0
− B2

0 + 1

)
, (55)

8π
(

p⊥0 + 2π E2
0

)
= 1

B2
0

[
A′′

0

A0
− A′

0

A0

B ′
0

B0
+ 1

r

(
A′

0

A0
− B ′

0

B0

)]
. (56)

The corresponding perturbed field equations become

8πμ̄ + 32π2 E0T e = −2T

B2
0

[(c

r

)′′ − 1

r

(
b

B0

)′
−
(

B ′
0

B0
− 3

r

)(c

r

)′

−
(

b

B0
− c

r

)(
B0

r

)2
]

− 16π
T b

B0

(
μ0 + 2π E2

0

)
, (57)
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Effects of electromagnetic field 1189

0 = 2
Ṫ

A0 B0

[(c

r

)′ − b

r B0
−
(

A′
0

A0
− 1

r

)
c

r

]
, (58)

8π p̄r − 32π2 E0T e = −2T̈

A2
0

c

r
+ 2T

r B2
0

[(
a

A0

)′
+
(

r
A′

0

A0
+ 1

)(c

r

)′

− B2
0

r

(
b

B0
− c

r

)]
− 16π

T b

B0

(
pr0 − 2π E2

0

)
, (59)

8π p̄⊥ + 32π2 E0T e = − T̈

A2
0

[
b

B0
+ c

r

]
+ T

B2
0

[(
a

A0

)′′
+
(c

r

)′′

+
(

2A′
0

A0
− B ′

0

B0
+ 1

r

)(
a

A0

)′
−
(

A′
0

A0
+ 1

r

)

×
(

b

B0

)′
+
(

A′
0

A0
− B ′

0

B0
+ 2

r

)(c

r

)′]

−16π
T b

B0

(
p⊥0 + 2π E2

0

)
. (60)

The Bianchi identities (23) and (25) for the static configuration yields

1

B0

[
p′

r0 + (μ0 + pr0)
A′

0

A0
+ 2

r
(pr0 − p⊥0)

]
− 4π E0

B0r

[
2E0 + r E ′

0

] = 0, (61)

which can be rewritten as

A′
0

A0
= − 1

μ0 + pr0

[
p′

r0 + 2

r
(pr0 − p⊥0) − 4π E0

r
(2E0 + r E ′

0)

]
. (62)

The perturbed configurations imply

1

A0

[
˙̄μ + (μ0 + pr0)Ṫ

b

B0
+ 2(μ0 + p⊥0)Ṫ

c

r

]
= 0, (63)

1

B0

[
p̄′

r + (μ0 + pr0)T

(
a

A0

)′
+ (μ̄ + p̄r )

A′
0

A0

+ 2(pr0 − p⊥0)T
(c

r

)′ + 2( p̄r − p̄⊥)
1

r

]

−4π E0T

B0r

(
4e + 2r E0

(c

r

)′ + re′ + re
E ′

0

E0

)
= 0. (64)

Integration of Eq. (63) yields

μ̄ = −
[
(μ0 + pr0)

b

B0
+ 2(μ0 + p⊥0)

c

r

]
T . (65)
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The expansion scalar turns out to be

�̄ = Ṫ

A0

(
b

B0
+ 2c

r

)
. (66)

Using expansionfree condition, it follows

b

B0
= −2

c

r
. (67)

Inserting this value in Eq. (58), we obtain

c = k
A0

r2 , (68)

where k is an integration constant. Using Eq. (67) in (65), we get

μ̄ = 2(pr0 − p⊥0)T
c

r
. (69)

This shows that perturbed energy density comes from the static configuration of pres-
sure anisotropy. Similarly, the unperturbed and perturbed configuration for Eq. (18)
lead to

m0 = r

2

(
1 − 1

B2
0

)
+ 8π2 E2

0r3, (70)

m̄ = − T

B2
0

[
r

(
c′ − b

B0

)
+ (1 − B2

0 )
c

2

]
+ 8π2 E0T

(
2r3 + 3r2cE0

)
. (71)

Using the matching condition (43), Eq. (50) implies

pr0
�= 0, p̄r

�= 0. (72)

Inserting these values in Eq. (59), we obtain

T̈ (t) − α(r)T (t)
�= 0, (73)

where

α(r)
�=
(

A0

B0

)2 [( a

A0

)′
+
(

r
A′

0

A0
+ 1

)(c

r

)′

− B2
0

r

(
b

B0
− c

r

)
+ 16π2r E0 B0 (eB0 + bE0)

]
1

c
. (74)
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Effects of electromagnetic field 1191

In order to explore instability region, all the functions involved in the above equation
are taken such that α� is positive. The corresponding solution of Eq. (73) is given by

T (t) = − exp(
√

α� t). (75)

This shows that the system starts collapsing at t = −∞ with T (−∞) = 0 keeping it
in static position. It goes on collapsing with the increase of t .

5 Newtonian and post Newtonian terms and dynamical instability

This section investigates the terms corresponding to Newtonian (N), post Newtonian
(pN) and post post Newtonian (ppN) regimes. This is done by converting relativistic
units into c.g.s. units and expanding upto order c−4 in the dynamical equation. For the
N approximation, it is assumed that

μ0 
 pr0, μ0 
 p⊥0.

For the metric coefficients expanded upto pN approximation, we take

A0 = 1 − Gm0

c2 , B0 = 1 + Gm0

c2 , (76)

where G is the gravitational constant and c is the speed of light. Using Eqs. (55) and
(70), it follows that

A′
0

A0
= 8π pr0r3 + 2m0 − 32π2 E2

0r3

2r(r − 2m0 + 16π2 E2
0r3)

, (77)

which together with Eq. (61) leads to

p′
r0 = −

[
8π pr0r3 + 2m0 − 32π2 E2

0r3

2r(r − 2m0 + 16π2 E2
0r3)

]
(μ0 + pr0)

+2

r
(p⊥0 − pr0) + 4π E0

r
(2E0 + r E ′

0). (78)

In view of dimensional analysis, this equation can be written in c.g.s. units as
follows

p′
r0 = −G

[
c−28π pr0r3 + 2m0 − 32c−2π2 E2

0r3

2r(r − 2Gc−2m0 + 16Gc−4π2 E2
0r3)

]
(μ0 + c−2 pr0)

+2

r
(p⊥0 − pr0) + 4π E0

r
(2E0 + r E ′

0). (79)
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When we expand this equation upto c−4 order and rearrange lengthy calculations, we
have

p′
r0 = −G

μ0m0

r2 + 2

r
(p⊥0 − pr0) + 4π

r

(
2E2

0 + r E0 E ′
0

)

− G

c2r3

(
2Gμ0m2

0 + pr0m0r + 4πμ0 pr0r4 − 16π2 E2
0μ0r4

)

− G

c4r4

(
4G2μ0m2

0 + 2Gpr0m2
0r + 4πμ0 pr0r4

− 32π2G E2
0m0μ0r4 − 16π2 E2

0 pr0r5
)

. (80)

Here the terms with coefficient c0 are called N order terms, coefficient with c−2 of
pN order and with c−4 are of ppN order terms. The relationship between μ̄ and p̄r is
given by [19,20]

p̄r = �
pr0

μ0 + pr0
μ̄. (81)

It is noted that the fluid under the expansionfree condition evolves without being com-
pressed [29]. Thus the adiabatic index � (which measures the variation of pressure for
a given variation of density) is irrelevant here for the case of expansionfree evolution
as the perturbed energy density depends on the static configuration. Using Eq. (69) in
the above equation, it follows that

p̄r = 2�
pr0

μ0 + pr0
(pr0 − p⊥0)T

c

r
. (82)

From Eqs. (54) and (70), we get

B ′
0

B0
= 8πμ0r3 − 2m0 − 32π2 E2

0r3

2r(r − 2m0 + 16π2 E2
0r3)

. (83)

Next, we develop dynamical equation by substituting Eq. (60) along with Eqs. (67)

and (75) in Eq. (64) and neglecting the ppN order terms p̄r , μ̄
A′

0
A0

, it follows that

8π(μ0 + pr0)r

(
a

A0

)′
+ 16π(pr0 − p⊥0)r

(c

r

)′

−64π(p⊥0 + 2π E2
0)

c

r
− 32π2 E0

(
2e + 2r E0

(c

r

)′ + re′ + re
E ′

0

E0

)

− 2

B2
0

[(
a

A0

)′′
+
(c

r

)′′ +
(

2
A′

0

A0
− B ′

0

B0
+ 1

r

)(
a

A0

)′

+
(

3
A′

0

A0
− B ′

0

B0
+ 4

r

)(c

r

)′]− 2
α�

A2
0

c

r
= 0. (84)
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In order to discuss instability conditions of this equation upto pN order, we evaluate
the following terms of dynamical equation. Under expansionfree condition, Eq. (59)
can be written as

(
a

A0

)′
= −k A0

r2

[
16π(pr0 − 2π E2

0)B2
0 − α�

(
B0

A0

)2

+
(

A′
0

A0

)2

− 2

r

A′
0

A0
+ 3

r2 (B2
0 − 1)

]
− 16π2er B2

0 E0, (85)

where Eqs. (68) and (73) has been used. We can write two more equations by using
Eqs. (85) and (68) as follows

(
a

A0

)′′
+
(

2
A′

0

A0
− B ′

0

B0
+ 1

r

)(
a

A0

)′

= k
A0

r2

[
16π pr0 B2

0

(
1

r
− B ′

0

B0

)
− 16π pr0

′ B2
0 + 2

r

(
A′

0

A0

)′

− 2

r

A′
0

A0

B ′
0

B0
+ 1

r2

A′
0

A0
(5 − 9B2

0 ) − 3

r2

B ′
0

B0
(B2

0 + 1) + 9

r3 (B2
0 − 1)

]

+α�k
A0

r2

(
B0

A0

)2 ( A′
0

A0
− B ′

0

B0
+ 1

r

)
− 16

k A0π
2

r2

[
12E2

0
A′

0

A0

+ 2E2
0

(
2

B ′
0

B0
− 1

r

)
+ 8E0 E ′

0

]
+ 32π2r

(
3eE0

B ′
0

B0
+ eE ′

0 + e′E0

)

−64π2er E0
A′

0

A0
. (86)

(c

r

)′′ +
(

3
A′

0

A0
− B ′

0

B0
+ 4

r

)(c

r

)′

= k
A0

r3

[(
A′

0

A0

)′
− A′

0

A0

B ′
0

B0
− 11

r

A′
0

A0
+ 3

r

B ′
0

B0

]
. (87)

Combining Eqs. (86) and (87), it follows that

− 2

B2
0

[(
a

A0

)′′
+
(c

r

)′′ +
(

2
A′

0

A0
− B ′

0

B0
+ 1

r

)(
a

A0

)′

−
(

3
A′

0

A0
− B ′

0

B0
+ 4

r

)(c

r

)′]− 2
α�

A2
0

c

r

= 32πk
A0

r2

[
p′

r0 + pr0

(
B ′

0

B0
− 1

r

)]
− 6k

A0

B2
0r3

[(
A′

0

A0

)′

− A′
0

A0

B ′
0

B0
− (3B2

0 + 2)
1

r

A′
0

A0
− 1

r
B0 B ′

0 + 3

r2 (B2
0 − 1)

]
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−2
α�k

A0r2

(
A′

0

A0
+ B ′

0

B0

)
− 16

k A0π
2

r2

[
12E2

0
A′

0

A0
+ 2E2

0

(
2

B ′
0

B0
− 1

r

)

+ 8E0 E ′
0

]+ 32π2r

(
3eE0

B ′
0

B0
+ eE ′

0 + e′E0

)
− 16π2er E0

A′
0

A0
. (88)

Inserting Eqs. (85) and (88) in Eq. (84) and making use of Eqs. (62), (76) and (83),
we obtain dynamical equation at pN order (with c = G = 1)

−8π

r2

{(
1 − m0

r

)[
2p′

ro + 2

r
(5pr0 − p⊥0) − 8π E0 E ′

0 − 24π E2
0

r

]

+ 4πμ0r(4pr0 − E2
0) + (μ0 + pr0)r

[
3

r2 (B2
0 − 1) − α�

(
B0

A0

)2
]}

+(μ0 + p0)r
[
6

m0

r3 − α�

(
1 + 3

m0

r

)]
− μ0r

(
3

r2 + 4α�

)(m0

r

)2

+32πk

r2

[
p′

r0 − pr0

r
+ 4πrμ0 pr0 − m0

r
p′

r0 − 16π2 E2
0r2 pr0 + m0

r
pr0

× (64π3 E2r3μ0 + 16π2 E2
0r2)

]
− 6

k

r3

{
μ′

0

μ2
0

[
p′

r0 + 2

r
(pr0 − p⊥0)

− 4π E0

r
(2E0 + r E ′

0)

]
−
(

1 − 3
m0

r

) 1

μ0

[
p′′

r0 − 2

r2 (pr0 − p⊥0)

+ 2

r
(p′

r0 − p′⊥0) − 4π

r
(3E0 E ′

0 + r E0 E ′′
0 + E

′2
0 ) + 4π E0

r2 (2E0 + r E ′
0)

]

+8πr3μ0 − 2m0 − 32π2 E2
0r3

2r2μ0

[
p′

r0 + 2

r
(pr0 − p⊥0) − 4π E0

r
(2E0

+r E ′
0)

]
+
(

5 − 9
m0

r

) 1

rμ0

[
p′

r0 + 2

r2 (pr0 − p⊥0) − 4π E0

r
(2E0 + r E ′

0)

]

−4πμ0

[
1 + m0

r
+ 2

(m0

r

)2
]

+ 1

r2

[
7

m0

r
− 5

(m0

r

)2
]

+ 16π2 E2
0

+ 64π3μ0 E2
0r2 + 48π2 E2

0
m0

r

}
− 2

α�k

r2

{
−
(

1 + m0

r

) 1

rμ0

[
p′

r0

+ 2

r
(pr0 − p⊥0) − 4π E0

r
(2E0 + r E ′

0)

]
+ 4π

[
1 + 3

m0

r
+
(m0

r

)2
]

rμ0

− 1

r

[
m0

r
+ 3

(m0

r

)2
]

−
(

1 + m0

r

)
64π3 E2

0μ0r3 − 32π2m0 E2
0

}

−16
k A0π

2

r2

[
16πμ0 E2

0r2 − 2E2
0

r

(
1 − m0

r

)
+ 8E0 E ′

0

]
= 0. (89)

Using the fact that μ0 
 pr0, we discard the terms belonging to pN and ppN order
like pr0

μ0
in the above equation to obtain dynamical equation at N approximation as

follows
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24πμ0 + 8π | p′
r0 |r + 2

(
α� − 21

r2

)
m0

r
+ 32π2r3 E0

k

(
2e + re′ + re

E ′
0

E0

)

= 32π(5pr0 − 2p⊥0) − 416π2 E2
0 − 32π2r E0 E ′

0. (90)

Here p′
r0 < 0 shows that pressure is decreasing during collapse of expansionfree fluid.

Using Eq. (19) in the above equation, we get

4π

9
| p′

r0 | + α�

m0r2

9
+ 16π2r6 E0

9k

(
2e + re′ + re

E ′
0

E0

)

= 16π

9
(5pr0 − 2p⊥0)r

3 + 4π

3

⎛
⎜⎝7

r∫
r
�(i)

μ0r2dr − μ0r3

⎞
⎟⎠

+16π2

3

⎡
⎢⎣7

r∫
r
�(i)

(E0 E ′
0r3 + 2E2

0r2)dr − 1

3
(13E2

0r3 − r4 E0 E ′
0)

⎤
⎥⎦ . (91)

For the instability of expansionfree fluid, we require that each term in Eq. (91)
must be positive. For this purpose, the positivity of the first term of Eq. (91) leads to
pr0 > ( 2

5 )p⊥0 and the positivity of the last two terms is determined by considering the
radial profile of the energy density and electromagnetic field in the form μ0 = γ rm

and E0 = δrn respectively. Here γ, δ are the positive constants and m, n are constants
defined in the interval (−∞,∞). Using these solutions, the last two terms of Eq. (91)
will be positive for m �= −3 and n �= −2, 2 if

r > r�(i)

(
7

4 − m

) 1
m+3

, (92)

and

r > r�(i)

(
14 + 7n

2 − n

) 1
2n+3

. (93)

These two equations define the range of instability. Thus instability of the system is
subject to the consistency of Eqs. (92) and (93). For m = −3, we obtain from Eq. (92)

8πγ

6

[
7 log

(
r

r�(i)

)
− 1

]
, (94)

which defines the instability region for r > r�(i)1.15. For n = −2, 2, the range of
instability is not defined.

Now we find the instability range of Eqs. (92) and (93) for the remaining values of
m and n. For this purpose, we consider the following two cases.
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Case (i) Here we take m ≤ 0 and n ≤ 0. For m = 0, Eq. (92) gives r > r�(i)1.20
which shows that the region of instability decreases from 1.20 to 1.15 as m
varies from 0 to −3. When m varies from −3 to −∞, the unstable region
is swept out by the whole fluid, i.e., r > r�(i) . For n = 0, Eq. (93) yields
r > r�(i)1.91. This indicates that instability range varies from 1.91 to 2.33
as n varies from 0 to −1, i.e., decreases for this region and vanishes for
n ≤ −2.

Case (ii) When m ≥ 0 and n ≥ 0, we see from Eq. (92) that the range of instability
decreases as m increases and vanishes for m ≥ 4, while for n ≥ 0, the range
of instability in Eq. (93) varies from 1.91 to 1.83 as n varies from 0 to 1,
i.e., the range of instability increases as n approaches to 1 and vanishes for
n ≥ 2. In other words, electromagnetic field reduces the instability region
in the interval (−2, 2).

It is mentioned here that, for the pN approximation, the physical behavior of the
dynamical equation is essentially the same by considering the relativistic effects upto
first order

24πμ0 + 8π | p′
r0 |r + 2

(
α� − 21

r2

)
m0

r

+16π | p′
r0 |m0 + 8πα� pr0r2 + 6

(
α� − 5

r2

)(m0

r

)2

+32π2r3 E0

k

(
2e + re′ + re

E ′
0

E0

)
− 24πμ0

(m0

r
− α�m2

0

)

+64π2 E2
0

(
1 − m0

r

)
+ 64π2 E2

0

r

(
5 + α�r − 7

m0

r

)

= 32π(5pr0 − 2p⊥0) + 16π(2pr0 − p⊥0)
m0

r
+ 128π3μ0 E2

0r(1 − α�r2)

+16π2

k
r4 E0μ0 + 32π2 E0 E ′

0

(
9 − 2m0

r

)
. (95)

6 Concluding remarks

This paper investigates the effects of electromagnetic field on the instability range of
expansionfree fluid at Newtonian and post Newtonian regimes. In general, the insta-
bility range is defined by the adiabatic index � which measures the compressibility
of the fluid. On the other hand, in our case, the instability range depends upon the
radial profile of the energy density, electromagnetic field and the local anisotropy of
pressure at N approximation, but independent of the adiabatic index �. This means that
the stiffness of the fluid at Newtonian and post Newtonian regimes does not play any
role at the instability range. It is interesting to note that independence of � requires the
expansionfree collapse (without compression of the fluid). This shows the importance
of local anisotropy, inhomogeneity energy density and electromagnetic field in the
structure formation as well as evolution of self-gravitating objects.
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We see from Eqs. (92) and (93) that in the absence of electromagnetic field the
region of instability is taken to the whole fluid. However, with the inclusion of elec-
tromagnetic field, the region of instability decreases. Thus the system is unstable in
the interval (−2, 2) and stable for the remaining values of n. Also, Eqs. (92) and (93)
define the instability range of the cavity associated with the expansionfree fluid. We
would like to mention here that the unstable range will be customized differently for
different parts of the sphere as the energy density and electromagnetic field are defined
by the radial profile.
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