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Abstract In this work we consider the entropy-corrected version of interacting holo-
graphic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two
corrections of entropy so-called logarithmic ‘LEC’ and power-law ‘PLEC’ in HDE
model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to
dark energy densities u, equation of state parameter wD and deceleration parameter
q are obtained. We show that the cosmic coincidence problem is solved for interact-
ing models. By studying the effect of interaction in EoS parameter of both models,
we see that the phantom divide may be crossed and also understand that the inter-
acting models can drive an acceleration expansion at the present and future, while in
non-interacting case, this expansion can happen only at the early time. The graphs
of deceleration parameter for interacting models, show that the present acceleration
expansion is preceded by a sufficiently long period deceleration at past. Moreover, the
thermodynamical interpretation of interaction between LECHDE and dark matter is
described. We obtain a relation between the interaction term of dark components and
thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting
case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is
also calculated.

Keywords Logarithmic entropy correction · Power law entropy correction ·
Holographic dark energy · Coincidence problem · Thermodynamics

A. Khodam-Mohammadi (B) · M. Malekjani
Department of Physics, Faculty of Science, Bu-Ali Sina University,
Hamedan 65178, Iran
e-mail: khodam@basu.ac.ir

M. Malekjani
e-mail: malekjani@basu.ac.ir

123



1164 A. Khodam-Mohammadi, M. Malekjani

1 Introduction

The dark energy scenario has attracted a great deal of attention in the last decades.
Many cosmological observations reveal that our universe evolves under an acceler-
ation expansion [1–4]. This expansion may be driven by an unknown energy com-
ponent with negative pressure, so called, dark energy (DE), which fills ∼ 70 percent
of energy content of our universe with an effective equation of state (EoS) parameter
−1.48 < we f f < −0.72 [5–7]. Despite of much effort in this subject, the nature of DE
is the most mysterious problem in modern cosmology. The first and simplest candidate
of dark energy is �CDM model, in which w� = −1 is constant. Although this model
is consistent very well with all observations, it faces the fine tuning and cosmic coinci-
dence problem. After this, the dynamical DE models have been proposed to solve the
DE problems. Among many dynamical models of DE, in which wD is not constant, the
entropy-corrected dark energy models based on quantum field theory and gravitation
have been widely extended by many authors in recent years [8–15]. The motivation
of these corrections has been based on black hole physics, where some gravitational
fluctuations and field anomalies can affect the entropy-area law of black holes. The
logarithmic and power-law corrections of entropy are two procedures in dealing with
this fluctuations. First correction has been given by logarithmic fluctuations at the
spacetime, in the context of loop quantum gravity (LQG) [16–23]. The entropy-area
relationship leads to the curvature correction in the Einstein-Hilbert action and vice
versa [24–26]. In this case the corrected entropy is given by [27–35]

SB H = A

4G
+ γ̃ ln

A

4G
+ β̃, (1)

where γ̃ and β̃ are dimensionless constants of order unity. By considering the en-
tropy correction, the energy density of logarithmic entropy-corrected holographic dark
energy (LECHDE) can be given as [36]

ρD = 3n2 M2
p L−2 + γ L−4 ln

(
M2

p L2
)

+ βL−4. (2)

Three parameters n, β and γ are parameters of model and MP is the reduced Planck
mass. The correction terms (two last terms of (2)) are effective only at the early
stage of the universe and they will vanish when the universe becomes large, in which
ρEC

D → ρO
D , where ρO

� = 3n2 M2
p L−2 is the dark energy density of ordinary HDE

model (more discussion of HDE model is referred to [37–46]). In this model, the
IR-cutoff ‘L’ plays an essential role. If L is chosen as particle horizon, the HDE can
not produce an acceleration expansion [47], while for future event horizon, Hubble
scale ‘L = H−1’, and apparent horizon (AH) as an IR-cutoff, the HDE can simulta-
neously drive accelerated expansion and solve the coincidence problem [48–50]. More
recently, a model of interacting HDE (i.e. a non gravitational interaction between DE
and dark matter (DM)) at Ricci scale, in which L = (Ḣ+2H2)−1/2 has been proposed.
The authors performed a detailed discussion on the cosmic coincidence problem, age
problem and obtained some observational constraints on their model [51].
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Interacting entropy-corrected holographic dark energy 1165

The second class of ECHDE, power-law correction of entropy (PLEC), is appeared
in dealing with the entanglement of quantum fields in and out of the horizon [52]. In
this model, the corrected-entropy is given by [8]

S = A

4G
[1 − Kα A1−α/2], (3)

where α is a dimensionless positive constant and

Kα = α

4 − α

(
4πr2

c

)α/2−1
. (4)

Here rc is the crossover scale. Detailed discussion is referred to [8,52–54]. It is worth-
while to mention that in the most acceptable range of 4 > α > 2 [8,52], the correction
term (i.e. the second term of (3)), is effective only at small A’s and it falls off rapidly at
large values of A. Therefore, for large horizon area, the ordinary entropy-area law (first
term of (3)) is recovered. However the thermodynamical considerations predict that
the case α ≤ 2 may be acceptable, but as it will be shown in Sect. 3, this range should
be removed by cosmic coincidence considerations. Due to entropy corrections to the
Bekenstein–Hawking entropy (SB H ), the Friedmann equation should be modified [8].
In comparison with ordinary Friedman equation, the energy density of PLECHDE,
has been given by [55]

ρD = 3n2 M2
p L−2 − δM2

p L−α, (5)

where δ and α are the parameters of PLECHDE model. it must be mentioned that the
ordinary HDE is recovered for δ = 0 or α = 2.

In historical point of view, laws of black hole thermodynamics have made some
relations between thermodynamics and a self gravitating system bounded by a horizon.
In this theory, some thermodynamical quantities such as entropy and temperature are
purely geometrical quantities which have been obtained from area and surface gravity
of horizon, respectively. In the Friedmann–Robertson–Walker (FRW) universe with
horizon, like future event horizon in black hole physics, by studying the thermody-
namical quantities and generalized second law (GSL) [56–62], the best DE model
or horizon can be chosen. For example, it has been shown that in a non-flat FRW
universe, enclosed by apparent horizon, the GSL is governed irrespective of any DE
model [50]. The investigation of GSL for LECHDE and PLECHDE models has been
performed in [8].

Recently, the HDE and agegraphic/new-agegraphic DE models have been extended
regarding the entropy corrections (LECHDE, PLECHDE, PLECNADE) and a thermo-
dynamical description of the LECHDE model has been studied [9–15,36,55,63]. Also
at Ref. [50], thermodynamics interpretation of interacting holographic dark energy
with AH-IR-cutoff, enclosed by apparent horizon, has been studied. These papers give
us a strong motivation to study the LECHDE and PLECHDE models with AH-IR-
cutoff in a non-flat universe, enclosed by apparent horizon, which is a generalization
of earlier works of Sheykhi et.al. [50,55]. It should be mentioned that, the motivation
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of a closed universe has been also shown in a suite CMB experiments [64–67] and of
the cubic correction to the luminosity-distance of supernova measurements [68,69].

The outline of our paper is as follows: In Sect. 2, the interacting LECHDE model
with AH-IR-cutoff is studied and the evolution of dark energy, deceleration parameter
and EoS parameter are calculated. Also these calculations are performed for PLEC-
HDE model with AH-IR-cutoff in Sect. 3. In Sect. 4, the thermodynamical quantities
such as entropy and Hawking temperature of apparent horizon are obtained only for
LECHDE model and then the interaction term due to thermal fluctuation is obtained
in Sect. 5. We finish Our paper with some concluding remarks.

2 Interacting “LECHDE” model with AH-IR-cutoff

The line element of the homogenous and isotropic FRW universe is given by

ds2 = habdxadxb + r̃2(dθ2 + sin2 θdφ2), (6)

where r̃ = a(t)r , two non-angular metric (x0, x1) = (t, r) and two dimensional metric
hab is diag[−1, a2/(1− Kr2)]. Here K is the curvature parameter corresponding to a
closed (k = 1), flat (k = 0) and open (k = −1) universe. The dynamical apparent hori-
zon, a marginally trapped surface with vanishing expansion, is r̃A = (H2+K/a2)−1/2

which has been derived by the relation hab∂ar̃∂br̃ = 0 [70]. This relation implies that
the vector ∇r̃ is null on the apparent horizon surface. The apparent horizon may be
considered as a causal horizon for a dynamical spacetime. Thus one can associate a
gravitational entropy and surface gravity to it [71–73].

From Eq. (2), the energy density of LECHDE with apparent horizon, r̃A, as an
IR-cutoff can be written as

ρD = 3n2 M2
Pr̃−2

A + γ r̃−4
A ln

(
M2

Pr̃2
A

)
+ βr̃−4

A . (7)

The first Friedmann equation is

1

r̃2
A

= H2 + K

a2 = 1

3M2
P

(ρm + ρD), (8)

where H = ȧ/a is the Hubble parameter. In a FRW universe, the total energy density
ρ = ρD + ρm is satisfied in a conservation equation

ρ̇ + 3H(1 + w)ρ = 0, (9)

where w = p/ρ is the EoS parameter. Due to interaction between dark components,
two energy densities ρD and ρm are not conserved separately and the conservation
equation is replaced by

ρ̇D + 3H(1 + wD)ρD = −Q, (10)

ρ̇m + 3Hρm = Q. (11)
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Here Q is the interaction term which has been usually considered in three forms as [74]

Q = �ρD =
⎧
⎨
⎩

3Hb2ρD

3Hb2ρm

3Hb2(ρm + ρD)

⎫
⎬
⎭ . (12)

In this equation, b2 is coupling constant. Although a theoretical interpretation of this
interaction has not been performed yet, as we see from Eqs. (10, 11), the interaction
term Q should be given as a function of H multiplied to energy density. The inter-
action term indicates the decay rate of DE to CDM similar to the standard �CDM
model, where vacuum fluctuations can decay into matter. In many models, the inter-
action term is necessary to solve the coincidence problem. It has been shown that this
interaction can influence the perturbation dynamics, cosmic microwave background
(CMB) spectrum and structure formation [75].

Differentiating Eq. (7) with respect to cosmic time and using the differentiation of
apparent horizon with respect to cosmic time, we have

˙−r̃Ar̃−3
A = H

(
Ḣ − K

a2

)
= 1

6M2
P

(ρ̇D + ρ̇m), (13)

where from Eqs. (10, 11) we obtain

˙̃rA = H

2M2
P

r̃3
AρD(1 + u + wD), (14)

ρ̇D = − HρDr̃2
A

M2
P

(1 + u + wD)
[
2ρD − γ r̃−4

A − 3n2 M2
Pr̃−2

A

]
. (15)

Here u = ρm/ρD is the ratio of energy densities. Also from Eq. (8), we find that
3M2

Pr̃−2
A = (1 + u)ρD where u is governed by

u = 3M2
P

3n2 M2
P + γ r̃−2

A ln
(
M2

Pr̃2
A

)+ βr̃−2
A

− 1. (16)

From Eq. (16), we see that at sufficient large r̃A, where ρD ≈ 3n2 M2
Pr̃−2

A , the ratio of
energy densities will tend to a constant value u → 1/n2 − 1. In Fig. 1, the function
u is plotted versus r̃A for fixed γ, n and various β in the Planck mass unit in which
MP = 1/

√
8πG = 1. From this figure, we see that the coincidence problem gets

alleviated, because for some values of model parameters, u ∼ O(1) for wide range of
r̃A (including the present time), and it finally reches to a fixed value of order unity.

The deceleration parameter q = −1− Ḣ/H2 is calculated by using the Friedmann
equation and continuity equation as follows [49,50]:

q = −(1 + K ) + 3

2
D(1 + u + wD), (17)
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Fig. 1 The evolution of u versus r̃A in LECHDE model. The asymptotic value is u = 0.56

where K = K/(a2 H2),D = ρD/(3M2
P H2) and m = ρm/(3M2

P H2) are the
energy density parameters. From these dimensionless parameters, the first Friedmann
equation can be rewritten as: 1 + K = D + m . Using the third form of interact-
ing term, in which �/3H = b2(1 + u) and combining Eq. (15) with (10), the EoS
parameter wD is given by

wD = −1 −
u
(

2ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

)
− b2(1 + u)2ρD

(1 − u)ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

. (18)

From this equation and Eq. (16), we find

r̃ ′
A = 3M2

Pr̃A

2

[
3n2 M2

Pr̃2
A + γ ln

(
M2

Pr̃2
A

)
+ β + 3M2

Pr̃2
A(b2 − 1)

]/

[
3M2

Pr̃2
A(n2 − 1) + 2γ ln

(
M2

Pr̃2
A

)
+ 2β − γ

]
, (19)

where “prime” denotes the differentiation with respect to x = ln a = − ln(1 + z), in
which H(d/dx) = d/dt .

On the other hand, by using Eqs. (8) and (12), the evolution of dark energy density
can be also obtained as

ρ′
D = −3ρD

[
1 + wD + b2(1 + u)

]
, (20)

and then the evolution of D is calculated as:

′
D = −3D

[
(1 + wD)(1 − D) + b2(1 + u) − Du + 2

3
K

]
. (21)
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Using Eq. (17), the deceleration parameter is given by

q = −(1 + K ) − 3

2

D(1 + u)[u − b2(1 + u)]ρD

(1 − u)ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

. (22)

It is worthwhile to mention that K and D is related by

K

m
= a

K0

m0

∴ K = ex�(1 − D)

1 − ex�
, (23)

where � = K0/m0 is a constant value, which is given as � ≈ 0.04, out of the
recent data. Here the subscript ‘0’, is used for the present time.

In the limiting case of ordinary HDE with γ = β = 0, Eqs. (16, 18, 22) reduce to
the following simple forms

u = 1/n2 − 1, (24)

wD = −
(

1 + 1

u

)
�

3H
, (25)

q = −(1 + K ) − 3

2
D(1 + u)

(
�

3Hu
− 1

)
, (26)

which had been also calculated by Sheykhi [50]. In this limit, from Eq. (19), the radius
of apparent horizon, r̃A, can be obtained as

r̃A = r̃A0 e
3M2

P
2

(
n2−1+b2

n2−1

)
x = r̃A0(1 + z)

3M2
P

2

(
n2−1+b2

1−n2

)
. (27)

Here we can choose r̃A0 = 1 at present time, in which x = 0 or vanishing redshift
(z = 0). Therefore r̃A may be considered as a normalized horizon radius. From Eq.
(27), we find that the radius of apparent horizon is increased by cosmic time provided
that |n| > 1 or |n| <

√
1 − b2. Moreover from Eq. (25), we see that, in the absence

of interaction, we have wD = 0, but in LECHDE model, the EoS parameter may
cross the phantom divide (wD < −1) even in the absence of interaction. In Fig. 2,
the evolution of the EoS parameter of LECHDE versus r̃A is studied, both in inter-
acting and non-interacting cases for positive values of β, in the Planck mass unit. We
specially focuss on the effect of coupling constant on the behavior of wD . As it is
shown in Fig. 2, by choosing the typical value of parameters of LECHDE model as
‘γ = 0.1, β = 0.2, n = 0.8’, two distinct regions of r̃A will be given as:

a: (0.22 > r̃A > 0), Fig. 2a. Since wD > 0, the LECHDE can not drive acceleration
expansion at very early time, irrespective of any interaction term.

b: (̃rA > 0.23), Fig. 2b. Both of interacting and non-interacting LECHDE, may
accelerate the expansion and the phantom divide might be crossed. Interacting
case always remains under the quintessence wall, while in non-interacting mode,
the EoS parameter grows from phantom regime, wD < −1, to positive values at
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Fig. 2 The evolution of EoS parameter, wD , versus r̃A in LECHDE model, a 0.22 > r̃A > 0.0.
b r̃A > 0.23. “Q” denotes the Quintessence barrier (wD = −1/3)

small r̃A. Therefore the non-interacting case can not drive the late time acceleration
expansion in our universe.

By solving Eqs. (19, 21, 22, 23) numerically, the behavior of deceleration parameter
q with respect to x = ln (a) can be studied. In Fig. 3, as we see, the present (x ≈ 0)
accelerated stage (q < 0) is preceded by a sufficiently long period deceleration at the
early time (x < 0, far from x = 0). This is compatible with cosmic structure formation
at matter dominated era and the present accelerated expansion.

The typical values of γ, β , n have been chosen in order to solve the cosmic
coincidence problem.
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Fig. 3 The evolution of q versus x = ln (a) in LECHDE model for (n = 0.8, γ = 0.1, β = 0.2,

b2 = 0.1, � = 0.04)

3 Interacting “PLECHDE” model with AH-IR-cutoff

From Eq. (5), the energy density of PLECHDE with apparent horizon, r̃A, as an IR-
cutoff, is written as

ρD = 3n2 M2
Pr̃−2

A − δM2
Pr̃−α

A , (28)

where using (14, 28), the energy density evolution is given by

ρ̇D = −3HρD(1 + u + wD)

[
n2 − αδ

6
r̃2−α

A

]
. (29)

From Eqs. (8) and (28), the ratio of energy densities, u, is given by

u = 1

n2 − δ
3 r̃2−α

A

− 1. (30)

Also from Eqs. (28) and (30), as same as Sect. 2, we see that at late time, for α > 2,
when r̃A is large, we have ρD ≈ 3n2 M2

Pr̃−2
A and the ratio of energy densities u, will

tend to a constant value u → 1/n2 − 1, while this is not valid for α < 2. In Fig. 4, we
study the behavior of u versus r̃A, for various positive values of δ and fixed value of
α. From this figure, we see that the function u is descending for δ > 0 and the present
value of u ∼ 0.4 is satisfied for a typical set (α = 3, n = 0.89, δ = 0.2) at r̃A = 1
(present time). In this case u ∼ O(1), for r̃A > 0.3. Also the coincidence problem
can be solved.
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Fig. 4 The evolution of u versus r̃A in PLECHDE model

Similar to the previous section, the EoS parameter wD, r̃ ′
A,′

D and deceleration
parameter q are calculated as

wD = −
1 − (1 + u)

(
n2 − αδ

6 r̃2−α
A − b2

)

1 −
(

n2 − αδ
6 r̃2−α

A

) , (31)

r̃ ′
A = 3̃rA

2

⎡
⎣1 + b2 −

(
n2 − δ

3 r̃2−α
A

)

1 −
(

n2 − αδ
6 r̃2−α

A

)
⎤
⎦ , (32)

′
D = −D

[
(1 + u + wD)

(
3n2 − αδ

2
r̃2−α

A − 3D

)
+ 2K

]
, (33)

q = −(1 + K ) + 3D

2

⎡
⎣ u − b2(1 + u)

1 −
(

n2 − αδ
6 r̃2−α

A

)
⎤
⎦ . (34)

The limiting case of Eqs. (30, 31, 34), with δ = 0 or large r̃A, has been given by Eqs.
(24, 25, 26). Also in this case the Eq. (32) reaches to Eq. (27) in the previous section. In
PLECHDE model, the EoS parameter may cross the phantom divide (wD < −1) even
in the absence of interaction. In Fig. 5, the EoS parameter of PLECHDE is studied both
in various interacting and non-interacting modes. As it is shown in Fig. 5, by choosing
the typical value of parameters of PLECHDE as: (α = 3, δ = +0.2, n = 0.89), we
encounter with two distinct regions of r̃A as follow:

a: (0.08 > r̃A > 0), Fig. 5a. Since (wD > 0), the acceleration expansion is not
expectable at very early stage of the universe.

b: (̃rA > 0.09), Fig. 5b. Both of interacting and non-interacting DE models, may
drive the acceleration expansion and the phantom divide will be crossed. Interact-
ing case always remains under the quintessence regime (wD < −1/3), while in
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Fig. 5 The evolution of EoS parameter, wD , versus r̃A in PLECHDE model. a 0.08 > r̃A > 0.0 and
δ = 0.2. b r̃A > 0.09 and δ = 0.2. “Q” denoted the Quintessence barrier (wD = −1/3)

non-interacting mode, the EoS parameter grows from phantom regime, wD < −1,
to above the quintessence regime (wD > −1/3) very soon. Therefore, like as
previous section, the non-interacting case can not drive the late time acceleration.

Now we want to study the deceleration parameter of PLECHDE model. By solving
Eqs. (32, 33, 34, 23), numerically, the behavior of q with respect to x can be studied.
In Fig. 6, similar to previous case, the present (x ≈ 0) acceleration has been supported
by a long period deceleration phase at past (x < 0).

4 Thermodynamics of non-interacting LECHDE with AH-IR-cutoff

In this section we want to associate a thermodynamical description to cosmological
horizons, similar to black hole physics. In a FRW universe enclosed by an apparent
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Fig. 6 The evolution of q versus x = ln (a) in PLECHDE model for (n = 0.89, α = 3, δ = 0.2,

b2 = 0.1, � = 0.04)

horizon, one can associate the Hawking temperature to the horizon, which is inversely
proportional to size of the apparent horizon. We know that the FRW universe may
consist of several cosmic ingredients including dark energy, dark matter, radiation and
baryonic matter. However a lot of cosmological evidences reveal that the dark energy
and matter are two dominant components in our universe. In the following, we will con-
sider LECHDE and CDM components of energy in a non-flat FRW universe enclosed
by apparent horizon. In a local thermal equilibrium, where there is not any heat flow
from the apparent horizon, the temperature of the energy content of the universe (T )
should be equal to the temperature which is associated with apparent horizon (Th).
Although this assumption is not rigorously established now, the thermal equilibrium
state can be accessed at a finite time and therefore we will consider a unit tempera-
ture for the whole of spacetime (contain DE, CDM and AH). In the non-equilibrium
universe, the heat will flow outside (inside) the apparent horizon if the temperature of
cosmic fluid is hotter (colder) than the apparent horizon. The equilibrium entropy of
the LECHDE is connected with its energy and pressure, pD , through the Gibbs law
of thermodynamics

T d SD = d ED + pDdV, (35)

where V = (4π/3)r3
A is the volume of whole space up to horizon surface and SD is

the entropy of DE component. The equilibrium temperature T , can be obtained from
the surface gravity (κH ) of horizon as follow [70]

T = |κH |
2π

= 1

4π
√−h

∣∣∣∂a(
√−hhab∂br̃)

∣∣∣ . (36)
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From this equation, the temperature of apparent horizon is calculated as

T = 1

2π r̃A

(
1 − ˙̃r A

2Hr̃A

)
. (37)

Following Cai and Kim [70], the apparent horizon radius r̃A should be regarded to
have a fixed value in thermal equilibrium. It means that ˙̃r A ≈ 0. Thus the temperature
is given by

T = 1/
(

2π r̃ (0)
A

)
. (38)

Now from Eq. (35), we have

T d S = ρD(1 + wD)dV + V dρD, (39)

and by using Eq. (7), we can obtain

d S0
D

dr̃0
A

= 8

3
π2
(

r̃0
A

)3 [
6n2 M2

P

(
r̃0

A

)−2 + 2γ (̃r0
A)−4 − ρ0

D

(
1 − 3w0

D

) ]
, (40)

where superscript (0) denotes that the universe is in a stable thermodynamical equi-
librium state.

5 Thermodynamics of interacting LECHDE with AH-IR-cutoff

In the presence of interaction, (Q 	= 0), the thermal equilibrium is no further maintain
due to thermal fluctuation which has been arisen from decaying of dark energy to dark
matter. The conservation equations for ρm and ρD , have been given by Eqs. (10, 11).
In this case, however the Gibbs law of thermodynamics may hold only approximately
for dynamical apparent horizon, the entropy is affected under a first order logarithmic
correction (S(1)

D ) involving temperature T and the heat capacity C , as follow [76]

S(1)
D = −1

2
ln(CT 2). (41)

Hence, the entropy should be modified as: SD = S(0)
D + S(1)

D . The heat capacity in ther-

mal equilibrium has been defined as: C = T ∂S(0)
D /∂T . Using (38), the heat capacity

can be rewritten as: C = −(̃r0
A)∂S(0)

D /∂ r̃0
A. Using Eq. (40) in thermal equilibrium, the

corrected term S(1)
D is calculated as

S(1)
D = −1

2
ln

[
ρ0

D

(
r̃0

A

)2 (
1 − 3w0

D

)
− 6n2 M2

P − 2γ
(

r̃0
A

)−2
]

− 1

2
ln

(
2

3

)
. (42)
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Similar to Eq. (40) with interaction, one obtains

d SD = 8

3
π 2̃r3

A

[
6n2 M2

Pr̃−2
A + 2γ r̃−4

A − ρD(1 − 3wD)
]

dr̃A, (43)

where from d SD = d S(0)
D + d S(1)

D , we find

1 − 3wD =
[
6n2 M2

Pr̃−2
A + 2γ r̃−4

A − 3

8π 2̃r3
A

(
d S(0)

D

dr̃A
+ d S(1)

D

dr̃A

)]
ρ−1

D . (44)

By using Eqs. (40, 42), we can calculate

d S(0)
D

dr̃A
= d S(0)

D

dr̃0
A

dr̃0
A

dr̃A

= 8

3
π2
(

r̃0
A

)3 [
6n2 M2

P

(
r̃0

A

)−2 + 2γ
(

r̃0
A

)−4 − ρ0
D

(
1 − 3w0

D

) ]dr̃0
A

dr̃A
, (45)

d S(1)
D

dr̃A
= d S(1)

D

dr̃0
A

dr̃0
A

dr̃A

=
2ρ0

D

(̃
r0

A

) (
1 − 3w0

D

)+ 4γ
(̃
r0

A

)−3 + (̃
r0

A

)2 d
dr̃0

A

[
ρ0

D

(
1 − 3w0

D

)]

2
[
−ρ0

D

(̃
r0

A

)2 (
1 − 3w0

D

)+ 6n2 M2
P + 2γ

(̃
r0

A

)−2
] dr̃0

A

dr̃A
,

(46)

where from (18) and (16), we have

1 − 3wD = 4 + 3
u
(

2ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

)
− �

3H (1 + u)ρD

(1 − u)ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

, (47)

1 − 3w0
D = 4 + 3u0 2ρ0

D − 3n2 M2
P

(̃
r0

A

)−2 − γ
(̃
r0

A

)−4

(1 − u0)ρ0
D − 3n2 M2

P

(̃
r0

A

)−2 − γ
(̃
r0

A

)−4 , (48)

du0

dr̃0
A

= −(1 + u0)

[
2

r̃0
A

+ d

dr̃0
A

ln
(
ρ0

D

)]
. (49)

Now, we can find a relation between the interaction term and the thermal fluctuation.
For this purpose, by comparing two Eqs.(44) and (47), the interaction term can be
calculated with respect to thermal fluctuation as
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�

3H
= 2

3(1 + u)ρ2
D

{(
2ρD − 3n2 M2

Pr̃−2
A − γ r̃−4

A

)

×
((

1 + u

2

)
ρD − 3n2 M2

Pr̃−2
A − γ r̃−4

A

)

+ 3̃r0
A

32π 2̃r3
A

(1 − u)ρD − 3n2 M2
Pr̃−2

A − γ r̃−4
A

6n2 M2
P + 2γ

(̃
r0

A

)−2 − ρ0
D

(̃
r0

A

)2 (
1 − 3w0

D

)

×
[

4γ
(

r̃0
A

)−4 + 2ρ0
D

(
1 − 3w0

D

)

+16

3
π2
(

6n2 M2
P + 2γ

(
r̃0

A

)−2 − ρ0
D

(
r̃0

A

)2 (
1 − 3w0

D

))2

+r̃0
A

d

dr̃0
A

[ρ0
D

(
1 − 3w0

D

) ]dr̃A

dr̃0
A

}
. (50)

In limiting case, from Eqs. (25, 50), for ordinary HDE (γ = β = 0), where w0
D = 0

and ρD = 3n2 M2
Pr̃−2

A , it can be obtained

�

3H
= 1 − n2

3

[
1 − r̃0

A
d

dr̃0
A

ln(̃rA)

]
. (51)

6 Conclusion

In this paper the logarithmic and power-law entropy-corrected version of interacting
HDE with AH-IR-cutoff in a non-flat universe enclosed by apparent horizon have been
studied. In fact we generalized the ordinary HDE model by considering the entropy
correction due to fluctuation of spacetime and AH-IR-cutoff. The ratio of dark matter to
dark energy densities u, EoS parameterwD and deceleration parameter q have been cal-
culated for both models. We showed that the cosmic coincidence problem is solved for
appropriate model parameters. In dealing with cosmic coincidence problem, we found
an appropriate set of values for LECHDE model as: (γ = 0.1, β = 0.2, n = 0.8)
and for PLECHDE model as: (n = 0.89 α = 3, δ = 0.2). By studying the effect of
interaction in EoS parameter, we saw that the phantom divide may be crossed and also
find that the interacting models can drive an acceleration expansion at the present and
future, while in non-interacting case, this expansion can happen only at the early time.
The graphs of deceleration parameter for interacting models, showed that the present
acceleration expansion is preceded by a sufficiently long period deceleration at past.

Moreover, the thermodynamical interpretation of interaction between LECHDE
and dark matter was described. Based on the Gibbs law of thermodynamics, for dark
energy sector of the universe in non-interacting case, we calculated a differentiation
of entropy of DE with respect to r̃A. Although in the absence of interaction between
dark energy and dark matter, these two dark components conserved separately, while
by imposing an interaction term, a stable fluctuation around equilibrium is expectable.
Therefore, in the interacting case, where the entropy is affected under a first order
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logarithmic correction, we obtained a relation between the interaction term and ther-
mal fluctuation in the non-flat universe enclosed by the apparent horizon. Also in
limiting case for ordinary HDE, the relation of interaction term versus thermal fluctu-
ation was calculated.
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