
Gen Relativ Gravit (2011) 43:3079–3098
DOI 10.1007/s10714-011-1225-3

RESEARCH ARTICLE

f (R) black holes

Taeyoon Moon · Yun Soo Myung · Edwin J. Son

Received: 27 April 2011 / Accepted: 10 July 2011 / Published online: 24 July 2011
© Springer Science+Business Media, LLC 2011

Abstract We study the f (R)-Maxwell black hole imposed by constant curvature
and its all thermodynamic quantities, which may lead to the Reissner-Nordström-
AdS black hole by redefining Newtonian constant and charge. Further, we obtain the
f (R)-Yang-Mills black hole imposed by constant curvature, which is related to the
Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole
solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then,
we confirm the presence of these solutions in a numerical way.

Keywords Yang-Mills black holes · f (R) gravity

1 Introduction

f (R) gravities as modified gravity theories [1–4] have much attentions as one of
promising candidates for explaining the current and future accelerating phases in the
evolution of universe [5,6]. It is known that f (R) gravities can be considered as general
relativity (GR) with an additional scalar field. Explicitly, it was shown that the metric-
f (R) gravity is equivalent to the ωBD = 0 Brans-Dicke theory with the potential,
while the Palatini- f (R) gravity is equivalent to the ωBD = −3/2 Brans-Dicke theory
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3080 T. Moon et al.

with the potential [7]. Although the equivalence principle test (EPT) in the solar sys-
tem imposes a strong constraint on f (R) gravities, they may not be automatically
ruled out if the Chameleon mechanism is employed to work. It is shown that the EPT
allows f (R) gravity models that are indistinguishable from the �CDM model (GR
with positive cosmological constant) in the evolution of the universe [8]. However,
this does not imply that there is no difference in the dynamics of perturbations [9].

On the other hand, the Schwarzschild-de Sitter black hole was obtained for a posi-
tively constant curvature scalar in [9] and other black hole solution was recently found
for a non-constant curvature scalar [10]. A black hole solution was obtained from
f (R) gravities by requiring the negative constant curvature scalar R = R0 [11]. If
1 + f ′(R0) > 0, this black hole is similar to the Schwarzschild-AdS (SAdS) black
hole. Also, its seems that there is no sizable difference in thermodynamic quantities
between f (R) and SAdS black holes when using the Euclidean action approach and
replacing the Newtonian constant G by Geff = G/(1 + f ′(R0)).

In order to obtain the constant curvature black hole solution from “ f (R) gravity
coupled to the matter”, the trace of its stress-energy tensor Tμν should be zero. Hence,
two candidates for the matter field are the Maxwell and Yang-Mills fields. Concerning
the f (R)-Maxwell black hole, the authors [11] have made an mistake to show the
correct solution [12].

In this work, we study the f (R)-Maxwell black hole and its all thermodynamic
quantities, which are similar to the Reissner-Nordström-AdS (RNAdS) black hole
when making appropriate replacements. We obtain the topological f (R)-Maxwell
black holes. Importantly, we obtain the topological f (R)-Yang-Mills black holes,
which are similar to the topological Einstein-Yang-Mills (dyonic) black holes in AdS
space. Since there is no analytic black hole solution in the presence of Yang-Mills field,
we obtain asymptotic solutions. Then, we confirm the presence of these solutions in a
numerical way.

2 f (R)-Maxwell black holes

Let us first consider the action for f (R) gravity with Maxwell term in four dimensions

S f M = 1

16πG

∫
d4x

√−g[R + f (R) − Fμν Fμν]. (2.1)

From the variation of the above action (2.1), the Einstein equation of motion for the
metric can be written by

Rμν(1 + f ′(R)) − 1

2
(R + f (R))gμν + (gμν∇2 − ∇μ∇ν) f ′(R) = 2Tμν (2.2)

with the stress-energy tensor

Tμν = Fμρ Fν
ρ − gμν

4
Fρσ Fρσ with T μ

μ = 0. (2.3)
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On the other hand, the Maxwell equation takes the form

∇μFμν = 0. (2.4)

Considering the constant curvature scalar R = R0, the trace of (2.2) leads to

R0(1 + f ′(R0)) − 2(R0 + f (R0)) = 0 (2.5)

which determines the negative constant curvature scalar as

R0 = 2 f (R0)

f ′(R0) − 1
≡ 4� f < 0. (2.6)

Substituting this expression into (2.2) leads to the Ricci tensor

Rμν = � f gμν + 2

1 + f ′(R0)
Tμν, (2.7)

which implies that Rμν �= � f gμν (pure AdS4 space) unless Tμν = 0.
We introduce a static spherically symmetric metric ansatz,

ds2 = −N (r)dt2 + dr2

N (r)
+ r2d�2

2 (2.8)

and a gauge field as a solution to (2.4)

At (r) = Q

r+
− Q

r
(2.9)

which provides an electrically charged black hole with At (r+) = 0. Solving the
Einstein equation (2.2) together with the condition of constant curvature scalar, we
obtain the solution for a metric function

N (r) = 1 − 2G M

r
+ Q2

(1 + f ′(R0))r2 − R0

12
r2. (2.10)

We note that the topological f (R)-Maxwell black hole solution is also found to be

Nk(r) = k − 2G M

r
+ Q2

(1 + f ′(R0))r2 − R0

12
r2 (2.11)

when considering the metric ansatz [13,14]

ds2
k = Nk(r)dt2 + N−1

k (r)dr2 + r2d	2
k , (2.12)

with d	2
k = dθ2 + σ 2

k (θ)dϕ2. Here σk(θ) denotes sin θ, θ and sinh θ for k = 1
(spherical horizon), 0 (flat horizon), and k = −1 (hyperbolic horizon), respectively.
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We could derive all thermodynamic quantities since the analytic solution was known
as (2.10). First of all, the Hawking temperature is calculated to be

TH (r+, Q) = N ′

4π
|r→r+ = 1

4π

[
1

r+
− Q2

(1 + f ′(R0))r3+
− R0r+

4

]
. (2.13)

In order to compute other thermodynamic quantities, it would be better to use the
Euclidean action approach [15] because we are working with f (R) gravities. To make
the action Euclidean, the time coordinate should be made imaginary by substituting
t = iτ . In this case, to eliminate the conical singularity at the horizon r = r+, the
coordinate τ should be periodic with the period β = 1/TH . For this purpose, we have
to calculate the Euclidean action [16,17]

�SE
t = SE

f M + SG H + Sct + ScF , (2.14)

where the Euclidean bulk action is

SE
f M = − 1

16πG

∫
d4x

√
gE [R + f (R) − Fμν Fμν]. (2.15)

Here SG H is the Gibbons-Hawking term to make the variation at the boundary clear
and Sct is the counter term for asymptotic AdS4 space. We are working with the
canonical ensemble as the fixed charge ensemble. In this case, we need to introduce
the charge-fixing (cF) as a boundary surface term [16]

ScF = 1

4πG

∫
d3x

√
hFμνnν Aν (2.16)

where hi j is the induced metric on the boundary surface and nμ is a radial unit vec-
tor pointing outwards. If one does not introduce ScF , one is working with the grand
canonical ensemble. Also, the extremal black hole whose horizon is degenerate is con-
sidered to be the ground state in the canonical ensemble [18]. The location r+ = re of
extremal horizon is determined by the condition of TH (re, Q) = 0. That is, in order
to derive the Helmholtz free energy, we must subtract the extremal mass M f = M f

e
from (2.14). Taking into account all leads to

�SE
t − M f

e = −β(1 + f ′(R0))

48G

[
−12r+ − R0r3+ − 36Q2

(1 + f ′(R0))r+

+ 24

(
re + Q2

(1 + f ′(R0))re
− R0

12
r3

e

)]
(2.17)

≡ βF f = βE f − S f
B H . (2.18)

Here F f is the Helmhotz free energy, β is the inverse of the Hawking temperature, and
S f

B H is the Bekenstein-Hawking entropy. The energy, Bekenstein-Hawking entropy,
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and heat capacity are given as

E f (r+, Q) =
∂
(
�SE − M f

e

)

∂β
= M f (r+, Q) − M f

e

= (1 + f ′(R0))r+
2G

[
1 + Q2

(1 + f ′(R0))r2+
− R0

12
r2+

]
− M f

e , (2.19)

S f
B H = βE f − βF f = (1 + f ′(R0))

A(r+)

4G
, (2.20)

C f (r+, Q) =
(

∂ E f

∂T

)
Q

= 2(1 + f ′(R0))πr2+
G

⎡
⎣−4r2+ + 4Q2

1+ f ′(R0)
+ R0r4+

4r2+ − 12Q2

1+ f ′(R0)
+ R0r4+

⎤
⎦ , (2.21)

where

M f
e = M f (re, Q) = 1 + f ′(R0)

3G

[
re + 2Q2

re(1 + f ′(R0))

]
(2.22)

is the mass of the extremal black hole and A(r+) = 4πr2+ is the horizon area. In this
case, E measures the energy above the ground state.

Considering replacements of

G

1 + f ′(R0)
→ Geff , R0 = 4� f → −12

�2 ,
Q2

1 + f ′(R0)
→ Q2

f , (2.23)

the f (R)-Maxwell black hole becomes the RNAdS black hole exactly. In this case,
the ADM mass M f , Hawking temperature TH , and the Bekenstein-Hawking entropy
S f

B H take compact forms

M f (r+, Q f ) = r+
2Geff

[
1 + Q2

f

r2+
+ r2+

�2

]
,

TH (r+, Q f ) = 1

4π

[
1

r+
− Q2

f

r3+
+ 3r+

�2

]
, S f

B H = πr2+
Geff

.

(2.24)

Finally, the heat capacity C f and Helmholtz free energy F f are given by

C f (r+, Q f ) = 2πr2+
Geff

⎡
⎣ 3r4+ + �2

(
r2+ − Q2

f

)

3r4+ + �2
(
−r2+ + 3Q2

f

)
⎤
⎦ , (2.25)
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F f (r+, Q f ) = 1

4Geffr+

[
r2+ + 3Q2

f − r4+
�2

]
− Me. (2.26)

At this stage, we have to mention the other thermodynamic quantities obtained directly
from the metric function N (r) in (2.10). In this case, all thermodynamic quantities of
M, SB H , C, F are obtained from the replacements as

R0 → −12

�2 ,
Q2

1 + f ′(R0)
→ Q2

f . (2.27)

There exists a slight difference in M, SB H , C, F between G in the direct method and
Geff in the Euclidean action approach. The first law of thermodynamics is satisfied
for both cases

d M f = TH S f
B H , d M = TH SB H . (2.28)

One curious quantity derived from f (R) gravities is the Bekenstein-Hawking entropy

S f
B H = [1 + f ′(R0)]πr2+

G
(2.29)

which was also derived from the Wald method [7]. On the other hand, the conventional
Bekenstein-Hawking entropy is

SB H = πr2+
G

. (2.30)

For example, if one uses S f
B H to check the first law of thermodynamics, one immedi-

ately finds that it is not satisfied as follows

d M �= TH S f
B H . (2.31)

At this stage, there is no way to test which approach provides the correct thermody-
namic quantities for f (R)-Maxwell black holes. Anyway, the entropy issue should be
resolved.

The global features of thermodynamic quantities are shown in Fig. 1 for Geff =
1 = G. Under this setting, there is no difference between two approaches: M f =
M, S f

B H = SB H , C f = C, F f = F . From the first and second graphs, we observe
the local minimum TH = T0 (C blows up) at r+ = r0, in addition to the zero tem-
perature TH = 0 (C = 0) at the extremal point of r+ = re and the maximum value
TH = Tm (C blows up) at r+ = rm known as the Davies point. We note a sequence
of re < rm < r0. For re < r+ < rm , the black hole is locally stable because of
C > 0, while for rm < r+ < r0 it is locally unstable (C < 0). For r+ > r0, the
black hole becomes stable because of C > 0. Based on the local stability, the f (R)-
Maxwell black holes are split into small black hole (SBH) with C > 0 being in the
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Fig. 1 Thermodynamic quantities of the f (R)-Maxwell black hole as function of horizon radius r+ with
fixed Q f = 1, � = 10, and Geff = 1: temperature TH , heat capacity C , and Helmhotz free energy F

region of re < r+ < rm , intermediate black hole (IBH) with C < 0 in the region of
rm < r+ < r0, and large black hole (LBH) with C > 0 in the region of r+ > r0.

Importantly, the free energy from the last graph in Fig. 1 plays a crucial role to test
the phase transition. A black hole is globally stable when C > 0 and F < 0. We note
that F = 0 at r+ = re, because of F = M − Me − TH SB H with TH (re, Q f ) = 0.
We observe two extremal points for free energy: the local minimum F = Fmin at
r+ = rm and the maximum value F = Fmax at r+ = r0. The free energy is nega-
tive for re < r+ < rm and it increases in the region of rm < r+ < r0. For a point
of r+ = r1 > r0, it is zero and remains negative for r+ > r1. The temperature of
T = T1 (determined from the condition of F = 0) at r+ = r1 may play a role of the
critical temperature in Hawking-Page phase transitions. The related phase transition
was discussed in Ref. [19]. It can be shown that the Hawking-Page phase transition II
between SBH and LBH unlikely occurs in the f (R)-Maxwell black holes.

3 f (R)-Yang-Mills black holes

We consider the action of f (R) gravity coupled to SU (2) Yang-Mills field in four
dimensions

S f Y M = 1

16πG

∫
d4x

√−g
{

R + f (R) − Fa
μν Fμνa} , (3.1)

where Fa
μν = ∂μ Aa

ν −∂ν Aa
μ +εabc Ab

μ Ac
ν . From the action (3.1), the Einstein equation

of motion can be written by

Rμν(1 + f ′(R)) − 1

2
(R + f (R))gμν + (gμν∇2 − ∇μ∇ν) f ′(R) = 2T YM

μν (3.2)

with T YM
μν the stress-energy tensor for the Yang-Mills field. For the constant curvature

scalar R = R0, taking the trace of (3.2) leads to

R0(1 + f ′(R0)) − 2(R0 + f (R0)) = 0 (3.3)

which determines the constant curvature scalar as

R0 = 2 f (R0)

f ′(R0) − 1
≡ 4� f < 0. (3.4)

123



3086 T. Moon et al.

Now we consider the topological metric ansatz

ds2
k = −e2φ(r)N (r)dt2 + N−1(r)dr2 + r2d	2

k , (3.5)

with d	2
k = dθ2 + σ 2

k (θ)dϕ2. A dyonic solution ansatz for Yang-Mills gauge field is
given by

A = {u(r)τ3dt + ω(r)τ1dθ + [∂θσ (θ)τ3 + σ(θ)ω(r)τ2] dϕ}, (3.6)

where u(r)[ω(r)] describe the electric [magnetic] charged configurations and τi is the
Pauli spin matrices for SU (2).

Substituting (3.5) and (3.6) into the action (3.1), and after variations with respect
to N , φ, ω, u, one finds their equations of motion:

δN S; 2r
(
1 + f ′(R)

)
φ′ − r2

{
f ′′′(R)(R′(r))2 + f ′′(R)(−φ′ R′(r) + R′′(r))

}

− 4(ω′)2 − 4e−2φu2ω2

N 2 = 0, (3.7)

δφ S; − 2k + 2r N ′ + 2N − r2 f (R) + 4N (ω′)2 + 2(ω2 − k)2

r2

+ 2e−2φ

(
r2(u′)2 + 2u2ω2

N

)
+ 2r2 N f ′′′(R)(R′(r))2

+ r f ′′(R)
{
4N R′(r) + 2r N R′′(r) + r N ′ R′(r)

}
+ r f ′(R)

{
−2r N (φ′)2 − 4Nφ′ − r N ′′ − 2r Nφ′′ − 2N ′

−3r N ′φ′} = 0, (3.8)

δωS; r2 Nω′′ + r2(N ′ + φ′N )ω′ − ω(ω2 − k) + e−2φr2u2ω

N
= 0, (3.9)

δu S; r2u′′ +
(
−r2φ′ + 2r

)
u′ − 2ω2u

N
= 0, (3.10)

where the curvature scalar R(r) is given by

R(r)=− 1

r2

[
−2+r N ′(4 + 3rφ′) + r2 N ′′ + N (2 + 2r2(φ′)2 + 4rφ′ + 2r2φ′′)

]
.

(3.11)
Note that the prime (′) in f (R) and N , ω, φ denotes the differentiation with respect to
R and r , respectively. It is a formidable task to solve the above four equations directly.
Therefore, we consider the constant curvature scalar which implies that

R(r) = R0, R′(r) = R′′(r) = 0. (3.12)

Actually, we have used the condition (3.12) to derive the f (R)-Maxwell black holes
in the previous section. Plugging (3.12) into the four equations leads to simplified
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equations

δN S; r(1 + f ′(R0))φ
′ − 2(ω′)2 − 2e−2φu2ω2

N 2 = 0, (3.13)

δφ S; − 2k + 2r N ′ + 2N − r2 f (R0) + 4N (ω′)2 + 2(ω2 − k)2

r2

+ 2e−2φ

(
r2(u′)2 + 2u2ω2

N

)

+ r f ′(R0)(−2r N (φ′)2 − 4Nφ′ − r N ′′ − 2r Nφ′′ − 2N ′ − 3r N ′φ′) = 0,

(3.14)

δωS; r2 Nω′′ + r2(N ′ + φ′N )ω′ − ω(ω2 − k) + e−2φr2u2ω

N
= 0, (3.15)

δu S; r2u′′ + (−r2φ′ + 2r)u′ − 2
ω2u

N
= 0. (3.16)

Note that for f (R0) = f ′(R0) = 0, they reduce to those derived from the topological
Einstein-Yang-Mills theory [22]. It is well known that there is no analytic black hole
solution to the Einstein-Yang-Mills theory. Hence, we can find either the asymptotic
solution with finite terms or the numerical solution.

First, we wish to derive the asymptotic solution at infinity of r → ∞. Equations
(3.13)–(3.16) can be solved by considering asymptotic forms for metric and gauge
field functions up to 1

r5 -order

N (r) = k − 2m(r)

r
− R0

12
r2, (3.17)

m(r) = M + M1

r
+ M2

r2 + M3

r3 + M4

r4 + M5

r5
+ O

(
1

r6

)
, (3.18)

ω(r) = ω∞ + ω1

r
+ ω2

r2 + ω3

r3 + ω4

r4 + ω5

r5
+ O

(
1

r6

)
, (3.19)

u(r) = u∞ + u1

r
+ u2

r2 + u3

r3 + u4

r4 + u5

r5
+ O

(
1

r6

)
, (3.20)

where M, ω∞, ω1, u∞, and u1 are five constants evaluated at infinity and other
Mi , ωi , and ui are expressed in terms of these constants and 1 + f ′(R0) appeared
in Appendix A. Let us compare f (R)-Yang-Mills (fYM) black holes with Einstein-
Yang-Mills (EYM) black holes. We observe the relations of coefficients between two
black holes

M fYM
i = MEYM

i

1 + f ′(R0)
, for i = 1, 2, 3, 4 (3.21)

ωfYM
i = ωEYM

i , ufYM
i = uEYM

i , for i = 2, 3, 4. (3.22)
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It seems that there is no longer simple relations between two black holes for i ≥ 5.
Hence, it is not easy to derive any concrete form for thermodynamic quantities of
f (R)-Yang-Mills black holes. Exceptionally, the form of Hawking temperature can
be derived to be

T fYM
H = 1

4πr+

[
k − R0

4
r2+ − 2m′(r+)

]
(3.23)

because it will be determined by the variables defined at horizon. Using (4.11), it takes
the form

T fYM
H = 1

4πr+

[
k − R0

4
r2+ −

(
k − ω2+

)2 + r4+u2
0e−2φ+

r2+(1 + f ′(R0))

]
. (3.24)

In the case of purely magnetic charged black hole with u0 = 0 and f ′(R0) = 0, it
reduces to Eq. (28) in Ref. [22]. Here u0 = u′(r+) may be considered as a counterpart
of A′

t (r+) = Q/r2+ in the f (R)-Maxwell black holes. Furthermore, one finds the
metric function N (m(r) � M + M1/r) up to 1

r2 -order and gauge field functions ω

and u up to 1
r -order

N (r) � k − 2M

r
+
⎧⎨
⎩

Q2
M + Q2 − R0 J 2

6 − 24 u2∞ω2∞
R0

(1 + f ′(R0))

⎫⎬
⎭

1

r2 − R0

12
r2, (3.25)

ω � ω∞ + J

r
, u(r) � u∞ − Q

r
(3.26)

with the Yang-Mills magnetic charge QM = k −ω2∞ [22] and the Yang-Mills electric
charge Q. Here we reset ω1 = J and u1 = −Q to make a connection to holo-
graphic super-conducting models using the AdS/CFT correspondence [23] and [24]
for higher dimensional cases. Using the holographic interpretation with ω∞ = 0, u∞
is the chemical potential, Q is the electric charge, and J is the component of the current
Ji on the boundary at infinity which is connected with the spontaneously broken part
of the bulk gauge symmetry.

We note that (3.25) and (3.26) with Q2
M = 0 and u∞ = Q/r+ [imposed by

u(r+) = 0] reduce to those of the topological f (R)-Maxwell black holes when turn-
ing off the magnetic charge gauge potential and setting ui = 0(i ≥ 2). Especially, the
constant ω1 = J corresponds to an order parameter describing the deviation from the
Abelian solution of f (R)-Maxwell black holes.

Finally, it is also interesting to explore the other case of purely magnetic charged
black holes obtained by choosing k = 1, u(r) = 0. Its asymptotic solution appeared
in Appendix B. In the case of Einstein-Yang-Mills black holes, these black holes are
stable against gravitational and sphaleronic perturbations for ω+ > 1/

√
3 = 0.577 for

large |�| [20]. Actually, the stability condition corresponds to that a gauge field ω(r)

has no zero. Hence, we conjecture that purely magnetic charged black holes in the
f (R)-Yang-Mills theory has a similar property because for constant curvature scalar
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and 1 + f ′(R0) > 0 (no ghost condition), the f (R)-modification to the Einstein-
Yang-Mills black hole will be minimized. We will check in the next section that the
zero of ω(r) appears only for ω+ < 1/

√
3 = 0.577. Furthermore, there exist nodeless

solutions for k = 0, 1 Einstein-Yang-Mills black holes [22], which means that these
black holes are stable.

In the next section, we will find numerical solutions for k = 1, 0 dyonic black holes
and k = 1 purely magnetic charged black holes.

4 Numerical results

We numerically solve (3.13)–(3.16) with boundary conditions of (3.25) and (3.26)
using a standard shooting method in Mathematica�7. The k = 1 Einstein-Yang-Mills
black holes was discussed in Ref. [20,21], while k = 0,−1 Einstein-Yang-Mills black
holes was found numerically in Ref. [22].

In order to obtain numerical solutions, we transform Eqs. (3.13)–(3.16) into

φ′(r) = 2
(
ω2u2e−2φ + (ω′)2 N 2

)
r(1 + f ′(R0))N 2 , (4.1)

m′(r) = 2r2
(
ω2u2e−2φ + (ω′)2 N 2

)+ N
(
(k − ω2)2 + r4((ue−φ)′)2

)
2r2(1 + f ′(R0))N

+2ruu′(ω2u2e−2φ + (ω′)2 N 2)

(1 + f ′(R0))2 N 2 + 2u2
(
ω2u2e−2φ + (ω′)2 N 2

)2

(1 + f ′(R0))3 N 4 , (4.2)

ω′′(r) = −φ′ω′ − N ′ω′

N
− ω(k − ω2)

r2 N
− ωu2e−2φ

N 2 , (4.3)

u′′(r) = φ′u′ − 2u′

r
+ 2uω2

r2 N
, (4.4)

where we used the relation (3.4) to include 1 + f ′(R0) only as f (R)-gravity effects.
First, let us develop the solution forms near the non-degenerate horizon at r = r+.
Because of N (r+) = 0, we derive a relation of u(r+)ω(r+) = 0 from Eq. (4.4).
Choosing ω(r+) = 0, it is easily shown that ω′(r+) = ω′′(r+) = 0, which implies
that ω(r) = 0. This is not the case. So we choose u(r+) = 0 instead, and the solution
near the non-degenerate horizon can be expanded as

φ(r) = φ+ + φ′(r+)(r − r+) + O(r − r+)2, (4.5)

m(r) = m+ + m′(r+)(r − r+) + O(r − r+)2, (4.6)

ω(r) = ω+ + ω′(r+)(r − r+) + O(r − r+)2, (4.7)

u(r) = u0(r − r+) + u′′(r+)

2
(r − r+)2 + O(r − r+)3, (4.8)
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where the coefficients are determined by equations

m+ = m(r+) = r+
2

(
1 − R0

12
r2+
)

, (4.9)

φ′(r+) =
2ω2+

((
k − ω2+

)2 + r4+u2
0e−2φ+

)

r+(N ′(r+))2(1 + f ′(R0))
, (4.10)

m′(r+) =
(
k − ω2+

)2 + r4+u2
0e−2φ+

2r2+(1 + f ′(R0))
, (4.11)

ω′(r+) = −ω+
(
k − ω2+

)
r2+N ′(r+)

, (4.12)

u′′(r+) = −2u0

r+

(
1 − r2+ω2+

(
4k − R0r2+

)
4(N ′(r+))2

)
(4.13)

which satisfy at the horizon r = r+. Since the metric function N is zero at the horizon
r = r+ and it should be positive outside the horizon, we have to choose a condition
of N ′(r+) > 0. This restricts the range of ω+ through the inequality

2m′(r+) < k − R0r2+
4

(4.14)

which yields a positiveness of ω′(r+) > 0 for ω+(ω2+ − k) > 0, while m′(r+) > 0 for
1+ f ′(R0) > 0. Note that φ′(r+), m′(r+), ω′(r+), and u′′(r+) depend on r+, φ+, ω+,
and u0, which means that they are four independent parameters describing the near
horizon geometry of (4.5)–(4.8). On the other hand, there are five independent parame-
ters of M, ω∞, ω1, u∞, and u1 describing asymptotic region of (3.18)–(3.20). Remem-
bering that (4.1)–(4.4) are two first- and two second-order differential equations, we
need six initial parameters to solve the equations numerically at each boundary of hori-
zon and asymptotic infinity. However, considering N (r+) = 0, we choose u(r+) = 0
and then, (4.3) leads to a first-order differential equation. This is why four indepen-
dent parameters is enough to specify the near horizon geometry of f (R)-Yang-Mills
black hole. In addition, we have time-rescaling symmetry so that we can replace φ

by φ + φ0 without loss of generality. This means that either φ+ or φ(∞) can be cast
to zero. Here we choose φ(∞) = 0 to achieve an asymptotic AdS4 space which is
similar to that of f (R)-Maxwell black hole solution. Hence, the asymptotic solution
has five parameters less than six of general analysis. In this manner, we show that φ+
is not an arbitrary parameter.

We are now in a position to solve the initial value problem, for given r+, R0, ω+,
and u0, by introducing a specific form of f (R) gravity as

f (R) = − αc1
( R

α

)n

1 + β
( R

α

)n (4.15)
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(a) (b)

Fig. 2 The numerically solved functions m (solid lines), ω (dashed lines), u (dotted lines), and eφ (dot-
dashed lines) are depicted with respect to radius log10 r for r+ = 1 and R0 = −3.6 (α = −0.9, β =
1.125, c1 = 3.025). a For k = 1, we have m+ = 0.65 and φ+ = −0.23 with φ(∞) = 0. Then, we
obtain ω∞ = 1.0 so that QM = (1 − ω2∞) = 0. b For k = 0, we get m+ = 0.15 and φ+ = −0.11 with
φ(∞) = 0. Then, we obtain ω∞ = 0 so that QM = 0

proposed in Ref. [25] and setting n = 1 for simplicity in this work. Imposing the
constant curvature scalar (3.4), Eq.(4.15) implies

c1 =
(

1 + β R0
α

)2

1 + 2β R0
α

. (4.16)

The Einstein limit exists in the constant curvature case, which shows that c1 →
2β� f /α as α → 0. Then, f (R) becomes a negative cosmological constant ( f (R) →
−2� f ). In what follows, however, we consider only a nonvanishing α case.

The numerical solutions to (4.1)–(4.4) are depicted in Fig. 2 graphically for α =
−0.9, β = 1.125, c1 = 3.025, for which R0 and f ′(R0) are fixed to either R0 = −3.6
and f ′(R0) = −0.1 or R0 = 1.8 and f ′(R0) = −10. In this work, since we are
interested in asymptotically AdS space with 1 + f ′(R0) > 0, we choose the former
of R0 = −3.6 and f ′(R0) = −0.1. Choosing the horizon radius to be r+ = 1, the
left and right figures are distinguished by specifying remaining parameters k, ω+ and
u0:(a) k = 1, ω+ = 1.08 and u0 = 0.33 (b) k = 0, ω+ = 0.1 and u0 = 0.77. Further-
more, these numerical solutions are being used to determine the form of parameters in
asymptotic AdS space. Matching its asymptotic forms (3.25) and (3.26), we find that
for (a), M ≈ 4.07, ω∞ ≈ 1.00, ω1 ≈ 2.63, u∞ ≈ 1.38, and u1 ≈ −4.14, while for
(b), M ≈ 0.58, ω∞ ≈ 0.00, ω1 ≈ 0.13, u∞ ≈ 0.87, and u1 ≈ −0.87. At this stage,
we point out that that the magnetic charge QM = (k − ω2∞) vanishes for both cases,
so that their asymptotic geometry are similar to the f (R)-Maxwell black holes.

It is also interesting to explore the other solution of purely magnetic charged black
holes numerically by choosing k = 1, u(r) = 0. Considering its asymptotic solution
appeared in Appendix B, we find the numerical solutions. For a given f (R)-form
(4.15), the numerical solutions to Eqs. (5.2)–(5.4) could be developed for the same val-
ues as in the dyonic black hole solution. Setting the horizon at r+ = 1, the two graphs
in Fig. 3 are distinguished by specifying a remaining parameter ω+: (a) ω+ = 1.08
(b) ω+ = 0.1. Furthermore, this numerical solutions are used to find the parameters in
the asymptotic solutions. We find M ≈ 1.19, ω∞ ≈ 1.17, ω1 ≈ −2.54 for (a), while
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(a) (b)

Fig. 3 The numerically solved functions m (solid lines), ω (dashed lines), and eφ (dot-dashed lines) of
purely magnetic case (u(r) = 0) are depicted with respect to radius log10 r for r+ = 1, and R0 = −3.6
(α = −0.9, β = 1.125, c1 = 3.025). For convenience, k = 1 case is plotted only, and we have m+ = 0.65

M ≈ 1.21, ω∞ ≈ −0.02, ω1 ≈ 0.14 for (b). The stability condition for this black
hole corresponds to the condition that a gauge field ω(r) has no zero. As is shown in
the Fig. 3, we find that the zero of ω(r) appears for ω+ < 1/

√
3 = 0.577. Hence, we

conjecture that the stability condition for the Einstein-Yang-Mills black hole holds for
the f (R)-Yang-Mills black holes with 1 + f ′(R0) > 0.

5 Discussions

First of all, we summarize all numerical solutions to f (R)-Yang-Mill black holes in
Table 1. This table shows asymptotic solution forms constructed in the numerical way:
two dyonic solutions for k = 1 and k = 0 black holes and two magnetically charged
black holes for k = 1 and ω+ = 1.08, 0.1. The former was developed to compare
with the topological Einstein-Maxwell black holes, while the latter was displayed to
see the stability of f (R)-Yang-Mills black holes. We find that for 1 + f ′(R0) > 0,
the f (R)-Yang-Mills black holes are similar to Einstein-Yang-Mills black holes in
AdS space. In this case, one may develop the second-order phase transition between
f (R)-Maxwell and f (R)-Yang-Mills black holes to explain the holographic super-
conductor without Higgs field as in the Einstein theory [23]. The difference is that

Table 1 Asymptotic forms of numerical solution for f (R)-Yang-Mills black holes

Dyonic solution Purely magnetic solution

k = +1 k = 0 ω+ = 1.08 ω+ = 0.1
(ω+ = 1.08, u0 = 0.33) (ω+ = 0.1, u0 = 0.77) (k = +1) (k = +1)

m(r) ≈ 4.07 − 18.87

r
0.58 − 0.42

r
1.19 − 4.18

r
1.21 − 0.56

r

ω(r) ≈ 1.00 + 2.63

r
0.00 + 0.13

r
1.71 − 2.54

r
−0.02 + 0.14

r

u(r) ≈ 1.38 − 4.14

r
0.87 − 0.87

r
0 0

φ(r) ≈ − 15.57

r4 − 0.01

r4 − 3.58

r4 − 0.01

r4
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the AdS4 space was constructed not by introducing a cosmological constant, but by
choosing an appropriate f (R) function in (3.4). Also, it seems that for 1+ f ′(R0) > 0,
the stability condition of magnetically charged Einstein-Yang-Mills black holes holds
for magnetically charged f (R)-Yang-Mills black holes.

The condition of 1 + f ′(R0) > 0 is related to no ghost state for graviton propaga-
tions on AdS4 space [26–29], the positiveness of effective Newton constant Geff > 0
in cosmological implications [7,8], and a necessary condition that f (R) black hole
becomes a type of Schwarzschild-AdS black hole [11]. In this work, this condition is
necessary to obtain f (R)-Maxwell black hole and to derive its thermodynamic quan-
tities. Also, f (R)-Yang-Mills black holes requires this condition to have asymptotic
and numerical solutions. The other condition of f ′′(R0) < 0 is not necessary to obtain
the constant curvature black hole solutions. However, this condition may be needed
to be free from the Dolgov-Kawasaki instability related to tachyonic mass [2,7] in the
perturbation analysis of f (R)-Maxwell (Yang-Mills) black holes. We hope to make a
progress on the perturbation analysis.

At this stage, we would like to mention the close connection between f (R) and
Einstein black holes by rewriting the action (2.1) as

S̃ f M =
∫

d4x
√−g

[
1

16πG
{R + f (R)} − Fμν Fμν

]
. (5.1)

In this case, Einstein equation takes the form instead of (2.7)

Rμν = � f gμν + 8πG

1 + f ′(R0)
T̃μν (5.2)

with T̃μν = 4Tμν . Introducing a replacement of Gef f → G/(1 + f ′(R0)), the above
equation become

Rμν = � f gμν + 8πGeff T̃μν. (5.3)

The solution is determined by

Ñ (r) = 1 − G M

r
+ 16πGeff Q2

r2 − R0r2

12
(5.4)

which is the same form as (2.10) in the unit 16πG = 1. Also, we may make such a
replacement for f (R)-Yang Mills theory by rewriting (3.1) as S̃ f Y M . In this case, the
Mi , ωi , and ui in Appendix A including the substitution rules (3.21) and (3.22) may
be conjectured by following v = 4πG/e2 with e2 = 1 + f ′(R0) in Ref. [21], where
−F2/4 was used instead of −F2.

Finally, we wish to comment on two points. One is to answer to the question of
“is it possible to apply the reconstruction technique of Ref. [30] which was developed
for pure f (R) gravity to the f (R) with Maxwell (Yang-Mills) field?”. The answer
is “yes” because the pure metric f (R) gravity is equivalent to the ωBD Brans-Dicke
theory with the potential term. Expressing φ = 1+ f ′(R), we transform (2.1) and (3.1)
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into the Brans-Dicke theory [φ, V (φ) = f − R f ′(R)] with Maxwell (Yang-Mills)
field. As far as the constant curvature scalar black hole solution is concerned, we can
obtain the same black hole solution from the reconstructed Brans-Dicke theory with
Maxwell (Yang-Mills) field [31,32]. The other is to answer to the question of “in the
case of coupled YM- f (R) theory [33],

SY M f = 1

16πG

∫
d4x

√−g

{
R − 4πG(1 + f (R))Fa

μν Fμνa
[

1 + bg̃2 ln

×
[−0.5Fa

μν Fμνa

μ4

]]}
(5.5)

do we expect to obtain the similar solution?”. In the case of f (R) = 0, the last term
of the above action reduces to the effective Lagrangian of SU (N ) Yang-Mills theory
up to one-loop order with

b = 1

4

1

8π2

11

3
N . (5.6)

Even though its equation of motions take complicated forms, we expect to have sim-
ilar numerical solution found here for the constant curvature scalar black hole. This
may be true because for the constant curvature scalar black hole, the replacement of
Gef f → G/(1 + f ′(R0)) is expected to make the numerical solution simple unless b
log-term plays an important role.

Consequently, the f (R)-Maxwell (Yang-Mills) black holes imposed by constant
curvature scalar and 1 + f ′(R0) > 0 are closely related to the Einstein-Maxwell
(Yang-Mills) black holes in AdS space.

Acknowledgments This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MEST) through the Center for Quantum Spacetime (CQUeST) of Sogang
University with grant number 2005-0049409.

Appendix A: Coefficients for asymptotic solution to f (R)-Yang-Mills black holes

M1 = − k2 + u2
1 − ω2

1 R0/6 − 2
(
k + 12u2∞/R0

)
ω2∞ + ω4∞

2(1 + f ′(R0))

M2 = −2ω∞
(−12u1u∞ω∞/R0 + ω1

(−k + ω2∞
))

1 + f ′(R0)

M3 =
16u1u∞ω1ω∞ + R0ω

2
1

(
k − 2ω2∞

)+ 8ω2∞
(

u2
1 + (

k − ω2∞
)2 − 6u2∞

(
k + 2ω2∞

)
/R0

)

R0(1 + f ′(R0))

M4 = − 1

2(1 + f ′(R0))

[(
M − 8u1u∞

R0

)
ω2

1 + 48u∞ω2∞
{
3Mu∞ − 4u1

(
k − 6u2∞/R0 − 2ω2∞

)}
R2

0

+ 2ω3
1ω∞ − 16ω1ω∞

(
2k2 + u2

1 − 5kω2∞ + 3ω4∞
)

R0
+ 96ω1ω∞u2∞

(
2k + ω2∞

)
R2

0

]
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M5 = 1

30(1 + f ′(R0))

[
−6ω4

1 + 12ω2
1

(
21k2 + 6u2

1 − 99kω2∞ + 78ω4∞
)

R0

−576ω2
1u2∞

(
k − 2ω2∞

)
R2

0

+ 288ω1ω∞u1u∞
(
9k − 48u2∞/R0 − 28ω2∞

)
R2

0

−360ω1ω∞M
(
k − ω2∞

)
R0

− 4320ω2∞ Mu1u∞ + 144ω2∞
(
13k − 12ω2∞

) (
k − ω2∞

)2

R2
0

+144ω2∞u2
1

(
13k − 12ω2∞

)
R2

0

− 17280ω2∞u2
1u2∞

R3
0

+ 41472ω2∞u4∞
(
2k + 3ω2∞

)
R4

0

−1728ω2∞u2∞
(
k − ω2∞

) (
13k + 6ω2∞

)
R3

0

]
− R0

60(1 + f ′(R0))2

[(
ω2

1 + 144u2∞ω2∞
R2

0

)

×
(

ω2
1 − 12

(
u2

1 + k2 − 2kω2∞ + ω4∞
)

R0
− 144ω2∞u2∞

R2
0

)]

ω2 = 6

R0
ω∞

(
k − 12u2∞/R0 − ω2∞

)

ω3 = 6

R0

(
−8u1u∞ω∞/R0 + ω1

(
k − 4u2∞/R0 − ω2∞

))

ω4 = − 1

2R0

[
4(3M + 12u1u∞/R0)ω1 − 12ω∞

(
7k2 − 2u2

1 + 144u4∞/R0 − 10kω2∞ + 3ω4∞
)

R0

+ 6ω2
1ω∞ + 288ω∞u2∞

(
5k − 4ω2∞

)
R2

0

]

ω5 = − 1

10R0

[
6ω3

1 + 576ω∞u1u∞
(
11k−24u2∞/R0−7ω2∞

)
R2

0

+ 144ω∞ M
(
4k−60u2∞/R0−4ω2∞

)
R0

−12ω1
{
39k2 − 6u2

1 + 144u4∞/R2
0 − 66kω2∞ + 27ω4∞ − 264u2∞

(
k − 2ω2∞

)
/R0

}
R0

]

− ω1

10(1 + f ′(R0))

[
−24u2

1

R0
+ 3ω2

1 − 24k2 − (
48k + 432u2∞/R0

)
ω2∞ + 24ω4∞

R0

]

u2 = − 12

R0
u∞ω2∞

u3 = − 4

R0
ω∞(2u∞ω1 + u1ω∞)

u4 = − 2

R0

[
2u1ω1ω∞ − 144u3∞ω2∞

R2
0

+ u∞ω2
1 − 24u∞ω2∞

(−k + ω2∞
)

R0

]

u5 = 1

5R0

[
48u∞ω∞

{
3Mω∞ + ω1

(
−6k + 24u2∞/R0 + 7ω2∞

)}]

+ u1

30(1 + f ′(R0))

[
3ω2

1

{
−1 − 12(1 + f ′(R0))

R0

}

+144ω2∞
{−3u2∞ + (−6k + 60u2∞/R0 + 4ω2∞

)
(1 + f ′(R0))

}
R2

0

]
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Appendix B: Asymptotic solution to a magnetically charged black hole
for f (R)-Yang-Mills theory

In this case, SU(2) Yang-Mills gauge field is given by

A = {ω(r)τ1dθ + [∂θσ (θ)τ3 + σ(θ)ω(r)τ2] dϕ} . (5.7)

Three equations of motion for N , φ and ω are given by

δN S; r(1 + f ′(R0))φ
′ − 2(ω′)2 = 0, (5.8)

δφ S;−2 + 2r N ′ + 2N − r2 f (R0) + 4N (ω′)2 + 2(ω2 − 1)2

r2

+ r f ′(R0)(−2r N (φ′)2 − 4Nφ′ − r N ′′ − 2r Nφ′′ − 2N ′ − 3r N ′φ′) = 0,

(5.9)

δωS; r2 Nω′′ + r2(N ′ + φ′N )ω′ − ω(ω2 − 1) = 0. (5.10)

The above equations can be solved by assuming asymptotic forms up to 1
r5 -order

N = 1 − 2m

r
− R0

12
r2, (5.11)

m = M + M1

r
+ M2

r2 + M3

r3 + M4

r4 + M5

r5
+ O

(
1

r6

)
, (5.12)

ω = ω∞ + ω1

r
+ ω2

r2 + ω3

r3 + ω4

r4 + ω5

r5
+ O

(
1

r6

)
, (5.13)

where ω∞, ω1, M are three constants and the coefficients Mi and ωi are expressed
in terms of ω∞, ω1, M , and 1 + f ′(R0)

M1 = −
(
ω2∞ − 1

)2 − ω2
1

6 R0

2(1 + f ′(R0))
,

M2 = 2ω1ω∞
(
1 − ω2∞

)
1 + f ′(R0)

,

M3 = ω2
1 R0

(
1 − 2ω2∞

)+ 8ω2∞
(
1 − ω2∞

)2

R0(1 + f ′(R0))
,

M4 = −ω2
1(M + 2ω1ω∞)R0 + 16ω1ω∞

(
1 − ω2∞

) (
2 − 3ω2∞

)
2R0(1 + f ′(R0))

,

M5 = − 1

5R2
0(1 + f ′(R0))

[
R2

0ω4
1 − 60M R0ω1ω∞

(
−1 + ω2∞

)

+ 24
(
−13 + 12ω2∞

) (
ω∞ − ω3∞

)2
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− 6R0ω
2
1

(
7 − 33ω2∞ + 26ω4∞

)]
+ ω2

1

60(1 + f ′(R0))2

{
− R0ω

2
1

+ 12
(
−1 + ω2∞

)2
}

ω2 = 6ω∞
(
1 − ω2∞

)
R0

,

ω3 = 6ω1
(
1 − ω2∞

)
R0

,

ω4 = −3(2M + ω1ω∞)ω1 R0 + 6ω∞
(
1 − ω2∞

) (
7 − 3ω2∞

)
R2

0

,

ω5 = − 3

5R2
0

[
R0ω

3
1 − 96Mω∞

(
−1 + ω2∞

)
− 6ω1

(
13 − 22ω2∞ + 9ω4∞

)]

− 3ω1

10R0(1 + f ′(R0))

{
R0ω

2
1 − 8

(
−1 + ω2∞

)2
}

. (5.14)
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