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Abstract We describe a recently introduced principle of relative locality which we
propose governs a regime of quantum gravitational phenomena accessible to experi-
mental investigation. This regime comprises phenomena in which h̄ and G N may be
neglected, while their ratio, the Planck mass Mp = √

h̄/G N , is important. We propose
that Mp governs the scale at which momentum space may have a curved geometry. We
find that there are striking consequences for the concept of locality. The description
of events in spacetime now depends on the energy used to probe it. But there remains
an invariant description of physics in phase space. There is furthermore a reasonable
expectation that the geometry of momentum space can be measured experimentally
using astrophysical observations.
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How do we know we live in a spacetime? And, if so, how do we know we all
share the same spacetime? According to the operational procedure introduced by
Einstein [1], we infer the coordinates of a distant event by analyzing light signals sent
between observer and the event. But when we do this we throw away information
about the energy of the photons. This is clearly a good approximation, but is it exact?
Suppose we use Planck energy photons or red photons in Einstein’s localization pro-
cedure, can we be sure that the spacetimes we infer in the two cases are going to be the
same? Also, how can we be sure that when two events are inferred to be at the same
spacetime position by one observer, the same holds true for another, distant observer?

In special and general relativity the answer to these questions is yes. Simultaneity
is relative but locality is absolute. This follows from the assumption that spacetime
is a universal entity in which all of physics unfolds. However, all approaches to the
study of the quantum-gravity problem suggest that locality must be weakened and that
the concept of spacetime is only emergent and should be replaced by something more
fundamental. A natural and pressing question is whether it is possible to relax the
universal locality assumption in a controlled manner, such that it gives us a stepping
stone toward the full theory of quantum gravity?

A natural guess is that the Planck length,1 �p = √
h̄G, sets an absolute limit to how

precisely an event can be localized, �x ∼ �p. However, the Planck length is non zero
only if G and h̄ are non zero, so this hypothesis requires a full fledged quantum gravity
theory to elaborate it. But there is an alternative, which is to explore a “classical-non
gravitational” regime of quantum gravity which still captures some of the key delo-
calising features of quantum gravity. In this regime, h̄ and G are both neglected, while
their ratio is held fixed (Fig. 1):

h̄ → 0 , G N → 0 , but with fixed

√
h̄

G N
= Mp (1)

In this regime of quantum gravity, which is labeled the “relative-locality regime” in
the recent Ref. [2], both quantum mechanics and gravity are switched off, but we still
keep effects due to the presence of the Planck mass. Remarkably, as we will describe,
this regime includes effects on very large scales which can be explored in astrophysical
experiments [3,4]. Furthermore, since h̄ and G N are both zero it can be investigated
in simple phenomenological models.

In Ref. [2] we show that the hypothesis of universal locality is equivalent to the
statement that momentum space is a linear space. It is natural then to propose that the
mass scale MP parameterizes non linearities in momentum space. Remarkably, these
non linearities can be understood as introducing on momentum space a non trivial
geometry. In [2] we introduced a precise formulation of the geometry of momentum
space from which the consequences for the questions we opened with can be exactly
derived.

The idea that momentum space should have a non trivial geometry when quan-
tum gravity effects are taken into account was originally proposed by Max Born, as

1 We work in units such that the speed-of-light scale c is set to 1.
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Fig. 1 We show here that general relativity and relative locality are two ways of deepening the relativity
principle. In general relativity spacetime is curved but momentum space is flat. The opposite is the case in
relative locality. This has consequences for the phase space description as is shown, and elaborated below.
Alternatively, starting from an unknown quantum theory of gravity, one can ascend to special relativity
through two paths. Taking h̄ → 0 but keeping G N fixed (so that Mp also goes to 0) one ascends on the
right to general relativity. But there is an alternative. Keep Mp fixed while taking G → 0 (and hence also
h̄ → 0) leads to the relative locality regime on the left

early as 1938 [5]. He argued that the validity of quantum mechanics implies there is
in physics an equivalence between space and momentum space, which we now call
Born reciprocity. The introduction of gravity breaks this symmetry between space
and momentum space because space is now curved while momentum space is a lin-
ear space-and hence flat. Allowing the momentum space geometry to be curved is a
natural way to reconcile gravity with quantum mechanics from this perspective.

Remarkably, this is exactly what has been shown to happen in a very illuminating
toy model of quantum gravity, which is quantum gravity in 2 + 1 dimensions coupled
to matter. There Newton’s constant G has dimensions of inverse mass, and indeed it
turns out [6,7] that in 2 + 1 dimensions the momentum space of particles and fields is
a manifold of constant curvature G2, while spacetime is (locally) flat [8].

There are two kinds of non-trivial geometry (metric and connection) any mani-
fold, including momentum space, can have. Each of these has, as shown in [2], a
characterization in terms of observable properties for the dynamics of particles. A
metric in momentum space ds2 = gμν(p)d pμd pν is needed in order to write energy-
momentum on-shell relation

m2 = D2(p) (2)

where D(p) is the distance of the point pμ from the origin pμ = 0. A non-trivial affine
connection is needed in order to produce non-linearities in the law of composition of
momenta, which is used in formulating the conservation of momentum

(p ⊕ q)μ � pμ + qμ − 1

Mp
�αβ

μ pα qβ + · · · (3)
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where on the right-hand side we assumed momenta are small with respect to the Planck
mass Mp and �

αβ
μ are the (Mp-rescaled) connection coefficients on momentum space

evaluated at pμ = 0.
We can show that the geometry of momentum space has a profound effect on

localisation through an elementary argument. To do this we look at the role that the
special-relativistic linear law of conservation of momenta has in ensuring that local-
ity is absolute. Suppose xμ

I are the positions of several particles that coincide at the
event e in the coordinates of a given observer. The total-momentum conservation law
generates the transformation from that observer to another separated from the first
observer by a vector, bμ. In the special relativistic case the total momentum is the
linear sum P tot

ν = ∑
J pJ

ν and one finds

δxμ
I = {

xμ
I , bν Ptot

ν

} =
{

xμ
I , bν

∑
J

pJ
ν

}
= bμ (4)

so that all the worldlines are translated together, independent of the momentum they
carry.

This is the familiar notion of absolute locality afforded by the special-relativistic
setting. If instead momentum space has a non-trivial connection, in the sense discussed
above, then P total

μ is nonlinear, i.e.,

P total
μ =

∑
I

pI
μ + 1

Mp

∑
I<J

�νρ
μ pI

ν pJ
ρ (5)

Then

δxμ
I =

{
xμ

I , bν P total
ν

}
= bμ + 1

Mp
bν

∑
J>I

�μρ
ν pJ

ρ . (6)

Thus we see that how much a worldline of a particle is translated depends on the
momenta carried by it and the particles it interacts with. The net result is the fea-
ture we call “relative locality”, illustrated in Fig. 2. Processes are still described as
local in the coordinatizations of spacetime by observers close to them, but those same
processes are described as nonlocal in the coordinates adopted by distant observers.

These novel phenomena have a consistent mathematical description in which the
notion of spacetime gives way to an invariant geometry formulated in a phase space.
In special relativity, the phase space associated with each particle is a product of
spacetime and momentum space, i.e. �S R = M × P .

In general relativity, the spacetime manifold M has a curved geometry. The parti-
cle phase space is no longer a product. Instead, there is a separate momentum space,
Px associated to each spacetime point x ∈ M. This is identified with the cotangent
space of M at x , so that Px = T ∗

x (M). The whole phase space is the cotangent bundle
of M, i.e. �G R = T ∗(M)

Within the framework of relative locality, it is the momentum space P that is
curved. There then must be a separate spacetime, Mp for each value of momentum,
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Fig. 2 Relative locality implies that the projection from the invariant phase space description to a descrip-
tion of events in spacetime leaves a picture of localization which is dependent on the relation of the observer
(or origin of coordinates) to the event. If the event is at the origin of the observer’s coordinate system, then
the event is described as local, as on the left. But if the event is far from the origin of the observer’s coor-
dinates, the event is described as non-local, in the sense that the projections of the ends of the worldlines
no longer meet at the point where the interaction takes place. This is not a weakening of the requirement
that physics is local, it is instead a consequence of the energy dependence of the procedure by which the
coordinates of distant events are inferred. There is an invariant description, but it is in a phase space

Mp = T ∗
p (P). The whole phase space is then the cotangent bundle over momentum

space, i.e. �RL = T ∗(P).
If one wants to compare momenta of particles at different points of spacetime in

general relativity, x and y, one needs to parallel transport the covector pa(x) along
some path γ from x to y, using the spacetime connection. Now, suppose, within the
dual framework of relative locality, we want to know if the worldlines of two parti-
cles, A and B, with different momenta, meet. We cannot assert that xμ

A = xμ
B because,

quite literally, they live in different spaces, as they correspond to particles of different
momenta. What we can do is to ask that there is a parallel transport on momentum
space that takes them to each other. If so, there will be a linear transformation, [Uγ ]μν ,
which maps the spacetime coordinates associated with momenta pA

μ to those asso-
ciated with the momenta pB

μ . This will be defined by the parallel transport along a
path γ in momentum space, so that

xμ
B = [Uγ ]μν xν

A (7)

This can be implemented very precisely from an action principle associated with every
interaction process. The free part of the action associated with each worldline given by

Sfree =
∫

ds(xμ ṗμ + N (D2(p) − m2)) (8)
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imposes the on-shell relation, while the interaction implement the conservation law
K(pI (0)) = 0 at the interaction event

Sint = zμKμ(pI (0)). (9)

The relationship (7) follows from the variation of this action principle with respect to
the momenta at the inreraction events. It turns out that the path γ , along which we
parallel transport a spacetime coordinate in momentum space, is specified by the form
of the conservation law at an interaction event between the two particles. This is very
parsimonious, it says that the two particles need to interact if we are to assert whether
their worldlines cross.

Notice that according to (7) one is still assured that if the event is such that, in the
coordinates of a given observer, xμ

A = 0 then it is also the case that xμ
B = 0. This is

why we assert that there are always observers, local to an interaction, who see it to be
local. One also sees that if the connection vanishes then (Uγ )νμ = δν

μ and xA = xB

and we recover the usual picture where interaction are local.
Let us expand the parallel transport in terms of the connection:

[Uγ ]μν = δν
μ + 1

Mp
�νρ

μ pρ + · · · (10)

It will follow that the difference �xμ between xμ
A and xμ

B is proportional to xμ
A and

pμ. It can therefore be said that the deviation of locality is at first order of the form

�x ∼ x
E

MP
. (11)

We see from this formula (11), that the smallness of M−1
p can be compensated by a large

distance x , so that over astrophysical distances values of �x which are consequences
of relative-locality effects take macroscopic values [4]. A more detailed analysis shows
that there really are observable effects on these scales [4] which are relevant for current
astrophysical observations of gamma ray bursts, in which precise measurements of
arrival times are used to set bounds on the locality of distant events [3,9]. But this is
not all. Other experiments which may measure or bound [10] the geometry of momen-
tum space at order M−1

p include tests of the linearity of momentum conservation using
ultracold atoms [11] and the development of air showers produced by cosmic rays [12].

Such phenomena are very different in nature from the predictions of detailed quan-
tum theories of gravity for the Planck length regime. It is unlikely we will ever detect
a graviton [13–15], but it is reasonable to expect that relative locality can really be
distinguished experimentally from absolute locality. By doing so the geometry of
momentum space can be measured.

A nineteenth-century scientist conversant with Galilean relativity could have asked:
do we “see” space? Einstein taught us that the answer is negative: there is a maximum
speed and at best we “see” spacetime. We now argue that this too is wrong. What
we really see in our telescopes and particle detectors are quanta arriving at different
angles with different momenta and energies. Those observations allows us to infer
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the existence of a universal and energy-independent description of physics in a space-
time only if momentum space has a trivial, flat geometry. If, as Max Born argued,
momentum space is curved, spacetime is just as observer dependent as space, and the
invariant arena for classical physics is phase space.

So, look around. Do you “see” spacetime? or do you “see” phase space? It is up to
experiment to decide.
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