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Abstract We study the (local) propagation of plane waves in a relativistic, non-
dissipative, two-fluid system, allowing for a relative velocity in the “background”
configuration. The main aim is to analyze relativistic two-stream instability. This
instability requires a relative flow—either across an interface or when two or more
fluids interpenetrate—and can be triggered, for example, when one-dimensional plane-
waves appear to be left-moving with respect to one fluid, but right-moving with respect
to another. The dispersion relation of the two-fluid system is studied for different two-
fluid equations of state: (i) the “free” (where there is no direct coupling between the
fluid densities), (ii) coupled, and (iii) entrained (where the fluid momenta are linear
combinations of the velocities) cases are considered in a frame-independent fashion
(e.g.no restriction to the rest-frame of either fluid). As a by-product of our analysis we
determine the necessary conditions for a two-fluid system to be causal and absolutely
stable and establish a new constraint on the entrainment.
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1 Introduction

Newtonian physics is replete with examples of multi-fluid systems, such as diffusion,
ion flow, superfluid Helium, and plasma discharge from the Sun. In fact, large char-
acteristic scattering times between different components is more the norm than the
exception. This leads to physical situations where the various components can move
independently of each other, be it across an interface or through interpenetration. In
this context, even heat conduction in systems where all the matter flows together is a
two-fluid problem, i.e. there is a heat flux in addition to the matter flux. Perhaps not as
widely appreciated is that the relativistic regime has its own set of multi-fluid scenar-
ios: neutrino streaming during supernovae, superfluid neutrons and superconducting
protons in neutron stars, and heat flow in a cosmological setting, to name but a few.

A key issue is that relativistic fluids must be causal, meaning that sound speeds,
say, must be less than that of light. For fluids, there are two entry points for causality:
the microscopic where particle–particle interactions are tracked and the macroscopic
where fluid elements (large enough to contain many particles, but small enough to
be point-like with respect to the total system) are monitored. Presumably, a fully rel-
ativistic treatment at the microscopic level would lead to a set of fluid coefficients
(describing the equation of state, dissipation, etc.) that would already behave appro-
priately at the macroscopic level. However, there is a practical problem: Equation of
state determinations are notoriously difficult. This makes a general analysis of relativ-
istic fluid dynamics prohibitive, if not impossible. Fortunately, one can make progress
by imposing causality “from above” and absolute stability (i.e. real sound speeds)
“from below” to constrain the fluid coefficients.

In this paper, we will do this by analyzing the local propagation of plane waves on a
given (arbitrary) background spacetime. Compared to the standard single-fluid analy-
sis, we have more fluid degrees of freedom and need to allow for relative flows between
the various fluids. This is an essential requirement for two-stream instability. Such
instabilities are known to exist for a variety of configurations. For shearing motion at
an interface, it is an example of Kelvin-Helmholtz instability. However, as far as we are
aware, generic two-stream instability has not been discussed previously in relativity.

The two-stream instability has been well-documented for plasmas (where it is
known as the “Farley-Buneman” instability [1,2], see [3] for a text-book discussion).
It has also been suggested as the mechanism behind star formation when two galaxies
(whose angular velocities are more or less anti-aligned) merge [4]. In the general rela-
tivistic context, Chandrasekhar, Friedman, and Schutz (CFS) [5,6] have demonstrated
that oscillation modes in rotating, perfect fluids can become two-stream unstable due
to the emission of gravitational radiation. Here, the two “fluids” are the rotating mass,
and the asymptotically flat spacetime in which the fluid is embedded. Most recently, a
two-stream instability for superfluids has been proposed, with a natural extension to a
mixture of superfluid neutrons and superconducting protons in neutron star cores [7,8].
Very recent results suggest that this instability may act as a trigger mechanism for the
enigmatic spin glitches that have been observed in a number of radio pulsars [9] (see
also [8] for the first suggestion of a link between glitches and two-stream instability).

In what follows, we will not restrict the discussion to any specific physical system.
Consequently, the analysis will be somewhat abstract. This strategy can work because
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Relativistic two-stream instability 415

the two essential requirements for triggering two-stream instability is a relative flow
between two fluids and a generic interaction between them. This freedom to remain
abstract illustrates the general robustness of the instability and its presence in a diverse
collection of systems. Essentially, if the relative velocity is large enough that a wave
moves in one direction with respect to the rest-frame of one fluid, yet the opposite
direction with respect to the other fluid’s rest-frame, then the energy of the wave will
be “negative” in one of the rest-frames and therefore unbounded from below. Our
main aim is to show that a causal and absolutely stable system of two relativistic fluids
can undergo two-stream instability for a range of relative speeds and equation of state
parameter values.

The presentation of the results is organized as follows: Sect. 2 recalls the multi-
fluid formalism, and sets the stage for a plane-wave analysis of the system. Section 3
considers sound waves for a single fluid. The results are not new, but they help estab-
lish basic techniques that carry over to the more complicated two-fluid calculations
discussed in Sect. 4. The following sub-sections consider three variations on the two-
fluid equation of state: (i) the “free” (where there is no direct coupling between the
fluid densities), (ii) coupled, and (iii) entrained cases. Finally, in Sect. 5, we make our
concluding remarks. Spacetime indices are denoted by the first letters of the roman
alphabet (a, b, c), constituent indices by the last (x, y, z), and we adopt “MTW” (Mis-
ner, Thorne, and Wheeler [10]) conventions for the metric signature.

2 The multi-fluid formalism

We will use the approach to multi-fluid systems that was developed originally by
Carter [11] (see [12] for a recent review). In this description, the main variables are
the various fluxes (for particles and/or entropy), to be denoted na

x , and the equations of
motion follow from a suitably defined “master” function (i.e. Lagrangian or equation
of state) �. In the single fluid case, −� is equal to the rest frame energy density ρ. We
have here introduced the convention of attaching a constituent index x to each vari-
able. This index is redundant for a single fluid, but necessary when there are multiple
fluids. The master function varies only with the fluxes. If the fluids are locally isotropic
(i.e. no preferred direction), as they should be in the absence of anything else (such as
an elastic solid), it is clear that � must be a function of only the various scalars that
can be formed from inner products of the fluxes.

We will focus on the case of two fluids (see [12] for a complete description), even
though most of the equations in the general discussion will carry enough constituent
indices (x , y, etc.) to be valid for any number of fluids. In the case of two components,
the master function depends on two distinct particle fluxes na

x and na
y and has the

functional dependence1

1 It is worth making the following remark on the notation. Throughout the paper we only consider two
fluids. They are generally labelled by x and y. However, in order to be economic in the presentation we
often treat the constituent index as abstract, meaning that it can be either x or y. That is, an equation written
down explicitly for fluid x takes exactly the same form for the other fluid once the index x is replaced by y
(and vice versa). We are aware that this convention may be confusing at first, but it makes sense. Especially
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� = �(n2
x , n2

y, n2
xy), (1)

where n2
xy = −gabna

x nb
y . Note that constituent indices are not summed over when

repeated. As a matter of convenience repeated indices are written only once; that is,
we write n2

x (which is the squared particle number density of the x th-fluid) for n2
xx

and so on.
The equations of motion become most transparent when expressed in terms of the

momentum µx
a which is canonically conjugate to na

x :

µx
a = Bx nx

a + Axyny
a, (2)

where

Bx ≡ −2
∂�

∂n2
x
, Axy ≡ − ∂�

∂n2
xy

. (3)

Note that we have simplified the notation by not indicating explicitly which variables
are fixed when partial derivatives are taken. (The functional dependence of the master
function is clear from (1).) From (2) we see that the momentum µx

a is not simply
proportional to its canonical conjugate na

x , but is rather a linear combination of all the
fluxes. This is a result of the so-called entrainment effect (see [13] for an example
in superfluid Helium mixtures, [14–16] for relativistic, nuclear matter, or [17] for a
treatment of entropy/matter entrainment and its importance for heat flow).

It is convenient at this point to introduce a shorthand notation for derivatives of
these coefficients; namely,

C2
cc ≡ 1

BxBy

(
2nx ny

∂Bx

∂n2
y

)2

,

Bx
,xy ≡ nx ny

∂Bx

∂n2
xy

, (4)

Axy
,xy ≡ nx ny

∂Axy

∂n2
xy

.

For the same reason we define the “speed-of-sound” c2
x of the x th-fluid as

c2
x = ∂ log Bx

∂ log nx
+ 1. (5)

Finally, we introduce the “perp” operator

⊥xb
a = δa

b + ux
aub

x , ⊥xb
a ua

x = 0, (6)

which can be used to construct, say, vectors that are orthogonal to ua
x (which will later

be identified with the x th-fluid fourvelocity).

Footnote 1 continued
if one wants to account for additional fluid components. Most of our equations still remain valid in that
case, although in each equation for fluid x one has to sum over all the other fluids (i.e. the sum runs over
y �= x).
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We have chosen the fluxes na
x as our primary fields. However, there is no reason

why the momenta µx
a could not be similarly adopted.2 This implies that the mapping

from one set of fields to the other must have an inverse. That is, we see from (2) that

[
µx

a

µ
y
a

]
=

[
Bx Axy

Axy By

] [
nx

a

ny
a

]
, (7)

and thus BxBy − (Axy)2 �= 0. This will be a useful constraint later, when we discuss
the impact of entrainment on sound modes.

For the purely variational case (i.e. no dissipation, imposed constraints, etc.), the
individual constituents are conserved [12,18], so that we have for each component

∇ana
x = 0. (8)

The remaining equations of motion take the form

na
xω

x
ab = 0, (9)

where the vorticity tensor ωx
ab is given by

ωx
ab ≡ 2∇[aµx

b]. (10)

As discussed, e.g., in [12], in the single-fluid case these equations contain the same
information as the standard set obtained from the vanishing of the covariant diver-
gence of the stress-energy-momentum tensor. Equation (9) illustrates the geometrical
significance of the Euler equation as an integrability condition on the vorticity; i.e. that
the particle flux nowhere pierces the surfaces defined by the two-form ωx

ab.
Below we will be analyzing plane-wave propagation on backgrounds such that

ωx
ab = 0, the various background quantities are taken to be constant, and there is a rel-

ative flow between the fluids. This implies a linearization of the equations of motion;
i.e.

∇aδna
x = 0, na

x∇[aδµx
b] = 0. (11)

Because there are several fluids, the variation δµx
a is significantly more complicated

than, say, in the case of the standard perfect fluid. In addition to individual bulk effects
for each fluid, there can also be cross-constituent effects due to coupling between the
fluids. We also have to consider the entrainment.

Following [12], we can isolate the various effects in the variation and write

δµx
a = (Bx

ab + Ax
ab

)
δnb

x + (X xy
ab + Axy

ab

)
δnb

y, (12)

2 In fact, the celebrated Landau model for superfluid Helium mixes a momentum with a flux, see for
example, the discussion in [19].
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where the bulk effects are captured by

Bx
ab = Bx

(
⊥x

ab −c2
x ux

aux
b

)
, (13)

the cross-constituent coupling through

X xy
ab = −Ccc

√
BxByux

auy
b, (14)

and the entrainment via the terms

Ax
ab = −

[
Bx

,xy

(
ux

auy
b + ux

buy
a
) + ny

nx
Axy

,xyuy
auy

b

]
, (15)

Axy
ab = Axy⊥x

ab −
[(

Axy + nx

ny
Bx

,xy

)
ux

aux
b + ny

nx
By

,xyuy
auy

b + Axy
,xyuy

aux
b

]
. (16)

In these expressions the flux na
x has been decomposed as na

x = nx ua
x , where ua

x is the
unit (ux

aua
x = −1) four-velocity of the x-fluid elements.

3 Single-fluid sound waves

To set the stage for the general analysis it is useful to first consider the nature of sound
waves in a single, perfect fluid. To do this, we perform a local analysis of linear pertur-
bations of the fluid (keeping the metric fixed) on a generic background. In particular,
plane-wave propagation corresponds to the Ansatz

δna
x = Aa

x exp(ikbxb), (17)

where the amplitude Aa
x and wave four-vector ka have vanishing covariant derivatives.

Recall that we assume all unperturbed quantities to be similarly constant. In particular,
the background vorticity simply vanishes. From (12) above we have

δµx
a = Bx

abδnb
x . (18)

Note that we have continued to use a constituent index, even though we are dealing
with a single fluid. This allows for some economy of presentation since many of the
formulas will apply later, except that the index x will then range over two fluids. Of
course, waves in a system are such that the constant wave vector ka is the same for all
the fluids. Hence, it does not carry a constituent index.

For convenience we will work in the material frame associated with the fluid. This
means that ka and Aa

x will each be written as two pieces by utilizing the “perp” operator
introduced in (6):

ka = kx

(
σx ux

a + k̂x
a

)
, (19)
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where σx and the wave vector kx
a (with magnitude kx ) are

kxσx = −kaua
x , kx

a =⊥b
xa kb ≡ kx k̂x

a . (20)

Similarly, we can decompose the wave amplitude as

Aa
x = Ax||ua

x + Aa
x⊥, (21)

where

Ax|| = −ux
a Aa

x , Aa
x⊥ =⊥a

xb Ab
x . (22)

Note that σx and k̂a
x are measured by an observer moving with the fluid. It will be

obvious from the dispersion relation constructed below that σx measures the phase
velocity of the waves as seen in the fluid frame. Furthermore, it is easy to show that
evaluating σx in a frame moving relative to the fluid leads to the standard Lorentz
transformation of velocities.

With these preliminaries, the perturbation equations (11) reduce to

0 = ka Aa
x , (23)

0 = na
x k[aBx

b]c Ac
x . (24)

The first of these relations shows that the waves are transverse in the spacetime sense.
The dispersion relation can be easily obtained by contracting the second equation
with kb. (In the more complicated two-fluid analysis below, we will in general have
to consider the vanishing of a 4 × 4 determinant.) Assuming that nx

c Ac
x �= 0, and after

several steps of algebra, the dispersion relation reduces to

σ 2
x − c2

x = 0. (25)

In our homogeneous plane-wave setting it is clear that the group and phase velocities
coincide so that we can introduce the speed of sound in the standard way as c2

x = σ 2
x .

To see that this is equivalent to the usual single-fluid result (as in, say, [20]), it will
suffice to introduce the pressure and recall that ρ = −� in the single fluid case. From
the definition above for Bx , cf. (3), we see that

dρ = Bx nx dnx . (26)

Moreover, the pressure p is defined by the standard thermodynamic relation, such that

p = −ρ + nx
dρ

dnx
= −ρ + Bx n2

x . (27)

This implies

dp =
(

1 + ∂ log Bx

∂ log nx

)
dρ, (28)
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and we have

dp

dρ
= 1 + ∂ log Bx

∂ log nx
= c2

x , (29)

where dp/dρ is the usual form of the sound speed squared.
In order to pave the way for the more complicated multi-fluid case to be discussed

below it is useful to examine the properties of the various vectors we have introduced.
Starting with the wave vector ka we see that

kaka = k2
x

(
1 − c2

x

)
. (30)

Thus, for causal wave propagation (c2
x ≤ 1), ka is spacelike. For the wave amplitude

we find that, when the force equation (24) is evaluated in terms of the solution to the
dispersion relation,

Aa
x⊥ = σx Ax||k̂a

x . (31)

The waves are therefore longitudinal in the normal, three-dimensional sense. On the
other hand, the transverse nature (23) of the waves in the four-dimensional sense
implies that

A2
x = A2

x⊥
(

1 − c−2
x

)
(32)

so that Aa
x is timelike (and we can choose it to be future pointing) for causal waves.

Note that since the flux na
x is also timelike this implies that na

x Ax
a < 0 and thus the

degenerate case of (25) is ruled out by causality.
Before we conclude this section, it is useful to consider what constraints (5) imposes

on the equation of state. First of all, the causality requirement leads immediately to

∂ log Bx

∂ log nx
+ 1 ≤ 1. (33)

In addition, we must have c2
x ≥ 0 in order to avoid absolute instabilities (complex

wave speeds). This implies

∂ log Bx

∂ log nx
+ 1 ≥ 0. (34)

Combining the two results we see that we must have

− 1 ≤ ∂ log Bx

∂ log nx
≤ 0. (35)

In the next section we will extend this type of analysis to the two-fluid model.
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4 Sound waves for the general two-fluid system

We want to work out the dispersion relation for wave propagation in a two-fluid sys-
tem, using (17) as the starting point. An important addition to the problem of plane
waves is a new “parameter”, the relative flow between the two fluids. We will represent
this flow by the relative velocity va

xy of the yth-fluid with respect to the frame of the
x th-fluid:

γxyv
a
xy =⊥xa

b ub
y, (36)

where vxy represents the magnitude of the relative flow and

γxy = γyx = −uc
x uy

c = 1√
1 − v2

xy

. (37)

This leads to

ua
y = γxy

(
ua

x + va
xy

)
. (38)

The mode speed σx and wave (three-) vector kx
a can be defined as before. The insertion

of γxy into (36) makes the x th-fluid’s proper time the standard for setting velocities.
Since the dispersion relation below is a scalar equation, we will have in several places
the inner product v̂a

xy k̂x
a (where v̂a

xy = va
xy/vxy). It is useful to write this in terms of

the angle θxy between the two vectors:

v̂a
xy k̂x

a = cos θxy . (39)

An important subtlety must be recognized, however: The three quantities σx , kx
a ,

and va
xy are what would be measured by an observer flowing with the x th-fluid. We

could have equally as well chosen the material frame attached to the other fluid (or
some other observer). As one might expect, there are well-defined transformations
between the two descriptions (which will be needed later). The relative flow va

yx of
the x th-fluid with respect to the yth-fluid frame is related to va

xy via

va
yx = −γxy

(
v2

xyua
x + va

xy

)
, (40)

where we have used vyx = vxy . It is also useful to note that

ua
x = −v−2

xy

(
va

xy + γ −1
xy va

yx

)
,

(41)
ua

y = −v−2
xy

(
va

yx + γ −1
xy va

xy

)
.
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Because ka is not attached to either fluid frame, we must have

ka = ky

(
σyuy

a + k̂ y
a

)
= kx

(
σx ux

a + k̂x
a

)
. (42)

By contracting each four-velocity in (41) with the wave-vector ka , we obtain a
matrix equation for [kx ky]T; namely,

[
vxyσx − cos θxy −γ −1

xy cos θyx

−γ −1
xy cos θxy vxyσy − cos θyx

] [
kx

ky

]
=

[
0
0

]
. (43)

Obviously the determinant of the 2 × 2 matrix must vanish. This leads to

σy = cos θyx
σx − vxy cos θxy

vxyσx − cos θxy
. (44)

It is not difficult to show that if σ 2
x ≤ 1 then σ 2

y ≤ 1. This is natural given that causality
is a frame-independent requirement.

Meanwhile, the equation of flux conservation is the same as (23) (except x ranges
over two values). The conservation of vorticity equations become

0 = K x
ab Ab

x + K xy
ab Ab

y,
(45)

0 = K y
ab Ab

y + K yx
ab Ab

x ,

where the “dispersion” tensors are

K x
ab = nc

x

(
k[cBx

a]b + k[cAx
a]b

)
,

(46)
K xy

ab = nc
x

(
k[cX xy

a]b + k[cAxy
a]b

)
.

Note that K y
ab and K yx

ab are obtained via the interchange of x ↔ y in equation (46).
In order to solve (45), we obviously need the four inverses

K̃ ac
x K x

cb = δa
c, K̃ ac

yx K xy
cb = δa

c, (47)

to exist—i.e. the determinants of K x
ab and K xy

ab do not vanish—so that we can write

0 =
(

K̃ ac
y K yx

cb − K̃ ac
yx K x

cb

)
Ab

x ≡ Mab Ab
x . (48)

The only way to get a non-trivial solution is to have a ka such that

εa1a2a3a4εb1b2b3b4Ma1b1Ma2b2Ma3b3Ma4b4 = 0. (49)

Written out in full (49) is a quite busy expression. This should come as no sur-
prise since the two-fluid problem is significantly more complicated than a single fluid
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having bulk contributions coming from Bx
ab, and the cross-coupling from X xy

ab (in the
case of two, co-moving constituents [12]). For two-fluid systems, the two constituents
move independently and there are the additional contributions Ax

ab and Axy
ab coming

from entrainment.
In order to simplify the problem, it is convenient to isolate further the different

contributions that appear in the dispersion matrices. The bulk contribution in K x
ab can

be reduced to

bx
ab = nc

x k[cBx
a]b

= −1

2
Bx nx

(
kxσx ⊥x

ab + c2
x kx

a ux
b

)
, (50)

while its entrainment piece becomes

ax
ab = nc

x k[cAx
a]b

= 1

2
γxynx

{
Bx

,xy

[(
kxσxv

xy
a − 2kx

a

)
ux

b − kx
a v

xy
b

]
+ γxy

ny

nx
Axy

,xy
(
kxσxv

xy
a − kx

a

) (
ux

b + v
xy
b

)}
. (51)

Meanwhile, the cross-coupling in K xy
ab is simply given by

xxy
ab = nc

x k[cX xy
a]b

= −1

2
Cccγxynx

√
BxBykx

a

(
ux

b + v
xy
b

)
, (52)

but the entrainment has significantly more presence:

axy
ab = nc

x k[cAxy
a]b

= nx

2

{
−Axykxσx ⊥x

ab −
[
Axy + nx

ny
Bx

,xy + γxy

(
γxy

ny

nx
By

,xy + Axy
,xy

)]
kx

a ux
b

+ γxykxσx

(
γxy

ny

nx
By

,xy + Axy
,xy

)
v

xy
a ux

b

}
. (53)

A multi-fluid system must have non-zero bulk properties (unless a fluid vanishes
completely). The other terms can be absent, depending on the equation of state. In
what follows we will systematically increase the complexity by considering in turn
the different components of two-fluid physics.

4.1 Dispersion relation: free case

Let us first consider the case of two completely uncoupled fluids. Then we have only
bx

ab non-zero. In lieu of (49), it is easier to get the dispersion relation by contracting
the free indices in (45) with ka . This results in the simple 2 × 2 matrix problem
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[Bx
(
σ 2

x − c2
x

)
0

0 By
(
σ 2

y − c2
y

)] [
ux

a Aa
x

uy
a Aa

y

]
=

[
0

0

]
, (54)

and the dispersion relation is simply

(
σ 2

x − c2
x

) (
σ 2

y − c2
y

)
= 0. (55)

By construction σ 2
x is the squared phase (three-) velocity as measured in the x th-fluid

frame (similarly for σ 2
y ).

The outcome of this analysis is that the dispersion relation (55) allows four non-
trivial solutions consisting of the roots of

σ 2
x = c2

x (56)

for any x . These roots correspond to ±cx evaluated in the x th-fluid frame and are
just Lorentz transformed if evaluated in another frame. Thus, as expected in the case
of zero coupling between the fluids, the quantity cx can be interpreted as the sound
velocity of the x th-fluid as measured in its own (background) rest frame. This is the
obvious generalisation of the single fluid result. It follows that if cx is subluminal in
its own rest-frame it is so in all other frames as well. Also, since absolute instability
should be evaluated at zero relative velocity it is clear that the constraint 0 ≤ c2

x ≤ 1
remains as a condition for the master function.

The main conclusion from this discussion is that the constraints on the equation of
state are easily generalized to the uncoupled two-fluid problem. We must thus require
that the equation of state satisfy (35) for both fluids in order for the system to be
absolutely stable and give rise to causal wave propagation. There are no dynamical
instabilities present in this case. In what follows, we caution that the cx can be under-
stood as “sound” speeds only in this completely free case. When fluid couplings are
operative, the phase velocities will no longer simply equal these free sound speeds.
But in order to make progress, we will continue to impose (35) throughout.

4.2 Dispersion relation: cross-constituent coupling

We now allow for xxy
ab to be non-zero. From (52), we see that this will introduce Ccc

in addition to Bx and c2
x . Using the same contractions with ka as in the free case, we

again get a 2 × 2 matrix problem; i.e.

⎡
⎣Bx

(
σ 2

x − c2
x

) −√BxByCcc

−√BxByCcc By
(
σ 2

y − c2
y

)
⎤
⎦ [

ux
a Aa

x

uy
a Aa

y

]
=

[
0
0

]
. (57)

The dispersion relation is now

(
σ 2

x − c2
x

) (
σ 2

y − c2
y

)
= C2

cc. (58)

123



Relativistic two-stream instability 425

In order for C2
cc to be less than zero, the equation of state would have to allow either

of the Bx to be negative. For ordinary matter, or entropy, this is not generally the case.
Hence, we do not consider this possibility here. We also need to point out that (44)
must be used to get a dispersion relation solely in terms of σx . Clearly, the cross-cou-
pled case is more complicated than the free problem. However, it is also much more
interesting and relevant. As we will soon see, the richer phenomenology allows for
two-stream instability.

Addressing first the question of absolute stability we set vxy = 0 to find

σ 2
x = 1

2

(
c2

x + c2
y ±

√(
c2

x − c2
y

)2 + 4C2
cc

)
. (59)

In order to avoid complex σ 2
x , the square root in (59) must be real, which is evident

for C2
cc ≥ 0. Recall that absolute stability means σ 2

x ≥ 0. Clearly, it is sufficient to
require that

(
c2

x + c2
y

)2 ≥
(

c2
x − c2

y

)2 + 4C2
cc. (60)

The second term of (59) will always be less than the first if

c2
x c2

y ≥ C2
cc. (61)

In other words, since we expect to have BxBy > 0, absolute stability constrains the
equation of state to satisfy

∂ log Bx

∂ log ny

∂ log By

∂ log nx
≤

(
1 + ∂ log Bx

∂ log nx

) (
1 + ∂ log By

∂ log ny

)
. (62)

The causality constraint requires σ 2
x ≤ 1. For C2

cc ≥ 0 and satisfying (61), we need
only make the “+” solution in (59) causal, since the “−” solution is always smaller.
We find that causality is ensured if

C2
cc ≤

(
1 − c2

x

) (
1 − c2

y

)
, (63)

which, in terms of the equation of state, translates into

∂ log Bx

∂ log ny

∂ log By

∂ log nx
≤ ∂ log Bx

∂ log nx

∂ log By

∂ log ny
. (64)

Note that both (61) and (63) restrict C2
cc from above. In general, we can show that if

c2
x + c2

y ≤ 1 then any absolutely stable equation of state is also causal. Conversely, if
c2

x + c2
y ≥ 1, any causal equation of state is absolutely stable.

Given an equation of state that is causal and absolutely stable, we can now determine
if a dynamical two-stream instability is present by solving the dispersion relation (58)
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for some relative flow (as parameterized by vxy). Writing down the general solution is
not difficult, but it is instructive to first focus on the slow velocity limit. Assuming that
vxy and σx are both much smaller than unity (the speed of light) in (44), the dispersion
relation (58) becomes

(
σ 2

x − c2
x

) [(
σx − vxy cos θxy

)2 − c2
y

]
= C2

cc. (65)

Introducing new variables

x = σx

cy
, y = vxy cos θxy

cy
, b2 =

(
cx

cy

)2

, a2 = C2
cc

c4
y

, (66)

we get

x2 − b2

a2

[
(x − y)2 − 1

]
= 1. (67)

As one might have expected, the problem is now identical to the Newtonian plane-
wave problem discussed by Andersson et al. [8]. Hence, we can learn from their results.
They demonstrate that a two-stream instability may operate above a critical relative
flow. Their particular example corresponds to a2 = 0.0249 and b2 = 0.0379. For
this case they find an instability in the range 0.6 < y < 1.5. This means that the
system becomes unstable for cx y > 0.6. This flow is clearly sub-luminal as long as
cx < 1, but one may suspect that the linear approximation that we have used is not
very accurate. Still, this is a useful first demonstration that the two-stream instability
will operate also in relativistic systems.

Before we turn our attention to the full relativistic case it is useful to check if the
particular example used by Andersson et al. [8] obeys the causality and absolute sta-
bility criteria derived above. First we note that, due to the presence of a velocity scale
given by the speed of light, in relativity we cannot completely scale out the velocities.
Thus the relativistic analysis of stability will in general contain an extra parameter
compared to the Newtonian case. Here we shall take that parameter to be cy which,
without loss of generality, can be taken to be larger than cx . Using these parameters
the absolute stability criterion (61) becomes just

a2

b2 ≤ 1, (68)

which is satisfied in the model discussed above. The causality condition (35) enters
only indirectly as we have been able to re-scale in terms of cy and thereby get dimen-
sionless variables. We conclude that the Newtonian model of Andersson et al. is rea-
sonable also from this perspective as long as cy is not very close to the speed of light.

We now turn to the relativistic dispersion relation (59). Written as an equation for
σx it constitutes a non-trivial quartic. If we use the same re-scalings as in (66), then
(59) becomes
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x2 − b2

a2

⎡
⎣ (x − y)2

γ −2
xy

(
1 − c2

y x2
)

+ c2
y (x − y)2

− 1

⎤
⎦ = 1. (69)

Some immediate insight is obtained by considering the ultra-relativistic limit for the
background flow, where vxy → 1 or γ −2

xy → 0, and the limit where the wave vector
becomes perpendicular to the background flow, i.e. θxy → π/2. In both limits the
two-stream instability ceases to operate.

In the ultra-relativisitic limit, the wave-speed tends to

σx →
⎧⎨
⎩±

√
c2

x + C2
cc

1−c2
y

cos θxy (double root)
. (70)

If the propagation is to remain causal, we must have C2
cc → 0 as cy → 1. Also there

is no two-stream instability since C2
cc ≥ 0. This might seem surprising, since a two-

stream instability requires a “window” of background flows for modes to appear, say,
left-moving in one frame but right-moving in the other. But as vxy → 1 the relative
flow is at its maximum, and yet the instability window is closed. In fact, this behaviour
was seen already by Andersson et al. [8] in the Newtonian regime. From (66) we also
see that y → 0 as θxy → π/2. This turns (69) into a quadratic for x2, and one finds that
the discriminant is positive for the range of values for C2

cc that yield absolute stability
and causality. Obviously, y is the effective “window” of the background flow and it is
completely closed for θxy = π/2.

Although the general solution to (69) is readily availiable, it is quite complicated
and offers very little additional insight. Instead of writing it down we will tackle the
problem numerically. The parameter values are restricted to those that maintain abso-
lute stability and causality. Figure 1 provides plots of the real and imaginary parts
for the four solutions to (69) in the aligned case. The solutions for σx are taken to
be functions of the relative flow parameter y and the coupling C2

cc, with cy = 0.5,
b2 = 1, and θxy = 0. Non-zero values for Imσx in the figures indicate the presence
of an unstable mode. The appearance of unstable modes is reflected in the real parts
wherever two frequencies merge. This behaviour is typical for this kind of dynamical
instability. The results for misaligned flows, with θxy �= 0 are very similar to those
shown in Fig. 1. As θxy increases the [y, C2

cc] region of instability moves towards
higher relative velocities, eventually leading to regions that stretch essentially all the
way to vxy = 1.

4.3 Dispersion relation: aligned or anti-aligned flows

Now that we have established the presence of the two-stream instability for arbitrary
background flows, we will consider the more restricted case of aligned or anti-aligned
background flows. This will simplify the dispersion relation so that analytical insight
can be more easily acquired. It also reduces the parameter space, thus allowing a more
focused numerical analysis.
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Fig. 1 Plots of the real (top) and imaginary (bottom) parts of the mode frequencies σx as functions of vxy ,
for cy = 0.5, b2 = 1.0, and θxy = 0. The merger of two frequencies, and subsequent non-zero imaginary
values, signal the presence of a two-stream instability

By aligned or anti-aligned flow we mean that the wave propagation is aligned (or
anti-aligned) with the relative velocity of the two fluids; specifically, θxy = (0, π) so
that

k̂x
a = εxy v̂

xy
a , εxy ≡ cos θxy = ±1. (71)

This leads naturally to the statement that the wave vector is a linear combination of
the background flows:

ka = kx

vxy

[(
vxyσx − εxy

)
ux

a + εxyγ
−1
xy uy

a

]

= ky

vxy

[(
vxyσy − εyx

)
uy

a + εyxγ
−1
xy ux

a

]
. (72)

Equating coefficients in (72) leads to

ka = 1

γxyvxy

(
kyεyx ux

a + kxεxyuy
a
)
. (73)

Because of (73), our original four-dimensional linear algebra problem for (ux
a Aa

x ,

ux
a Aa

y, uy
a Aa

x , uy
a Aa

y)
T has been reduced to a two-dimensional one for (ux

a Aa
x , uy

a Aa
y)

T .

4.4 Dispersion relation: role of entrainment

Up to this point we have introduced three equation of state parameters (cx , cy , and
Ccc) that are obtained as second derivatives of the master function. When entrainment
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is included in the model we see from (4) that we need two additional variables to
describe the general case. Given that we have established the two-stream instability
for general cross-constituent coupling and arbitrary background flow, the main reason
for discussing the role of the entrainment is to highlight the basic feature that the insta-
bility can be triggered by a variety of interactions. We will simplify the entrainment
case by assuming that the relative velocity va

xy is much smaller than the speed of light
and that the flows are aligned (in the sense of the previous section). This does not
mean, however, that the individual flows ua

x have to be similarly restricted. Neither do
the sound and wave speeds cx and σx have to be small.

If we keep the relative flow to O(v2
xy), the master function can be approximated as

[21,22]

� = λ0(n
2
x , n2

y) + λ1(n
2
x , n2

y)
(

n2
xy −

√
n2

x n2
y

)
, (74)

which immediately implies

Bx = −2

[
∂λ0

∂n2
x

+ ∂λ1

∂n2
x

(
n2

xy −
√

n2
x n2

y

)
− λ1

ny

2nx

]
, Bx

,xy = −2nx ny
∂λ1

∂n2
x
, (75)

and

Axy = −λ1, Axy
,xy = 0. (76)

We shall make one further simplifying approximation, which is to take λ1 to be con-
stant so that

Bx
,xy = 0. (77)

This leaves us with the single entrainment parameter λ1.
With these approximations we find

⎡
⎣ Bx

(
σ 2

x − c2
x

) −Ccc
√BxBy − Axy εxykx

εyx ky

(
σ 2

x − 1
)

−Ccc
√BxBy − Axy εyx ky

εxykx

(
σ 2

y − 1
)

By
(
σ 2

y − c2
y

)
⎤
⎦

×
[

ux
a Aa

x

uy
a Aa

y

]
=

[
0
0

]
. (78)

From (30) and (42) we have

kx

ky
=

√
1 − σ 2

y

1 − σ 2
x
, (79)
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and thus the dispersion relation becomes

0 =
(
σ 2

x − c2
x

) (
σ 2

y − c2
y

)
−

[
Ccc + Cent

√(
1 − σ 2

x

) (
1 − σ 2

y

)]2

, (80)

where

Cent = εxyεyx
Axy

√BxBy
, (81)

and because the inverse of (7) must exist, |Cent| �= 1. Note that, since σ 2
y → 1

as vxy → 1, Cent does not affect the ultra-relativistic limit. Hence, Eq. (70) [with
cos(θxy) = ±1] is still valid in this case.

We stress that, unlike the simpler cases, (80) does not hold for arbitrary propaga-
tion direction with respect to the relative velocity. This is important qualitatively and
quantitatively, since it mirrors the fact that entrainment enters the master function in
a fundamentally different way: At first-order in the relative velocity squared. In the
dispersion relation, however, entrainment contributes even in the limit of zero relative
velocity, because there are still two sets of interacting sound waves. In fact, we will
now follow the earlier analysis of causality and absolute stability by taking this limit.

From (44) we see σ 2
x = σ 2

y so that

(
σ 2

x − c2
x

) (
σ 2

x − c2
y

)
−

[
Ccc + Cent

(
1 − σ 2

x

)]2 = 0. (82)

It is particularly instructive to consider the entrainment alone, i.e. set Ccc = 0. The
corresponding dispersion relation is a quadratic in σ 2

x , and has the solutions

σ 2
x =

c2
x + c2

y − 2C2
ent ±

[(
c2

x − c2
y

)2 + 4C2
ent

(
1 − c2

x

) (
1 − c2

y

)]1/2

2
(
1 − C2

ent

) . (83)

For c2
x,y ≤ 1, the discriminant is obviously positive and hence the σ 2

x are real. In order
to analyze absolute stability and causality we need to consider the ranges 0 ≤ C2

ent < 1
and 1 < C2

ent separately. We will look at C2
ent > 1 first.

The first step is to re-write (83) so that the denominator is positive:

σ 2
x =

2C2
ent − c2

x − c2
y ±

[(
c2

x − c2
y

)2 + 4C2
ent

(
1 − c2

x

) (
1 − c2

y

)]1/2

2
(C2

ent − 1
) . (84)

Since we are imposing c2
xy ≤ 1, and C2

ent > 1, the terms outside the square root in the
numerator are positive. Therefore, the “+” solution is absolutely stable. But, we can
also show that it cannot be causal. As for the “−” solution, we can easily show that it
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is absolutely stable only if C2
ent < 1, which cannot be satisfied. Hence, C2

ent > 1 does
not lead to both absolute stability and causality, and is therefore ruled out.

The range 0 ≤ C2
ent < 1 is a different story, because the terms outside the radical

in the numerator of (83) are not of any definite sign. This affects the absolute stability
analysis more than the determination of causality. In fact, the causality analysis is
sufficiently straightforward that we will simply state that this requirement is satisfied
for this range of C2

ent. In order to assess absolute stability, it is useful to introduce

τ =
[(

c2
x − c2

y

)2 + 4C2
ent

(
1 − c2

x

) (
1 − c2

y

)]1/2

. (85)

This allows the numerator of (83) to be rewritten in such a way that the absolute
stability condition becomes

τ 2−
[
±2

(
1 − c2

x

) (
1−c2

y

)]
+

[
c2

x

(
1−c2

y

)
+ c2

y

(
1−c2

x

)] [
2−

(
c2

x +c2
y

)]
≤0, (86)

where the “±” corresponds to that of (83). The final step is to factorize (86) and thereby
obtain {

τ ±
[
2 −

(
c2

x + c2
y

)]} {
τ ∓

[
c2

x

(
1 − c2

y

)
+ c2

y

(
1 − c2

x

)]}
≤ 0, (87)

where if the “+” is taken from the first factor then the “−” must be taken in the
second, and vice versa. In either case, the factor that has the “+” is positive definite,
and so the other factor must be less than zero. When the first factor takes the “−” the
inequality leads to C2

ent ≤ 1. The other choice leads to the more restrictive condition
of C2

ent ≤ c2
x c2

y .
To summarize, we have shown that when C2

ent > 1, there is either no absolute stabil-
ity or causality, which makes this range unphysical. Meanwhile, for 0 ≤ C2

ent ≤ c2
x c2

y
the system is causal and absolutely stable. In terms of our earlier definitions, this
translates into

(Axy)2 ≤ BxBy
(

∂ log Bx

∂ log nx
+ 1

) (
∂ log By

∂ log ny
+ 1

)
(88)

as a constraint on the master function, when the relative speed between the two fluids
is sufficiently small.

Finally, we turn to a numerical/graphical analysis for exposing the two-stream insta-
bility due to entrainment coupling. As in the cross-constituent coupling case, we use
the re-scalings of (66), except that C2

ent replaces C2
cc in a2. Equation (80) becomes

x2 − b2

a2

[
(x − y)2

(c2
y yx − 1)2 − 1

]
=

(
c2

y x2 − 1
) [

c2
y(x − y)2

(c2
y yx − 1)2 − 1

]
. (89)

The parameter values are restricted to those that maintain absolute stability and cau-
sality. Figure 2 plots the real and imaginary parts of the four solutions to (89). As
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Fig. 2 Plots of the real and imaginary parts of the mode frequencies σx as functions of y and C2
ent , for

cy = 0.5, and b2 = 1.0. The lines of intersection and subsequent merger of two frequencies signal the
presence of a two-stream instability

before, the solutions for σx are taken to be functions of the relative flow parameter y
and the coupling C2

ent, with cy = 0.5 and b2 = 1.0. Figure 2 is not so dissimilar from
what we find for cross-constituent coupling, thus highlighting that the instability is
not sensitive to the type of coupling between the two fluids.

5 Closing remarks

There are several examples of relativistic systems that require multi-fluid dynamics for
qualitative understanding and quantitative accuracy. In such systems different inter-
penetrating fluid components (eg. particles and entropy in heat conducting situations
or a superfluid condensate and finite temperature excitations) can flow with distinct
velocities.

We have examined plane-wave propagation for a generic two-fluid system. By
imposing the constraints of absolute stability (necessary in order for the components
not to separate already in the absence of flow) and causality we have established lim-
its on the equation of state (as represented by the master function �). In particular,
we place constraints on the free sound speeds, the cross-constituent coupling and the
entrainment. Some of the obtained results are more or less trivial extensions of the
single fluid result, but others are unique to the two-fluid problem. The condition (88)
on the entrainment is a new result, and as such serves as a new condition on, say, the
kind of σ − ω model used by Comer and Joynt [15] to model entrainment in the outer
cores of neutron stars.

We have demonstrated (for the first time) the existence of a relativistic two-stream
instability. This is a generic phenomenon, that does not require particular fine-tuning
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to be triggered, nor is it limited to any specific physical system. The only requirement
is that there is a relative (background) flow and some type of coupling between the
fluids. While it is true that a single fluid can have an analogous instability, it is only
active at an interface where there is shearing motion. Our analysis assumes that the
two fluids are interpenetrating.

In order to exhibit the generic nature of the two-stream instability, we have kept the
analysis rather abstract. On the one hand, this means that it should be relatively straight-
forward to apply our results to particular physical systems. On the other hand, it means
that we have not yet discussed the relevance of the instability for any particular system.
A more detailed consideration of multi-fluid problems in relativity is required in order
to establish whether this mechanism operates in nature. There are already exciting
results that hint at this class of instabilities being associated with pulsar glitches [8,9].
In addition to exploring possible situations where these instabilities may operate, it
would be very interesting to probe the nonlinear development of the unstable waves.
So far, all studies have been at the linear perturbation level. The results establish the
presence of the instability, but they do not shed any light on what happens once the
unstable oscillation reaches nonlinear amplitudes. Detailed studies of this problem are
essential if we are to understand the actual dynamical role of this instability.
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