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Abstract Locally rotationally symmetric Bianchi type I cosmological models are
examined in the presence of dynamically anisotropic dark energy and perfect fluid.
We assume that the dark energy (DE) is minimally interacting, has dynamical energy
density, anisotropic equation of state parameter (EoS). The conservation of the energy-
momentum tensor of the DE is assumed to consist of two separately additive conserved
parts. A special law is assumed for the deviation from isotropic EoS, which is consis-
tent with the assumption on the conservation of the energy-momentum tensor of the
DE. Exact solutions of Einstein’s field equations are obtained by assuming a special
law of variation for the mean Hubble parameter, which yields a constant value of the
deceleration parameter. Geometrical and kinematic properties of the models and the
behaviour of the anisotropy of the dark energy have been carried out. The models give
dynamically anisotropic expansion history for the universe that allows to fine tune the
isotropization of the Bianchi metric, hence the CMB anisotropy.

Keywords Anisotropic dark energy · Dynamical dark energy ·
LRS Bianchi type I · Constant deceleration parameter

1 Introduction

One of the most successful attempt to resolve the problems of standard Big Bang
cosmology such as homogeneity, isotropy, and flatness of the universe is the
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inflationary paradigm, characterised by an epoch of accelerated expansion, ”inflation”,
in the very early universe [1–4]. During the inflationary epoch, quantum fluctuations
are highly amplified, their wavelengths are stretched to outside the Hubble horizon
and inevitably, superhorizon fluctuations are generated. These fluctuations become
classical after crossing the event horizon and are coherent on what appear to be su-
perhorizon scales at decoupling [5–14]. After the end of inflation, they re-enter the
horizon, and seed the matter and the radiation fluctuations observed in the universe.
These primordial fluctuations are Gaussian, adiabatic and nearly scale-invariant in
the majority of inflation models and even a slight deviation from these properties can
strongly constrain the assumptions in cosmological models [13,14]. Since the linearity
of the cosmic microwave background (CMB) anisotropy preserves the basic proper-
ties of these primordial fluctuations, the CMB radiation anisotropy is a promising tool
for testing these properties [13]. However, it is known that the observed quadrupole
(l = 2, which is the largest scale that can be observed) amplitude has a lower value
than the quadrupole expected from a best-fit �-dominated cold dark matter (�CDM)
standard model to the entire power spectrum since the first data of the differential
microwave radiometer (COBE/DMR) appeared in 1992 [15,16]. This anomaly was
confirmed with the high resolution data provided by the first year (2003) and 3-year
(2006) Wilkinson Microwave Anisotropy Probe (WMAP, WMAP3) [17,18]. Most
recently, the 5-year WMAP data did not improve on the quadrupole, it still seems to
be outside of the fit [19,20]. Today, this low value of the quadrupole seems inescapable
and the main issue now is to elucidate possible explanations [21]. The proposed four
possible candidates are that this anomaly is due to a systematic error, a pure statistical
fluke, astrophysical (i.e. unexpected foreground) or cosmological reasons (e.g. non-
trivial spatial geometry of the universe) [21,22]. Although the correct explanation is
still unknown, the first three candidates seem unlikely [20–25]. If it is indeed due to
cosmological reasons, since the lowest multipoles represent especially the scale of the
horizon at approximately dark energy (DE) domination, it seems natural to associate
the low value of the quadrupole with the nature of the DE.

It is known that Bianchi universe anisotropies give rise to CMB anisotropies depend-
ing on the model type [26]. Recently, Campanelli et al. showed that allowing large-scale
spatial geometry of the universe to be plane-symmetric with eccentricity (regard-
less of the origin) at decoupling of order 10−2 can bring the quadrupole amplitude
in accordance with observations without affecting higher multipoles of the angular
power spectrum of the temperature anisotropy [27,28]. Although they are controver-
sial, it should be mentioned here that there are also some independent indications of
a symmetry axis in the large-scale geometry of the universe, coming from the anal-
ysis of spiral galaxies in the Sloan Digital Sky Survey (SDSS) [29] and from the
analysis of polarization of electromagnetic radiation propagating over cosmological
distances [30–37]. A spatially ellipsoidal geometry of the universe can be described
with Bianchi type metrics. However, Bianchi type I, V, VII models isotropize at late
times even for ordinary matter, and the possible anisotropy of the Bianchi metrics
necessarily dies away during the inflationary era [26,38]. In fact this isotropization
of the Bianchi metrics is due to the implicit assumption that the DE is isotropic in
nature. If the implicit assumption that the pressure of the DE is direction independent is
relaxed, the isotropization of the Bianchi metrics can be fine tuned to generate arbitrary
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ellipsoidality (eccentricity). Therefore, the CMB anisotropy can also be fine tuned,
since the Bianchi universe anisotropies determine the CMB anisotropies. The price
of this property of DE is a violation of the null energy condition (NEC) since the DE
crosses the Phantom Divide Line (PDL), in particular depending on the direction [39].

However, it has been known since the 1980s that such energy components might
occur and their role as possible DE candidates was raised by Caldwell at the end 1990s
(see [40] for further references). In theory, despite the observational constraints, exten-
sions of general relativity are the prime candidate class of theories consistent with
PDL crossing [41]. On the other hand, while the current cosmological data from SNIa
(Supernova Legacy Survey, Gold sample of Hubble Space Telescope) [42,43], CMB
(WMAP, BOOMERANG) [44,45] and large scale structure (SDSS) [46] data rule
out the w � −1, they mildly favor dynamically evolving DE crossing the PDL (see
[40,41,47,48] for theoretical and observational status of crossing the PDL).

Recently, Rodrigues [39] and Koivisto & Mota [49,50] have investigated cosmo-
logical models with anisotropic equation of state (EoS). Rodrigues has constructed
a Bianchi type-I �CDM cosmological model with a DE component which is non-
dynamical but wields anisotropic vacuum pressure in two ways: (i) by implementing
of anisotropic vacuum pressure consistent with energy-momentum tensor conserva-
tion; (ii) by implementing a Poisson structure deformation between canonical momenta
such that rescaling of the scale factor is not violated [39]. He suggests to fine tune the
DE so as to not wipe out the anisotropic imprints in the inflationary epoch. On the other
hand, Koivisto & Mota have proposed a different approach to resolve CMB anisotropy
problem; even if the CMB formed isotropically at early time, it could be distorted by
the direction dependent acceleration of the later universe in such a way that it appears
to us anomalous at the largest scales. They have investigated a cosmological model
containing a DE component which has a non-dynamical anisotropic EoS and interacts
with the perfect fluid component. They have also suggested that cosmological models
with anisotropic EoS can explain the quadrupole problem and can be tested by SNIa
data [49,50].

In reference [51] Mota et al. have concluded that even though a perfect fluid repre-
sentation might ultimately turn out to be a phenomenologically sufficient description
of all the observational consequences of DE, imperfectness in DE cannot be excluded
[51]. Although there is compelling evidence that the expansion of universe is speeding
up, we are far from understanding of the nature of the DE which is thought be the
reason for this behaviour [40,52,53]. Hence, we should examine models with aniso-
tropic dark energy, in order to determine what possible new physical consequences
they might give rise to, and if for no other reason than to rule such models out.

The above discussions lead us to examine the physical behaviours of the two-fluid,
particularly �CDM, cosmological models with an anisotropic DE component. Mod-
els of DE are conveniently characterized by the EoS parameter w = p/ρ which is
not necessarily constant, where ρ is the energy density and p is the pressure [40].
However, while energy density is a scalar quantity, pressure is a vectorial quantity,
and consequently the EoS parameter of DE may be determined separately on each
spatial axis in a consistent way with the conservation of energy-momentum tensor.
Hence, we consider a phenomenological parametrization of minimally interacting DE
in terms of its time-dependent deviation-free equation of state parameter w(de)(t) and
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deviation parameters [δ(t), γ (t), γ (t)]. Since such a parametrization yields an aniso-
tropic expansion, which is not compatible with the Robertson-Walker (RW) metric,
in Sect. 2 we have used the locally rotationally symmetric Bianchi type I (Locally
rotationally symmetric (LRS) Bianchi-I) metric that generalizes the flat RW metric
in an axially symmetric way and is compatible with our parametrization. The other
component has assumed to be a perfect fluid (dark matter or ordinary matter). With our
assumptions, the conservation of the energy-momentum tensor implies dynamically
anisotropic DE except for very special solutions. We have obtained exact solutions for
the equations by assuming a special dynamic for the anisotropy of the dark the energy
and a special law of variation for the mean Hubble parameter in Bianchi metrics,
which yields a constant value of deceleration parameter [54–56]. The assumption on
the mean Hubble parameter allows us to determine the scale factors exactly, as well as
to examine the behaviour of the anisotropy of DE and other cosmological parameters
of such a universe.

2 Model and field equations

The spatially homogenous, anisotropic and LRS Bianchi-I space-time is described by
the line element

ds2 = dt2 − A(t)2dx2 − B(t)2(dy2 + dz2) (1)

where A(t) and B(t) are the scale factors (metric tensors) and functions of the cosmic
time t . In natural units (8πG = 1 and c = 1), the field equations, in the case of a
mixture of the perfect fluid and the anisotropic DE components, are

Gµν = Rµν − 1

2
Rgµν = −T (m)

µν − T (de)
µν (2)

with

T (m)
ν
µ = diag[ρ(m),−p(m),−p(m),−p(m)]

= diag[1,−w(m),−w(m),−w(m)]ρ(m) (3)

and

T (de)
ν
µ = diag[ρ(de),−px

(de),−py
(de),−pz

(de)]
= diag[1,−wx

(de),−wy
(de),−wz

(de)]ρ(de)

= diag[1,−(w(de) + δ),−(w(de) + γ ),−(w(de) + γ )]ρ(de) (4)

where gµνuµuν = 1; uµ = (1, 0, 0, 0) is the four-velocity vector; Rµν is the Ricci
tensor; R is the Ricci scalar; ρ(m) and ρ(de) are the energy densities of the perfect fluid
and DE components respectively; w(m) is the EoS parameter of the perfect fluid and
we will call w(de) the deviation-free EoS parameter of the DE. Here, the perfect fluid
represents the ordinary matter or cold dark matter, thus w(m) ≥ 0. wx

(de), wy
(de) and
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wz
(de) are the directional EoS parameters of the DE on x , y and z axes respectively.

wy
(de) and wz

(de) are set to be equal which is convenient with the metric given in (1). δ
and γ are deviations from the deviation-free EoS parameter (hence the deviation-free
pressure) of the DE respectively on x axis and y and z axes. In a comoving coordinate
system, Einstein’s field equations (2), for the anisotropic LRS Bianchi-I space-time
(1), in case of (3) and (4), read as

Ḃ2

B2 + 2
Ȧ

A

Ḃ

B
= ρ(m) + ρ(de), (5)

Ḃ2

B2 + 2
B̈

B
= −w(m)ρ(m) − (w(de) + δ)ρ(de), (6)

B̈

B
+ Ḃ

B

Ȧ

A
+ Ä

A
= −w(m)ρ(m) − (w(de) + γ )ρ(de), (7)

where the over dot denotes derivation with respect to the cosmic time t . We have the
following equation from the Bianchi identity,

Gµν ;ν = T (m)µν
;ν + T (de)µν

;ν = 0, (8)

which yields

ρ̇(m) +
(

1 + w(m)
)

ρ(m)

(
Ȧ

A
+ 2

Ḃ

B

)

+ ρ̇(de) +
(

1 + w(de)
)

ρ(de)
(

Ȧ

A
+ 2

Ḃ

B

)
+ ρ(de)

(
δ

Ȧ

A
+ 2γ

Ḃ

B

)
= 0. (9)

This equation, which is linearly dependent to Einstein field equations, also represents
the conservation of the total energy momentum tensor.

3 Solution of the field equations

We have initially 8 variables (A, B, ρ(m), w(m), ρ(de), w(de), δ, γ ) and four equa-
tions, three of which are linearly independent, namely three Einstein field equations
(5–7) and the Bianchi identity. The system is thus initially undetermined and we need
additional constraints to close the system. We have assumed that the DE is minimally
interacting, T (de)µν

;ν = 0; thus due to the Bianchi identity (8) the perfect fluid compo-
nent is also minimally interacting, T (m)µν

;ν = 0. Hence, the Bianchi identity has been
split into two separately additive conserved components; namely, the conservation of
the energy-momentum tensor of the DE

T (de)µν
;ν = ρ̇(de)+

(
1+w(de)

)
ρ(de)

(
Ȧ

A
+ 2

Ḃ

B

)
+ρ(de)

(
δ

Ȧ

A
+2γ

Ḃ

B

)
= 0 (10)
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and the conservation of the energy-momentum tensor of the perfect fluid component

T (m)µν
;ν = ρ̇(m) +

(
1 + w(m)

)
ρ(m)

(
Ȧ

A
+ 2

Ḃ

B

)
= 0. (11)

Once more we may split the conservation of the energy-momentum tensor of the
dark-energy into two parts:

T (de)µν
;ν = T

′(de)µν

;ν + τ (de)µν
;ν = 0, (12)

where τ (de)µν
;ν is the last term of the T (de)µν

;ν in (10) and arises due to the deviations
from w(de), and T

′(de)µν
;ν is the deviation-free part of the T (de)µν

;ν in (10). Now, we
will do the following strong assumption,

τ (de)µν
;ν = ρ(de)

(
δ

Ȧ

A
+ 2γ

Ḃ

B

)
= 0, (13)

which also results in the deviation-free part of the T (de)µν
;ν to be null, that is,

T
′(de)µν

;ν = ρ̇(de) +
(

1 + w(de)
)

ρ(de)
(

Ȧ

A
+ 2

Ḃ

B

)
= 0, (14)

which looks like the conservation of the energy momentum tensor of a minimally inter-
acting perfect fluid. According to (13) and (14) the behaviour of ρ(de) is controlled by
the deviation-free part of the EoS parameter of the DE (w(de)), but the deviations will
affect ρ(de) indirectly, since, as can be seen later, they affect the value of w(de). If the
deviation parameters are assumed to be constants, to assure τ (de)µν

;ν = 0 either δ and
γ are trivially null or the ratio of the expansion rate on x axis to the expansion rate on
y axis is equal to −2γ /δ which is a very special case. On the other hand, we may get
more general solutions, if δ and γ are allowed to be function of the cosmic time t and
we constrained δ and γ by assuming a special dynamic which is consistent with (13).
The dynamic of the deviation parameter on the x axis, δ(t), is assumed to be

δ(t) = n
2

3

Ḃ

B

(
Ȧ

A
+ 2

Ḃ

B

)
1

ρ(de)
, (15)

and thus from (13) the deviation parameter on the y and z axes, γ (t), is found as

γ (t) = −n
1

3

Ȧ

A

(
Ȧ

A
+ 2

Ḃ

B

)
1

ρ(de)
. (16)

In such an assumption δ(t) and γ (t) are dimensionless parameters, and n is a dimen-
sionless constant that parametrizes the amplitude of the deviation from w(de) and
can be given real values. The measure of the anisotropy of the DE may be given by
(δ(t) − γ (t))/w(de) and it is null, which implies the DE is isotropic, when n = 0.
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The EoS parameter of the perfect fluid has been assumed to be constant,

w(m) = p(m)

ρ(m)
= const; (17)

while w(de) is allowed to be a function of the cosmic time, since the current cosmologi-
cal data from SNIa, CMB and large scale structures mildly favor dynamically evolving
DE crossing the PDL as mentioned in the Sect. 1. Hence, since w(de)(t) hasn’t been
constrained, we still need one more constraint to close the system. We imposed a law
of variation for the Hubble parameter. The law of variation for the Hubble parame-
ter which was initially proposed by Berman for RW space-time and yields a constant
value of deceleration parameter [54–59]. Such a law of variation for Hubble parameter
given by Berman is not inconsistent with observations [55,56] and is also approxi-
mately valid for slowly time varying deceleration parameter [57]. Recently Singh and
Kumar proposed a similar law of variation for the Hubble parameter in anisotropic
space-time metrics that yields a constant value of the deceleration parameter, and gen-
erated solutions for Bianchi type-I [55], LRS Bianchi type-II [54,56], Bianchi type-V
[57] metrics in General Relativity. According to the proposed law, the variation of the
mean Hubble parameter for the LRS Bianchi-I metric may be given by

H = k(AB2)−
m
3 , (18)

where k > 0 and m ≥ 0 are constants. The spatial volume is given by

V = a3 = AB2 (19)

where a is the mean scale factor. The mean Hubble parameter H for LRS Bianchi-I
metric may be given by

H = ȧ

a
= 1

3

V̇

V
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
. (20)

The directional Hubble parameters in the directions of x , y and z respectively may be
defined as

Hx ≡ Ȧ

A
and Hy = Hz ≡ Ḃ

B
. (21)

(Since Hy = Hz , in the following they are represented by Hy,z .) The volumetric
deceleration parameter is

q = −aä

ȧ2 . (22)

On integration, after equating (18) and (20), we get

AB2 = c1e3kt for m = 0 (23)
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and

AB2 = (mkt + c2)
3
m for m �= 0. (24)

Here c1 and c2 are positive constants of integration. Using (18) with (23) for m = 0,
and with (24) for m �= 0 mean Hubble paremeters are

H = k for m = 0 (25)

and

H = k(mkt + c2)
−1 for m �= 0. (26)

Using (23–24) and (19) in (22) we get constant values for the deceleration parameter
for the mean scale factor as:

q = m − 1 for m �= 0 (27)

and

q = −1 for m = 0. (28)

The sign of q indicates whether the model accelerate or not. The positive sign of q (i.e.
m > 1) corresponds to decelerating models whereas the negative sign −1 ≤ q < 0
for 0 ≤ m < 1 indicates acceleration and q = 0 for m = 1 corresponds to expansion
with constant velocity.

Using the deviation parameters (15) and (16), and the mean Hubble parameter (20)
in the subtraction (6) from (7) we may get

d

dt

(
Ȧ

A
− Ḃ

B

)
+

(
Ȧ

A
− Ḃ

B

)
3H = 3nH2 (29)

after little manipulation. On integration of (29) by considering (25) and (26) we obtain

Ȧ

A
− Ḃ

B
= λe−3kt + nk for m = 0, (30)

Ȧ

A
− Ḃ

B
= λ

(mkt + c2)
3
m

+ 3nk

(3 − m)(mkt + c2)
for m �= 0 and 3 (31)

and

Ȧ

A
− Ḃ

B
= λ

3kt + c2
+ nk ln(3kt + c2)

3kt + c2
for m = 3, (32)

where λ is the real constant of integration. One can observe that λ and n are two
parameters that parameterize the difference between the directional Hubble parame-
ters. Now, we can find A(t) and B(t) explicitly for all m values by using (30–32).
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3.1 Model for m = 0 (q = −1)

Using (30) we may get the ratios of the scale factors A(t)/B(t), and on manipulating
the result by using (23) we get the following exact expressions for the scale factors:

A(t) = c1
1/3κ2/3ekt− 2

9
λ
k e−3kt + 2

3 nkt , (33)

B(t) = c1
1/3κ−1/3ekt+ 1

9
λ
k e−3kt − 1

3 nkt , (34)

where κ is the positive constant of integration. The spatial volume of the universe is
found as

V = c1e3kt . (35)

The directional Hubble parameters as defined in (21) are found as

Hx = k + 2

3
λe−3kt + 2

3
kn, (36)

Hy,z = k − 1

3
λe−3kt − 1

3
kn. (37)

The anisotropy parameter of the expansion 
 is defined as


 ≡ 1

3

3∑
i=1

(
Hi − H

H

)2

, (38)

where Hi (i = 1, 2, 3) represents the directional Hubble parameters in the directions of
x , y and z respectively. By using (25), (36) and (37) in (38) we get


 = 2

9

(
λe−3kt + nk

)2

k2 (39)

for the anisotropy of the expansion. The expansion scalar, defined by θ ≡ ui ;i , is
found as

θ = 3k = 3H. (40)

The shear scalar, defined by σ 2 ≡ 1
2σi jσ

i j where σi j = ui; j + u j;i − 2
3 gi j uk ;k is the

shear tensor, is found as

σ 2 = 1

3

(
λe−3kt + nk

)2
. (41)

Using the scale factors in (11), the energy density of the perfect fluid is found as

ρ(m)(t) = ρ
(m)
0 e−3k

(
1+w(m)

)
t . (42)
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The energy density of the DE may be found from (5) by using the scale factors and
the energy density of the perfect fluid (42), and may be written in terms of 
(t) as

ρ(de)(t) = 3k2
(

1 − 1

2

(t)

)
− ρ(m)(t). (43)

Using the scale factors and (43) in (14) we get

w(de)(t) = 3w(m)ρ(m)(t) + λ2e−6kt + k2
(
9 − n2

)

3ρ(m)(t) + λ2e−6kt + 2λkne−3kt − k2
(
9 − n2

) (44)

for the deviation-free EoS parameter of the DE. Using the scale factors and (43) in
(15) and (16) we may get deviation parameters as following,

δ(t) = 2λkne−3kt + 2k2n(n − 3)

3ρ(m)(t) + λ2e−6kt + 2λkne−3kt − k2
(
9 − n2

) , (45)

γ (t) = 2λkne−3kt + 2k2n(n + 3/2)

3ρ(m)(t) + λ2e−6kt + 2λkne−3kt − k2
(
9 − n2

) . (46)

3.2 Physical behaviour of the model for m = 0 (q = −1)

For this model q = −1 and d H/dt = 0, which implies the greatest value of the Hubble
parameter and the fastest rate expansion of the universe. Thus, this model may repre-
sent the inflationary era in the early universe and the very late times of the universe.

The spatial volume V is finite at t = 0, expands exponentially as t increases and
becomes infinitely large at t = ∞. The directional Hubble parameters Hx and Hy,z

are finite at t = 0 and t = ∞. They deviate from the mean Hubble parameter H due to
λ and n. While λ is supporting (opposing) the expansion on the x axis, it opposes (sup-
ports) the expansion on y and z axes. However it loses its effect exponentially by the
cosmic time t . The anisotropy of the DE has a similar effect on the directional Hubble
parameters, but its effect persists. While n is supporting (opposing) the expansion on
the x axis, it opposes (supports) the expansion on y and z axes. The anisotropy of the
DE doesn’t always act so as to increase the anisotropy of the expansion. In fact, when
the signs of λ and n are opposite the overall effect is to lower the expansion anisotropy.

The expansion scalar is constant throughout the evolution of the universe. The shear
scalar is also finite at t = 0 and tends to n2k2/3 as t increases. If −3/2 < n < 3
all the axes will expand to infinitely large values as t → ∞. On the other hand, the
space-time exhibits a pancake type singularity for n < −3/2 and a cigar type singu-
larity for n > 3 at t = ∞. If n = −3/2 while the x axis converges to a constant, y
and z axes expand to infinitely large values, and it is vice versa if n = 3.

The energy density of the perfect fluid ρ(m) decreases exponentially and converges
to zero since w(m) ≥ 0 by definition, while ρ(de) changes slightly at early times and
converges to a non-zero value as t increases. Thus, the ratio of ρ(de)/(ρ(m) + ρ(de))

converges to 1 as t increases, that is the DE dominates the perfect fluid in the infla-
tionary era as expected. Since DE dominates the perfect fluid in the inflationary era

123



LRS Bianchi type I models 129

Fig. 1 ρ(de) versus cosmic time t for different values of n in model m = 0. λ and k have been chosen as 1

as mentioned above, we may neglect the perfect fluid while examining the properties
of the DE in this model. ρ(de) is always positive provided |n + λ/k| < 3 and |n| < 3,
begins with a finite value at t = 0, exhibits different behaviours depending on the
choice of the parameters at the earlier times and tends to 3k2(1 − n2/9) for large val-
ues of t ; see Fig. 1. It can be observed that the bigger the anisotropy of the expansion
the lower the ρ(de) in any given instant. λ loses its effect exponentially as t increases,
thus we may say that the higher the |n| the lower the ρ(de) in any given instant for
relatively big t values. The EoS parameter of the DE w(de) may begin in phantom
(w < −1) or quintessence (w > −1) region and tends to −1 (cosmological constant,
w = −1) by exhibiting various patterns as t increases; see Fig. 2. One can observe
that ρ(de) increases when w(de) < −1, decreases when w(de) > −1 and is constant
when w(de) = −1, as would be expected.

The anisotropy of the expansion decreases monotonically as t increases when n = 0.
However, it exhibits nontrivial behaviour at the early times of the universe and con-
verges to a non-zero value for the late times when n �= 0; see Fig. 3. The deviation
parameters δ and γ are finite at t = 0, and converge to 2n/(n + 3) and n(2n + 3)/

(n2 − 9) respectively as t → ∞. The anisotropy of the DE which has been defined as
(δ − γ )/w(de) tends to 9n/(n2 − 9) as t increases; see Fig. 4.

3.3 Model for m �= 0 (q �= −1)

The solutions in this subsection are valid for all possible values of m except for m = 3
and m = 0, thus the solutions for m = 3 are given in the following subsection.
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Fig. 2 w(de) versus cosmic time t for different values of n in model m = 0. λ and k have been chosen as 1

Fig. 3 
 versus cosmic time t for different values of n in model m = 0. λ and k have been chosen as 1

From (24) one can see that the initial time of the universe is t∗ = −c2/mk for
m �= 0. For brevity of the equations, we may redefine the cosmic time as

t ′ = mkt + c2, (47)
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Fig. 4 The anisotropy of the DE versus cosmic time t for different values of n in model m = 0. λ and k
have been chosen as 1

and by doing that the initial time of the universe has also been set to t ′ = 0. Thus we
may rewrite the metric as

ds2 = (mk)−2dt ′2 − A(t ′)2dx2 − B(t ′)2(dy2 + dz2). (48)

Using (31) we may obtain the ratios of the scale factors A(t)/B(t), and on manipulating
the result by using (24) we get the following exact expressions for the scale factors:

A(t ′) = κ2/3t ′
1
m − 2n

m(m−3) e
2
3

λ
k(m−3)

t ′1− 3
m

, (49)

B(t ′) = κ−1/3t ′
1
m + n

m(m−3) e− 1
3

λ
k(m−3)

t ′1− 3
m

, (50)

where κ is the positive constant of integration. The spatial volume of the universe is
found as

V = t ′
3
m . (51)

The directional Hubble parameters as defined in (21) are found as

Hx = kt ′−1 + 2

3
λt ′−

3
m − 2nk

(m − 3)
t ′−1

, (52)

Hy,z = kt ′−1 − 1

3
λt ′−

3
m + nk

(m − 3)
t ′−1

. (53)
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Using (26), (52) and (53) in (38) we get


(t ′) = 2

9

(
λ

k
t ′1− 3

m − 3n

m − 3

)2

, (54)

for the anisotropy parameter of the expansion. The expansion and shear scalars are,
respectively, found as

θ = 3kt ′−1 = 3H, (55)

σ 2 = 1

3
k2t ′−2

(
λ

k
t ′1− 3

m − 3n

m − 3

)2

. (56)

Using the scale factors (49–50) in (11), the energy density of the perfect fluid is found as

ρ(m)(t ′) = ρ
(m)
0 t ′−

3
m (1+w(m))

. (57)

The energy density of the DE can be found from (5) by using the scale factors (49–50)
and the energy density of the perfect fluid (57), and may be written in terms of 
(t) as

ρ(de)(t ′) = 3k2
(

1 − 1

2

(t ′)

)
t ′−2 − ρ(m)(t ′). (58)

Using (49–50) and (58) in (14) we get

w(de)(t ′)=
2
3

m
m−3 λnkt ′−1− 3

m − 1
3 λ2t ′−

6
m +(2m−3)k2t ′−2

(
1− n2

(m−3)2

)
− w(m)ρ(m)(t ′)

3k2
(
1 − 1

2 
(t ′)
)

t ′−2−ρ(m)(t ′)
, (59)

for the deviation-free EoS parameter of the DE. And finally using (49–50) and (58) in
(15) and (16) we may get deviation parameters as following,

δ(t ′) =
nkt ′−2

(
2k − 2

3λt ′1− 3
m + 2nk

(m−3)

)

3k2
(
1 − 1

2
(t ′)
)

t ′−2 − ρ(m)(t ′)
, (60)

γ (t ′) =
nkt ′−2

(
−k − 2

3λt ′1− 3
m + 2nk

(m−3)

)

3k2
(
1 − 1

2
(t ′)
)

t ′−2 − ρ(m)(t ′)
. (61)

3.4 Physical behaviour of the model for m �= 0 (q �= −1)

The universe accelerates for 0 < m < 1, decelerates for m > 1 and expands with
constant velocity for m = 1. This model may represent the radiation dominated era
for m = 2 and w(m) = 1/3, and the matter dominated era for m = 3/2 and w(m) = 0.

The mean Hubble parameter H , expansion scalar θ and shear scalar σ 2 are infinitely
large at t ′ = 0, and null at t ′ = ∞.

123



LRS Bianchi type I models 133

If m > 3, the space time exhibits a cigar type singularity at t ′ = ∞ for λ > 0
and a pancake type singularity for λ < 0. If m < 3, all the axes expand to infinitely
large values provided (m − 3)/2 < n < 3 − m as t ′ → ∞. When n = 3 − m,
A(t ′) takes infinitely large values as t ′ → ∞, while B(t ′) converges to κ−1/3. When
n = (m − 3)/2, B(t ′) takes infinitely large values as t ′ → ∞, while A(t ′) converges
to κ2/3. When n > 3−m space time exhibits a cigar type singularity at t ′ = ∞. When
n < (m − 3)/2 space time exhibits a pancake type singularity at t ′ = ∞.


 diverges as t ′ → 0, converges to a constant as t ′ → ∞ for m < 3 and vice versa
for m > 3. One can observe that the anisotropy of the expansion lowers the value
of ρ(de). Thus, 
 must be considered while examining the dynamics of the energy
density of the DE, particularly since 
 diverges in the above mentioned limits. In the
model for m < 3, ρ(de) will eventually obtain negative values as t ′ goes to zero due
to the divergence of 
. Hence, this model is not appropriate for representing the rela-
tively earlier times of the universe. On the other hand, this model can set to represent
relatively later times of the universe since we can always set ρ(de) to be ρ(de) ≥ 0 as
t ′ → ∞ by choosing the parameters in suitable intervals. Similarly, in the model for
m > 3, ρ(de) will eventually obtain negative values as t ′ → ∞. Hence, this model is
not appropriate for representing the late times of the universe, but for the earlier times
of the universe by choosing the parameters in suitable intervals.

w(de) and (δ − γ )/w(de), say the anisotropy of the DE, exhibits various dynamics
according to the choice of the parameters. It is worth to mention here once more that
the anisotropy of the DE doesn’t always act so as to increase the anisotropy of the
expansion, when the signs of λ and n are opposite the overall effect is to lower the
expansion anisotropy.

We may try to set t ′ = 1 to the present universe by using the recent cosmolog-
ical data which favor H0 ≈ 0.71 (dimensionless Hubble parameter), Ω

(de)
0 ≈ 0.73

(density parameter of the dark energy), Ω
(m)
0 ≡ 1 − Ω

(de)
0 ≈ 0.27, w

(de)
0 ≈ −1 [20],

w(m) = 0 and a space-time that can be represented by flat RW metric which implies

0 = 0 for the present universe, where 0 subscripts represent present (t ′ = 1) values of
the parameters. With above parameters we may obtain present critical energy density
of the universe as ρ

(c)
0 = 1.5123, the deceleration parameter as q0 = −0.595 which

implies m = 0.405 in our model, ρ
(m)
0 = 0.408321, ρ

(de)
0 = 1.103979, w

(de)
0 = −1

and 
0 = 0 by choosing λ = −0.8208092487n.
In this model with the above values of the parameters, which may correspond to

the present universe in the vicinity of t ′ = 1, ρ(m) is roughly proportional with t ′−8,
while ρ(de) is roughly proportional with t−2 and gets its highest value at t ′ = 1 where

 = 0. That is, the DE eventually dominates the perfect fluid. Some graphs may be
plotted with above values, since we can think that q is changing only slightly for the
present universe, for n = 0, n = −0.3 and n = 0.5. Plots have been extended towards
to the later times more than towards to the earlier times since, as mentioned above,
models with m < 3 are not appropriate for representing relatively earlier times of
the universe. ρ(de) increases when w(de) is in the phantom region, begins to decrease
when w(de) passes into the quintessence region and converges to zero as t ′ → ∞; see
Fig. 5. w(de) begins in the phantom region, increases and becomes −1 at t ′ = 1 then
passes into the quintessence region and tends to a constant which is in the quintessence
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Fig. 5 ρ(de) versus cosmic time t ′ in the vicinity of t ′ = 1 in the model m = 0.405 for different values of
n. 
 has been set to null at t ′ = 1 by choosing λ = −0.8208092487n

region; see Fig. 6. ρ(m) decreases as t ′ increases independent of n; see Fig. 7. Ω(de)

increases as t ′ increases, becomes 0.73 at t ′ = 1 and converges to 1 as t ′ keeps on
increasing; see Fig. 8. 
 decreases as t ′ increases and becomes null at t ′ = 1 then
tends to a constant which depends on n, see Fig. 9. The bigger the 
 the lower the
ρ(de), consequently lower the Ω(de) in any given instant. The anisotropy of the DE,
(δ−γ )/w(de), is null for n = 0, changes slightly and converges to a non-zero constant
for n �= 0; see Fig. 10.

3.5 Model for m = 3 (q = 2)

From (24) we can see that the initial time of the universe is t∗ = −c2/3k for m = 3.
For brevity of the equations, we may redefine the cosmic time as

t ′ = 3kt + c2, (62)

and by doing that the initial time of the universe has also been set as t ′ = 0. Thus we
may rewrite the metric as

ds2 = (3k)−2dt ′2 − A(t ′)2dx2 − B(t ′)2(dy2 + dz2). (63)

Using (32) we may get the ratios of the scale factors A(t)/B(t) for m = 3, and manip-
ulating the result by using (24) we get the following exact expressions for the scale
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Fig. 6 The plot of w(de) versus cosmic time t ′ in the vicinity of t ′ = 1 in the model m = 0.405 for different
values of n. 
 has been set to null at t ′ = 1 by choosing λ = −0.8208092487n. w(de)(1) = −1

Fig. 7 The plot of ρ(m) with w(m) = 0, versus cosmic time t ′ in the vicinity of t ′ = 1 in the model
m = 0.405. The behaviour of the ρ(m) is independent of n
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Fig. 8 The plot of Ω(de) versus cosmic time t ′ in the vicinity of t ′ = 1 in the model m = 0.405 for
different values of n. 
 has been set to null at t ′ = 1 by choosing λ = −0.8208092487n. Ω(de)(1) = 0.73

Fig. 9 The plot of 
 versus cosmic time t ′ in the vicinity of t ′ = 1 in the model m = 0.405 for different
values of n. 
 has been set to null at t ′ = 1 by choosing λ = −0.8208092487n
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Fig. 10 Plot of the anisotropy of the DE versus cosmic time t ′ in the vicinity of t ′ = 1 in the model
m = 0.405 for different values of n. 
 has been set to null at t ′ = 1 by choosing λ = −0.8208092487n

factors;

A(t ′) = κ
2
3 t ′

1
3 + 2

9
λ
k e

n
9 ln(t ′)2

, (64)

B(t ′) = κ− 1
3 t ′

1
3 − 1

9
λ
k e− n

18 ln(t ′)2
, (65)

where κ is the positive constant of integration. The spatial volume of the universe is
found as

V = t ′. (66)

The directional Hubble parameters as defined in (21) are found as

Hx = kt ′−1 + 2

3

(
λ + nk ln(t ′)

)
t ′−1

, (67)

Hy,z = kt ′−1 − 1

3

(
λ + nk ln(t ′)

)
t ′−1

. (68)

Using (26) and the scale factors in (38) we get


 = 2

9
k−2 (

nk ln(t ′) + λ
)2 (69)
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for the anisotropy parameter of expansion. The expansion and shear scalars are, respec-
tively, found as

θ = 3kt ′−1 = 3H, (70)

σ 2 = 1

3

(
nk ln(t ′) + λ

)2
t ′−2

. (71)

Using the scale factors in (11), the energy density of the perfect fluid is found as

ρ(m)(t ′) = ρ
(m)
0 t ′−(1+w(m))

. (72)

The energy density of the DE can be found from (5) by using the scale factors and the
energy density of the perfect fluid (72),

ρ(de)(t ′) = 3k2
(

1 − 1

2

(t ′)

)
t ′−2 − ρ(m)(t ′), (73)

Using (64–65) and (73) in (14) we get

w(de)(t ′)= 3k2t ′−2− 1
3 (nk ln(t ′)+λ)2t ′−2+ 2

3 nk(nk ln (t ′)+λ)t ′−2 − w(m)ρ(m)(t)

3k2
(

1 − 1
2 
(t ′)

)
t ′−2 − ρ(m)(t ′)

(74)

for the deviation-free EoS parameter of the DE. And finally using (64–65) and (73) in
(15) and (16) we may get deviation parameters as following,

δ(t ′) = nk
(
2k − 2

3 nk ln(t ′) − 2
3λ

)
t ′−2

3k2
(
1 − 1

2
(t ′)
)

t ′−2 − ρ(m)(t ′)
, (75)

γ (t ′) = nk
(−k − 2

3 nk ln(t ′) − 2
3λ

)
t ′−2

3k2
(
1 − 1

2
(t ′)
)

t ′−2 − ρ(m)(t ′)
. (76)

3.6 Physical behaviour of the model for m = 3 (q = 2)

Nothing physically special has been observed in this model for further investigation.
But we may mention that this model may only be valid for intermediate epochs of
the universe. Because 
 diverges at t ′ = 0 and t ′ = ∞ in this model, thus ρ(de) will
eventually get negative values as t ′ goes to extreme values, since the anisotropy of the
expansion contribute the energy density of the DE negatively.

4 Conclusion

Locally rotationally symmetric Bianchi-I cosmological models with dynamically
anisotropic dark energy (DE) and perfect fluid have been constructed in General
Relativity. We assume that the DE is minimally interacting, has dynamical energy
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density and anisotropic equation of state parameter (EoS). The conservation of the
energy-momentum tensor of the DE has been assumed to consist of two separately
additive conserved parts. A special law has been assumed for the deviation from
isotropic EoS, which is consistent with the assumption on the conservation of the
energy-momentum tensor of the DE. Exact solutions of Einstein’s field equations have
been obtained by assuming a special law of variation for the mean Hubble parameter,
which yields a constant value of the deceleration parameter and is not inconsistent
with observations. Some basic geometrical and kinematical features of the models
and the dynamics of the anisotropic DE in these models have been examined.

A more general EoS parameter has been introduced for the DE, and the isotropic
DE can be recovered by choosing n to be null, where n parametrizes the amplitude
of the deviation from isotropic EoS parameter of the DE. In all the models, while
the anisotropy of the DE contributes to the expansion of one of the scale factors, it
opposes to the expansion of the other. Two parameters that parameterize the difference
between directional Hubble parameters, λ and n, give rise to non-trivial, dynamically
anisotropic, expansion histories. This allows for the possibility to fine tune the isot-
ropization of the Bianchi metric during an accelerating epoch of the universe in order
to generate arbitrary ellipsoidality by choosing a suitable value of n. Such a result
provides also the possibility to fine tune the CMB anisotropy [27,28]. The anisotropy
of the expansion can mildly or totally isotropize in relatively earlier times of the uni-
verse. Nevertheless, it converges to a nonzero constant value for the later times of the
universe in all models. It is also observed that the anisotropy of the DE energy doesn’t
always act so as to increase the anisotropy of the expansion, when signs of λ and n
are opposite the overall effect is to lower the expansion anisotropy in relatively earlier
times of the universe.

One interesting observation is that the higher the anisotropy of the expansion the
lower the energy density of the DE in each given instant of the cosmic time. w(de) is also
dynamical and exhibits non-trivial behaviour in our model, but it eventually converges
to a constant in the quintessence region for m �= 0 and converges to −1 for m = 0.

Such cosmological models are of interest because they give rise to an ellipsoidality
of the universe in spite of the inflation [39,49,50], which is one of the promising
proposals to the solution of the quadrupole problem [21,22,27,28] and can also be
checked by the direction dependency of the redshift-luminosity relation of the SNIa
observations [49,50].
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