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Abstract We analyze seven different viable f (R)-gravities towards the Solar
System tests and stochastic gravitational waves background. The aim is to achieve
experimental bounds for the theory at local and cosmological scales in order to select
models capable of addressing the accelerating cosmological expansion without cos-
mological constant but evading the weak field constraints. Beside large scale structure
and galactic dynamics, these bounds can be considered complimentary in order to
select self-consistent theories of gravity working at the infrared limit. It is demon-
strated that seven viable f (R)-gravities under consideration not only satisfy the local
tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds
for large classes of parameters.
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1 Introduction

The currently observed accelerated expansion of the Universe suggests that cosmic
flow dynamics is dominated by some unknown form of dark energy characterized by
a large negative pressure. This picture comes out when such a new ingredient, beside
baryonic and dark matter, is considered as a source in the r.h.s. of the field equations.
Essentially, it should be some form of un-clustered, non-zero vacuum energy which,
together with (clustered) dark matter, should drive the global cosmic dynamics.

Among the proposals to explain the experimental situation, the “concordance
model”, addressed as �CDM, gives a reliable snapshot of the today observed Universe
according to the CMBR, LSS and SNeIa data, but presents dramatic shortcomings as
the “coincidence and cosmological constant problems” which point out its inadequacy
to fully trace back the cosmological dynamics [1].

On the other hand, alternative theories of gravity, extending in some way General
Relativity (GR), allows to pursue a different approach giving rise to suitable cosmolog-
ical models where a late-time accelerated expansion can be achieved in several ways.
This viewpoint does not require to find out candidates for dark energy and dark matter
at fundamental level (they have not been detected up to now), it takes into account only
the “observed” ingredients (i.e. gravity, radiation and baryonic matter), but the l.h.s.
of the Einstein equations has to be modified. Despite of this modification, it could be
in agreement with the spirit of GR since the only request is that the Hilbert–Einstein
action should be generalized asking for a gravitational interaction acting, in principle,
in different ways at different scales [2,3].

The idea that Einstein gravity should be extended or corrected at large scales (infra-
red limit) or at high energies (ultraviolet limit) is suggested by several theoretical and
observational issues [4,5]. Quantum field theory in curved spacetimes, as well as the
low-energy limit of String/M theory, both imply semi-classical effective actions con-
taining higher-order curvature invariants or scalar–tensor terms. In addition, GR has
been definitely tested only at Solar System scales while it may show several short-
comings if checked at higher energies or larger scales. Besides, the Solar System
experiments are, up to now, not so conclusive to state that the only viable theory of
gravity is GR: for example, the limits on PPN parameters should be greatly improved
to fully remove degeneracies [6].

Of course, modifying the gravitational action asks for several fundamental chal-
lenges. These models can exhibit instabilities [7,8] or ghost-like behavior [9], while,
on the other hand, they have to be matched with observations and experiments in the
appropriate low energy limit.

Despite of all these issues, in the last years, some interesting results have been
achieved in the framework of the so called f (R)-gravity at cosmological, Galactic
and Solar System scales. Here f (R) is a general (analytic) function of the Ricci scalar
R (see [10–13] for review).

For example, there exist cosmological solutions that give the accelerated expansion
of the universe at late times [14–24]. In addition, it has been discovered that some
stability conditions can lead to avoid ghost and tachyon solutions. Furthermore there
exist viable f (R) models which satisfy both background cosmological constraints and
stability conditions [25,26,32–37] and results have been achieved in order to place
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constraints on f (R) cosmological models by CMBR anisotropies and galaxy power
spectrum [38–47]. Moreover, some of such viable models lead to the unification of
early-time inflation with late-time acceleration [35–37].

On the other hand, by considering f (R)-gravity in the low energy limit, it is possi-
ble to obtain corrected gravitational potentials capable of explaining the flat rotation
curves of spiral galaxies or the dynamics of galaxy clusters without considering huge
amounts of dark matter [48–54].

Furthermore, several authors have dealt with the weak field limit of fourth order
gravity, in particular considering the PPN limit [56–72,84] and the spherically sym-
metric solutions [73–80,82,83].

This great deal of work needs an essential issue to be pursued: we need to com-
pare experiments and probes at local scales (e.g. Solar System) with experiments and
probes at large scales (Galaxy, extragalactic scales, cosmology) in order to achieve
self-consistent f (R) models. Some work has been done in this direction (see, e.g. [32])
but the large part of efforts has been devoted to address single data sets (observations at
a given redshift) by a single model which, several time, is not working at other scales
than the one considered. In particular, a given f (R) model, evading Solar System
tests, should be not simply extrapolated at extragalactic and cosmological scales only
requiring accelerated cosmological solutions but it should be confronted with data
and probes coming from cosmological observations. Reliable models are then those
matching data at very different scales (and redshifts).

In order to constrain further viable f (R)-models, one could take into account also
the stochastic background of gravitational waves (GW) which, together with cosmic
microwave background radiation (CMBR), would carry a huge amount of information
on the early stages of the Universe evolution. In fact, if detected, such a background
could constitute a further probe for these theories at very high red-shift [103]. On the
other hand, a key role for the production and the detection of the relic gravitational
radiation background is played by the adopted theory of gravity [85,86]. This means
that the effective theory of gravity should be probed at zero, intermediate and high red-
shifts to be consistent at all scales and not simply extrapolated up to the last scattering
surface, as in the case of GR.

The aim of this paper is to discuss the PPN Solar-System constraints and the GW
stochastic background considering some recently proposed f (R) gravity models [25,
26,32,35–37] which satisfy both cosmological and stability conditions mentioned
above. Using the definition of PPN-parameters γ and β in terms of f (R)-models
[71,72] and the definition of scalar GWs [87], we compare and discuss if it is possible
to search for parameter ranges of f (R)-models working at Solar System and GW
stochastic background scale. This phenomenological approach is complementary to
the one proposed, e.g. in [32,46,47] where also galactic and cosmological scales have
been considered to constraint the models.

The layout of the paper is the following. In Sect. 2, we review the field equations
of f (R) gravity in the metric approach and their scalar–tensor representation, useful
to compare the theory with observations. In Sect. 3, we review and discuss some via-
ble f (R) models capable of satisfying both local gravity prescriptions as well as the
observed cosmological behavior. In particular, we discuss their stability conditions and
the field values which have to achieved to fulfill physical bounds. Section 4 is devoted
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to derive the values of model parameters in agreement with the PPN experimental
constraints while, in Sect. 5, we deal with the constraints coming from the stochastic
background of GWs. These latter ones have to be confronted with those coming from
PPN parameterization. Discussion and conclusions are drawn in Sect. 6. As a gen-
eral remark, we find out that bounds coming from the interferometric ground-based
(VIRGO, LIGO) and space (LISA) experiments could constitute a further probe for
f (R) gravity if matched with bounds at other scales.

2 f (R) gravity

Let us start from the following action

S = Sg + Sm = 1

k2

∫
d4x

√−g [R + f (R) + Lm] , (1)

where we have considered the gravitational and matter contributions and k2 ≡ 16πG.
The non-linear f (R) term has been put in evidence with respect to the standard
Hilbert–Einstein term R and Lm is the perfect-fluid matter Lagrangian. The field
equations are

1

2
gµν F(R) − Rµν F ′(R) − gµν�F ′(R) + ∇µ∇ν F ′(R) = −k2

2
T (m)

µν . (2)

Here F(R) = R + f (R) and T (m)
µν is the matter energy–momentum tensor. By intro-

ducing the auxiliary field A, one can rewrite the gravitational part in the Action (1)
as

Sg = 1

k2

∫
d4x

√−g
{(

1 + f ′(A)
)
(R − A) + A + f (A)

}
. (3)

As it is clear from Eq. (3), if F ′(R) = 1 + f ′(R) < 0, the coupling k2
e f f = k2/F ′(A)

becomes negative and the theory enters the anti-gravity regime. Note that it is not the
case for the standard GR.

Action (3) can be recast in a scalar–tensor form. By using the conformal scale
transformation gµν → eσ gµν with σ = − ln

(
1 + f ′(A)

)
, the action can be written

in the Einstein frame as follows [10,11]:

SE = 1

k2

∫
d4x

√−g

(
R − 3

2
gρσ ∂ρσ∂σ σ − V (σ )

)
, (4)

where

V (σ ) = eσ g
(
e−σ

)− e2σ f
(
g
(
e−σ

)) = A

F ′(A)
− F(A)

F ′(A)2 . (5)
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The form of g
(
e−σ

)
is given by solving σ = − ln

(
1 + f ′(A)

) = ln F ′(A) as
A = g

(
e−σ

)
. The transformation gµν → eσ gµν induces a coupling of the scalar field

σ with matter.
In general, an effective mass for σ is defined as [37]

m2
σ ≡ 1

2

d2V (σ )

dσ 2 = 1

2

[
A

F ′(A)
− 4F(A)

(F ′(A))2 + 1

F ′′(A)

]
, (6)

which, in the weak field limit, could induce corrections to the Newton law. This allows,
as it is well known, to deal with the extra degrees of freedom of f (R)-gravity as an
effective scalar field which reveals particularly useful in considering “chameleon”
models [27–31]. This “parameterization” will be particularly useful to deal with the
scalar component of GWs.

3 f (R) viable models

Let us consider now a class of f (R) models which do not contain cosmological con-
stant and are explicitly designed to satisfy cosmological and Solar-System constraints
in given limits of the parameter space. In practice, we choose a class of functional forms
of f (R) capable of matching, in principle, observational data (see [22] for the general
approach). Firstly, the cosmological model should reproduce the CMBR constraints in
the high-redshift regime (which agree with the presence of an effective cosmological
constant). Secondly, it should give rise to an accelerated expansion, at low redshift,
according to the �CDM model. Thirdly, there should be sufficient degrees of freedom
in the parameterization to encompass low redshift phenomena (e.g. the large scale
structure) according to the observations [46,47]. Finally, small deviations from GR
should be consistent with Solar System tests. All these requirements suggest that we
can assume the limits

limR→∞ f (R) = constant, (7)

limR→0 f (R) = 0, (8)

which are satisfied by a general class of broken power law models, proposed in [32],
which are

f I (R) = −m2
c1

(
R

m2

)n

c2

(
R

m2

)n + 1
(9)

or otherwise written as

FI (R) = R − λRc

(
R
Rc

)2n

(
R
Rc

)2n + 1
, (10)

where m is a mass scale and c1,2 are dimensionless parameters.
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Besides, another viable class of models was proposed in [25]

FI I (R) = R + λRc

[(
1 + R2

R2
c

)−p

− 1

]
. (11)

Since F(R = 0) = 0, the cosmological constant has to disappear in a flat spacetime.
The parameters {n, p, λ, Rc} are constants which should be determined by experimen-
tal bounds.

Other interesting models with similar features have been studied in [33–37]. In
all these models, a de-Sitter stability point, responsible for the late-time acceleration,
exists for R = R1 (> 0), where R1 is derived by solving the equation R1 f,R(R1) =
2 f (R1) [81]. For example, in the model (11), we have R1/Rc = 3.38 for λ = 2 and
p = 1. If λ is of the unit order, R1 is of the same order of Rc. The stability condi-
tions, f,R > 0 and f,R R > 0, are fulfilled for R > R1 [25,34]. Moreover the models
satisfy the conditions for the cosmological viability that gives rise to the sequence of
radiation, matter and accelerated epochs [34].

In the region R � Rc both classes of models (9) and (11) behave as

FI I I (R) � R − λRc

[
1 − (Rc/R)2s

]
, (12)

where s is a positive constant. The model approaches �CDM in the limit R/Rc → ∞.
Finally, let also consider the class of models [26,45,55]

FI V (R) = R − λRc

(
R

Rc

)q

. (13)

Also in this case λ, q and Rc are positive constants (note that n, p, s and q have to
converge toward the same values to match the observations). We do not consider the
models whit negative q, because they suffer for instability problems associated with
negative F,R R [38–44,88]. In Fig. 1, we have plotted some of the selected models as
function of R

Rc
for suitable values of {p, n, q, s, λ}.

Let us now estimate mσ for the models discussed above. For Model I [32], when
the curvature is large, we find

f I (R) ∼ −m2c1

c2
+ m2+2nc1

c2
2 Rn

+ · · · , (14)

and obtain the following expression:

m2
σ ∼ m2c2

2

2n(n + 1)c1

(
R

m2

)n+2

. (15)

Here the order of the mass-dimensional parameter m2 should be m2 ∼ 10−64 eV2.
Then in Solar System, where R ∼ 10−61 eV2, the mass is given by m2

σ ∼
10−58+3n eV2 while on the Earth atmosphere, where R∼10−50 eV2, it has to be
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Fig. 1 Plots of four different F(R) models as function of R
Rc

. Model I in Eq. (9) with n = 1 and λ = 2
(dashed line). Model II in Eq. (11) with p = 2, λ = 0.95 (dashdot line). Model III in Eq. (12) with s = 0.5
and λ = 1.5 (dotted). Model IV in Eq. (13) with q = 0.5 and λ = 0.5 (solid line). We also plot F(R) = R
(solid thick line) to see whether or not the stability condition F,R > 0 is violated

m2
σ ∼10−36+14neV2. The order of the radius of the Earth is 107 m ∼ (

10−14 eV
)−1

.
Therefore the scalar field σ is enough heavy if n � 1 and the correction to the Newton
law is not observed, being extremely small. In fact, if we choose n = 10, the order
of the Compton length of the scalar field σ becomes that of the Earth radius. On the
other hand, in the Earth atmosphere, if we choose n = 10, for example, we find that
the mass is extremely large:

mσ ∼ 1043 GeV ∼ 1029 × MPlanck. (16)

Here MPlanck is the Planck mass. Hence, the Newton law correction should be extremely
small.

In Model II

f I I (R) = −λR0

[
1 −

(
1 + R2

R2
0

)−p]
, (17)

if R is large compared with R0, whose order of magnitude is that of the curvature in
the present universe, we find

f I I (R) = −λR0 + λ
R2p+1

0

R2p
+ · · · . (18)
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By comparing Eq. (18) with Eq. (14), if the curvature is large enough when compared
with R0 or m2, as in the Solar System or on the Earth, we can set the following
identifications:

λR0 ↔ m2c1

c2
, λR2p+1

0 ↔ m2+2nc1

c2
2

, 2p ↔ n. (19)

We have 41m2 ∼ R0. Then, if p is large enough, there is no correction to the Newton
law as in Model I given by Eq. (10).

Let us now discuss the instability of fluid matter proposed in [88], which may appear
if the matter-energy density (or the scalar curvature) is large enough when compared
with the average density the Universe, as it is inside the Earth. Considering the trace
of the above field equations and with a little algebra, one obtains

�R + F (3)(R)

F (2)(R)
∇ρ R∇ρ R + F ′(R)R

3F (2)(R)
− 2F(R)

3F (2)(R)
= κ2

6F (2)(R)
T . (20)

Here T is the trace of the matter energy–momentum tensor: T ≡ T (m)ρ
ρ . We also

denote the derivative dn F(R)/d Rn by F (n)(R). Let us now consider the perturbation
of the Einstein gravity solutions. We denote the scalar curvature, given by the matter
density in the Einstein gravity, by Rb ∼ (κ2/2)ρ > 0 and separate the scalar curva-
ture R into the sum of Rb (background) and the perturbed part Rp as R = Rb + Rp(∣∣Rp

∣∣� |Rb|
)
. Then Eq. (20) leads to the perturbed equation:

0 = �Rb + F (3)(Rb)

F (2)(Rb)
∇ρ Rb∇ρ Rb + F ′(Rb)Rb

3F (2)(Rb)

− 2F(Rb)

3F (2)(Rb)
− Rb

3F (2)(Rb)
+ �Rp + 2

F (3)(Rb)

F (2)(Rb)
∇ρ Rb∇ρ Rp + U (Rb)Rp.

(21)

Here the potential U (Rb) is given by

U (Rb) ≡
(

F (4)(Rb)

F (2)(Rb)
− F (3)(Rb)

2

F (2)(Rb)2

)
∇ρ Rb∇ρ Rb + Rb

3

− F (1)(Rb)F (3)(Rb)Rb

3F (2)(Rb)2
− F (1)(Rb)

3F (2)(Rb)
+ 2F(Rb)F (3)(Rb)

3F (2)(Rb)2
− F (3)(Rb)Rb

3F (2)(Rb)2
.

(22)

It is convenient to consider the case where Rb and Rp are uniform and do not depend
on the spatial coordinates. Hence, the d’Alembert operator can be replaced by the
second derivative with respect to the time, that is: �Rp → −∂2

t Rp. Equation (22)
assumes the following structure:

0 = −∂2
t Rp + U (Rb)Rp + const. (23)
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If U (Rb) > 0, Rp becomes exponentially large with time, i.e. Rp ∼ e
√

U (Rb)t , and
the system becomes unstable.

In the 1/R-model, considering the background values, we find

U (Rb) = −Rb + R3
b

6µ4 ∼ R3
0

µ4 ∼
(

10−26sec
)−2

(
ρm

g cm−3

)3

,

Rb ∼
(

103sec
)−2

(
ρm

g cm−3

)
. (24)

Here the mass parameter µ is of the order

µ−1 ∼ 1018sec ∼
(

10−33eV
)−1

. (25)

Equation (24) tells us that the model is unstable and it would decay in 10−26 sec
(considering the Earth size). In Model I, however, U (Rb) is negative:

U (R0) ∼ − (n + 2)m2c2
2

c1n(n + 1)
< 0. (26)

Therefore, there is no matter instability.
For Model (17), as it is clear from the identifications (19), there is no matter insta-

bility too.
In order to study the stability of the de Sitter solution, let us proceed as follows.

From the field equations (2), we obtain the trace

� f ′(R) = 1

3

[
R − f ′(R)R + 2 f (R) + κ2T

]
. (27)

Here, as above, F(R) is F(R) = R + f (R) and T ≡ gµνT (m)
µν .

Now we consider the (in)stability around the de Sitter solution, where R = R0, and
therefore f (R0) and f ′(R0), are constants. Then since the l.h.s. in Eq. (27) vanishes
for R = R0, we find

R0 − f ′(R0)R0 + 2 f (R0) + κ2T0 = 0. (28)

Let us expand both sides of (28) around R = R0 as

R = R0 + δR. (29)

One obtains

f ′′(R0)�δR = 1

3

(
1 − f ′′(R0)R0 + f ′(R0)

)
δR. (30)
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Since

�δR = −d2δR

dt2 − 3H0
dδR

dt
, (31)

in the de Sitter background, if

C(R0) ≡ lim
R→R0

1 − f ′′(R)R + f ′(R)

f ′′(R)
> 0, (32)

the de Sitter background is stable but, if C(R0) < 0, the de Sitter background is unsta-
ble. The expression for C(R0) could be valid even if f ′′(R0) = 0. More precisely, the
solution of (30) is given by

δR = A+eλ+t + A−eλ−t . (33)

Here A± are constants and

λ± =
−3H0 ±

√
9H2

0 − C(R0)

2
. (34)

Then, if C(R0) < 0, λ+ is always positive and the perturbation grows up. This leads
to the instability. We have also to note that, when C(R0) is positive, if C(R0) > 9H2

0 ,
δR oscillates and the amplitude becomes exponentially small being:

δR = (A cos ω0t + B sin ω0t) e−3H0t/2, ω ≡
√

C(R0) − 9H2
0

2
. (35)

Here A and B are constant. On the other hand, if C(R0) < 9H2
0 , there is no oscillation

in δR.
Let us now consider the case where the matter contribution T can be neglected in

the de Sitter background and assume f ′(R) = 0 in the same background. We can
assume that there are two de Sitter background solutions satisfying f ′(R) = 0, for
R = R1 and R = R2 as it could be the physical case if one asks for an inflationary and
a dark energy epoch. We also assume f ′(R) �= 0 if R1 < R < R2 or R2 < R < R1. In
the case C(R1) < 0 and C(R2) > 0, the de Sitter solution, corresponding to R = R1,
is unstable but the solution corresponding to R = R2 is stable. Then there should
be a solution where the (nearly) de Sitter solution corresponding to R1 transits to the
(nearly) de Sitter solution R2. Since the solution corresponding to R2 is stable, the
universe remains in the de Sitter solution corresponding to R2 and there is no more
transition to any other de Sitter solution.

As an example, we consider Model I. For large curvature values, we find

fI(R) = −� + α

R2n+1 . (36)
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R

)
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Fig. 2 Plots of Model V (38) (solid line) and its first derivative (dashed line). Here n = 2 and α, β, γ are
assumed as in (42) with the value of R0 taken in the Solar System. f ′(R) is negative for 0 < R < 0.64.
f (R) is given in the range 0 < R < 1 where we have adopted suitable units

Here � and α are positive constants and n is a positive integer. Then we find

C(R) ∼ 1

f ′′(R)
∼ R2n+2

2n(2n + 1)α
> 0. (37)

This means that the de Sitter solution in Model I can be stable. We have also to note that
C(R0) ∼ H4n+4

0 /m4n+2. Here m2 is the mass scale introduced in [32] and m2 � H2
0 :

this means that C(R0) � 9H2
0 and therefore there could be no oscillation.

We may also consider the model proposed in [35](here Model V):

fV (R) = αR2n − β Rn

1 + γ Rn
. (38)

Here α, β, and γ are positive constants and n is a positive integer. In Fig. 2, we show the
behavior of Model V and of its first derivative. When the curvature is large (R → ∞),
f (R) behaves as a power law. Since the derivative of f (R) is given by

f ′
V (R) = n Rn−1

(
αγ R2n − 2αRn − β

)
(1 + γ Rn)2 , (39)

we find that the curvature R0 in the present universe, which satisfies the condition
f ′(R0) = 0, is given by

R0 =
[

1

γ

(
1 +

√
1 + βγ

α

)]1/n

, (40)
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and

f (R0) ∼ −2R̃0 = α

γ 2

(
1 + (1 − βγ/α)

√
1 + βγ/α

2 + √
1 + βγ/α

)
. (41)

As shown in [35], the magnitudes of the parameters is given by

α ∼ 2R̃0 R−2n
0 , β ∼ 4R̃2

0 R−2n
0 Rn−1

I , γ ∼ 2R̃0 R−2n
0 Rn−1

I . (42)

Here RI is the curvature in the inflationary epoch and we have assumed f (RI ) ∼
(α/γ )Rn

I ∼ RI .
C(R0) in (32) is given by

C(R0) ∼ 1

f ′′(R0)
= 1 + γ Rn

0

2n2αR2n−2
0

(
γ Rn

0 − 1
) . (43)

By using the relations (42), we find

C(R0) ∼ R2
0

4n2 R̃0
, (44)

which is positive and therefore the de Sitter solution is stable. We notice that C(R0) <

9H2
0 and therefore, there could occur oscillations as in (35).
Furthermore, we can take into account the following model [36] (Model VI):

fVI(R) = −α

[
tanh

(
b (R − R0)

2

)
+ tanh

(
bR0

2

)]

= −α

[
eb(R−R0) − 1

eb(R−R0) + 1
+ ebR0 − 1

ebR0 + 1

]
, (45)

where α and b are positive constants. When R → 0, we find that

fVI(R) → − αbR

2 cosh2
(

bR0
2

) , (46)

and thus f (0) = 0. On the other hand, when R → +∞,

fVI(R) → −2�eff ≡ −α

[
1 + tanh

(
bR0

2

)]
. (47)

If R � R0, in the present universe, �eff plays the role of the effective cosmological
constant. We also obtain

f ′
VI(R) = − αb

2 cosh2
(

b(R−R0)
2

) , (48)
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which has a minimum when R = R0, that is:

f ′
VI(R0) = −αb

2
. (49)

Then in order to avoid anti-gravity, we find

0 < 1 + f ′
VI(R0) = 1 − αb

2
. (50)

Beside the above model, we can consider a model which is able to describe, in princi-
ple, both the early inflation and the late acceleration epochs. The following two-step
model [36] (Model VII):

fVII(R) = −α0

[
tanh

(
b0 (R − R0)

2

)
+ tanh

(
b0 R0

2

)]

−αI

[
tanh

(
bI (R − RI )

2

)
+ tanh

(
bI RI

2

)]
, (51)

could be useful to this goal. Let us assume

RI � R0, αI � α0, bI � b0, (52)

and

bI RI � 1. (53)

When R → 0 or R � R0 � RI , fVII(R) behaves as

fVII(R) → −
⎡
⎣ α0b0

2 cosh2
(

b0 R0
2

) + αI bI

2 cosh2
(

bI RI
2

)
⎤
⎦ R, (54)

and we find again fVII(0) = 0. When R � RI , we find

f (R)VII → −2�I ≡ −α0

[
1 + tanh

(
b0 R0

2

)]
− αI

[
1 + tanh

(
bI RI

2

)]

∼ −αI

[
1 + tanh

(
bI RI

2

)]
. (55)

On the other hand, when R0 � R � RI , we find

fVII(R) → −α0

[
1 + tanh

(
b0 R0

2

)]
− αI bI R

2 cosh2
(

bI RI
2

) ∼ −2�0

≡ −α0

[
1 + tanh

(
b0 R0

2

)]
. (56)
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Here, we have assumed the condition (53). We also find

f ′
VII(R) = − α0b0

2 cosh2
(

b0(R−R0)
2

) − αI bI

2 cosh2
(

bI (R−RI )
2

) , (57)

which has two minima for R ∼ R0 and R ∼ RI . When R = R0, we obtain

f ′
VII(R0) = −α0b0 − αI bI

2 cosh2
(

bI (R0−RI )
2

) > −αI bI − α0b0. (58)

On the other hand, when R = RI , we get

f ′
VII(RI ) = −αI bI − α0b0

2 cosh2
(

b0(R0−RI )
2

) > −αI bI − α0b0. (59)

Then, in order to avoid the anti-gravity behavior, we find

αI bI + α0b0 < 1. (60)

Let us now investigate the correction to the Newton potential and the matter
instability issue related to Models VI and VII. In the Solar System domain, on or
inside the Earth, where R � R0, f (R) in Eq. (45) can be approximated by

fVI(R) ∼ −2�eff + 2αe−b(R−R0). (61)

On the other hand, since R0 � R � RI , by assuming Eq. (53), f (R) in (51) can be
also approximated by

fVII(R) ∼ −2�0 + 2αe−b0(R−R0), (62)

which has the same expression, after having identified �0 = �eff and b0 = b. Then,
we may check the case of (61) only. In this case, the effective mass has the following
form

m2
σ ∼ eb(R−R0)

4αb2 , (63)

which could be again very large. In fact, in the Solar System, we find R ∼ 10−61 eV2.
Even if we choose α ∼ 1/b ∼ R0 ∼ (

10−33 eV
)2

, we find that m2
σ ∼ 101,000 eV2,

which is, ultimately, extremely heavy. Then, there will be no appreciable correc-
tion to the Newton law. In the Earth atmosphere, R ∼ 10−50 eV2, and even if we
choose α ∼ 1/b ∼ R0 ∼ (10−33 eV

)2
again, we find that m2

σ ∼ 1010,000,000,000 eV2.
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Then, a correction to the Newton law is never observed in such models. In this case,
we find that the effective potential U (Rb) has the form

U (Re) = − 1

2αb

(
2� + 1

b

)
e−b(Re−R0), (64)

which could be negative, what would suppress any instability.
In order that a de Sitter solution exists in f (R)-gravity, the following condition has

to be satisfied:

R = R f ′(R) − 2 f (R). (65)

For the model (45), the r.h.s of (65) has the following form:

R = − bαR

2 cosh2
(

b(R−R0)
2

) + 2α

[
tanh

(
b (R − R0)

2

)
+ tanh

(
bR0

2

)]
. (66)

For large R, the r.h.s. behaves as

− bαR

2 cosh2
(

b(R−R0)
2

) + 2α

[
tanh

(
b (R − R0)

2

)
+ tanh

(
bR0

2

)]
→ 2α, (67)

although the l.h.s. goes to infinity. On the other hand, when R is small, the r.h.s.
behaves as

− bαR

2 cosh2
(

b(R−R0)
2

) + 2α

[
tanh

(
b (R−R0)

2

)
+ tanh

(
bR0

2

)]
→ bαR

2 cosh2
(

bR0
2

) .

(68)

Then if

bα

2 cosh2
(

bR0
2

) > 1, (69)

there is a de Sitter solution. Combining Eq. (69) with Eq. (50), we find

2 > αb >
1

2 cosh2
(

bR0
2

) . (70)
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The stability, as above, is given by C(RdS), where RdS is the solution of (66). The
expression is given by

C(RdS) = −RdS +
2 cosh3

(
b(RdS−R0)

2

)

αb2 sinh
(

b(RdS−R0)
2

) − 1

b tanh
(

b(RdS−R0)
2

) . (71)

Let us now rewrite Eq. (66) as follows,

RdS = 2α

[
tanh

(
b (RdS − R0)

2

)
+ tanh

(
bR0

2

)]⎡
⎣1 + αb

2 cosh2
(

b(RdS−R0)
2

)
⎤
⎦

−1

.

(72)

Then by using (72), we may rewrite (71) in the following form:

C(RdS) = −α2b2
(
1 − x2

) [
(x − x0)

2 + 1 − x2
0

]+ 4

αb2x
(
1 − x2

) [
2 + αb

(
1 − x2

)] , (73)

where

x = tanh

(
b (RdS − R0)

2

)
, x0 = − tanh

(
bR0

2

)
, (74)

and therefore we have

− 1 < x0 ≤ x < 1, x0 < 0. (75)

Let us now consider (66) in order to find a de Sitter solution. Since Eq. (66) is difficult
to solve in general, we assume 0 < RdS � R0. Then we find

RdS = ε

bx0
, ε ≡ 1 −

2 cosh2
(

bR0
2

)

αb
= 1 − 2

αb
(
1 − x2

0

) . (76)

Equation (69) tells that the parameter ε is positive and, by assumption, very small:
0 < ε � 1. Since ε is small, by using Eq. (74), we find

x = x0 +
(
1 − x2

0

)
2x0

ε + O
(
ε2
)

. (77)

Then by using the expression (73) for C(RdS), we find

C(RdS) ∼ −α2b2
(
1 − x2

0

)2 + 4

αb2x0
(
1 − x2

0

) [
2 + αb

(
1 − x2

0

)] . (78)
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Fig. 3 Plots of Model VI (45) (solid line) and Model VII (51) (dashed line). Here b = 2 and bI = 0.5
with α = 1.5 and αI = 2. The value of RI is taken in the Solar System while R0 corresponds to the present
cosmological value

From the definition of ε in (76), we find

αb
(

1 − x2
0

)
= 2 + 2ε + O

(
ε2
)

, (79)

and then, from Eq. (79), Eq. (78) can be written as follows;

C(RdS) ∼ − ε

bx0
. (80)

Since x0 < 0 in the condition (75), we find C(RdS) > 0 and therefore the de Sitter
solution is stable.

In Fig. 3, we have plotted the two models (45) and (51) written in the form F(R) =
R + f (R). We have used the inequalities (52) assuming, RI ∼ ρg ∼ 10−24 g/cm3 for
the Galactic density in the Solar vicinity and R0 ∼ ρg ∼ 10−29 g/cm3 for the present
cosmological density.

Our task is now to find reliable experimental bounds for such models working at
small and large scales. To this goal, we shall take into account constraints coming
from Solar System experiments (which, at present, are capable of giving upper limits
on the PPN parameters) and constraints coming from interferometers, in particular
those giving limits on the (eventual) scalar components of GWs. If constraints (and in
particular the ranges of model parameters given by them) are comparable, this could
constitute, besides other experimental and observational probes, a good hint to achieve
a self-consistent f (R) theory at very different scales.
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Table 1 Solar System
experimental constraints on the
PPN parameters

Mercury perihelion shift |2γ − β − 1| < 3 × 10−3

Lunar laser ranging 4β − γ − 3 = (0.7 ± 1) × 10−3

Very long baseline |γ − 1| < 4 × 10−4

interferometer

Cassini spacecraft γ − 1 = (2.1 ± 2.3) × 10−5

4 Constraining f (R)-models by PPN parameters

The above models can be constrained at Solar System level by considering the PPN
formalism. This approach is extremely important in order to test gravitational theo-
ries and to compare them with GR. As it is shown in [57–59,71,72], one can derive
the PPN-parameters γ and β in terms of a generic analytic function F(R) and its
derivative

γ − 1 = − F ′′(R)2

F ′(R) + 2F ′′(R)2 , (81)

β − 1 = 1

4

[
F ′(R) · F ′′(R)

2F ′(R) + 3F ′′(R)2

]
dγ

d R
. (82)

These quantities have to fulfill the constraints coming from the Solar System exper-
imental tests summarized in Table 1. They are the perihelion shift of Mercury [89],
the Lunar Laser Ranging [90], the upper limits coming from the Very Long Base-
line Interferometry (VLBI) [91] and the results obtained from the Cassini space-
craft mission in the delay of the radio waves transmission near the Solar conjunction
[92].

Let us take into account before the f (R)-models (10)–(13). Specifically, we want
to investigate the values or the ranges of parameters in which they match the
Solar-System experimental constraints in Table 1. In other words, we use these mod-
els to search under what circumstances it is possible to significantly address cosmo-
logical observations by f (R)-gravity and, simultaneously, evade the local tests of
gravity.

By integrating Eqs. (81)–(82), one obtains f (R) solutions depending on β and γ

which has to be confronted with βexp and γexp [71,72]. If we plug into such equations
the models (10)–(13) and the experimental values of PPN parameters, we will obtain
algebraic constraints for the phenomenological parameters {n, p, q, λ, s}. This is the
issue which we want to take into account in this section.

From Eq. (81), assuming F ′(R) + 2F ′′(R)2 �= 0 and defining A =
∣∣∣ 1−γ

2γ−1

∣∣∣, we

obtain

[
F ′′(R)

]2 − AF ′(R) = 0. (83)

The general solution of such an equation is a polynomial function [71,72].
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Considering Model II given by (11), we obtain

⎡
⎢⎣1 −

2pR
(

R2

R2
c

+ 1
)−p−1

λ

Rc

⎤
⎥⎦
∣∣∣∣ γ − 1

2γ − 1

∣∣∣∣

−
4p2

(
R2

R2
c

+ 1
)−2p

R2
c

(
R2

c − (2p + 1)R2
)2

λ2

(
R2 + R2

c

)4 = 0. (84)

Our issue is now to find the values of λ, p, and R/Rc for which the Solar
System experimental constraints are satisfied. Some preliminary considerations are
in order at this point. Considering the de Sitter solution achieved from (11), we have
R = const = R1 = x1 Rc, and x1 > 0. It is straightforward to obtain

λ = x1
(
1 + x2

1

)p+1

2
[(

1 + x2
1

)p+1 − 1 − (p + 1) x2
1

] . (85)

On the other hand, the stability conditions F,R > 0 and F,R R > 0 give the inequality

(
1 + x2

1

)p+2
> 1 + (p + 2) x2

1 + (p + 1) (2p + 1) x4
1 , (86)

which has to be satisfied. In particular, for p = 1, it is x1 >
√

3 and then λ > 8
3
√

3
=

1.5396. In addition, the value of x1 satisfying the relation (86) is also the point where
λ(x1), in Eq. (85), reaches its minimum.

To determine values of R compatible with PPN constraints, let us consider the trace
of the field equations (2) and explicit solutions, given the density profile ρ(r), in the
Solar vicinity. One can set the boundary condition considering F,R∞ = FRg

F,Rg = F,R(R = k2ρg), (87)

where ρg ∼ 10−24 g/cm3 is the observed Galactic density in the Solar neighborhoods.
At this point, we can see when the relation (84) satisfies the constraints for very
Long Baseline Interferometer (γ − 1 = 4 × 10−4) and Cassini Spacecraft (γ − 1 =
2.1 × 10−5). This allows to find out suitable values for p.

An important remark is in order at this point. These constraint equations work if
stability conditions hold. In the range

0 <
R

Rc
<

1√
2p + 1

(88)

F,R R is negative for the model (11) and then stability conditions are violated. To avoid
this range, we need, at least, R

Rc
> 1. For example, we can choose R

Rc
= 3.38, corre-

sponding to de Sitter behavior. Then we have p = 1 and λ = 2. On the other hand,
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Fig. 4 Plots of the first derivatives of four different models as function of x = R
Rc

. Model I (dashed) is
drawn for n = 1 and λ = 2. Model II (dashdot), for p = 2, λ = 0.95. Model III (dotted), for s = 0.5 and
λ = 1.5. Model IV (solid) is for q = 0.5 and λ = 0.5. The labeled values of x indicate where the derivative
changes its sign

for 0.944 < λ < 0.966, we have p = 2 and R
Rc

= √
3; finally, for R >> Rc, we have

λ = 2 and p = 1.5. For these values of parameters, the Solar System tests are evaded
(Fig. 4).

Let us consider now Model I, given by (9). Inserting it into the relation (83), we get

R3
[(

R
Rc

)2n +1

]4
[

R

((
R
Rc

)2n +1

)2

−2n
(

R
Rc

)2n
Rcλ

] ∣∣∣ γ−1
2γ−1

∣∣∣− 4n2
[
(2n+1)

(
R
Rc

)2n −2n+1

]2(
R
Rc

)4n
R2

c λ2

R4

[(
R
Rc

)2n + 1

]6

= 0. (89)

Using the same procedure as above, λ is related to the de Sitter behavior. This means

λ =
(
1 + x2n

1

)2
x2n−1

1

(
2 + 2x2n

1 − 2n
) , (90)

while, from the stability conditions, we get

2x4
1 − (2n − 1) (2n + 4) x2n

1 + (2n − 1) (2n − 2) ≥ 0. (91)
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Fig. 5 As above for the second derivatives of the models

For n = 1, one obtains x1 >
√

3, λ > 8
3
√

3
. In this model, F,R R is negative for

0 <
R

Rc
<

(
2n − 1

2n + 1

) 1
2n

. (92)

The VLBI constraint is satisfied for n = 1 and λ = 2, while, for n = 1 and λ = 1.5,
Cassini constraint holds.

By inserting Model III, given by Eq. (12), into the relation (83), we obtain

R3
[

R − 2s Rc

(
Rc
R

)2s
λ

] ∣∣∣ γ−1
2γ−1

∣∣∣− 4
(
2s2 + s

)2
R2

c

(
Rc
r

)4s
λ2

R4 = 0. (93)

The de-Sitter point corresponds to

λ = x2s+1
1

2(x2s
1 − s − 1)

(94)

while the stability condition is x2s
1 > 2s2 + 3s + 1. VLBI and Cassini constraints are

satisfied by the sets of values: s = 1, λ = 1.53, for R
Rc

∼ 1; s = 2, λ = 0.95, for
R
Rc

= √
3; s = 1, λ = 2, for R

Rc
= 3.38 (Fig. 5).
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Finally let us consider Model VI, given by Eq. (45), and Model VII, given by
Eq. (51). Using Eq. (83) for (45), we get

−1

4
bαsech2

(
1

2
b(R − R0)

)[
b3αsech2

(
1

2
b(R − R0)

)

× tanh2
(

1

2
b(R − R0)

)
− 2

∣∣∣∣ γ − 1

2γ − 1

∣∣∣∣
]

= 0. (95)

As above, considering the stability conditions and the de Sitter behavior, we get the
parameter ranges 0 < b < 2 and 0 < α ≤ 2 which satisfy both VLBI and Cassini
constraints. Inserting now Model VII in (83), we have

1

2

∣∣∣∣ γ − 1

2γ − 1

∣∣∣∣
[

bαsech2
(

1

2
b(R − R0)

)
− bI αI sech2

(
1

2
bI (R − RI )

)
+ 2

]

− 1

4

[
b2αsech2

(
1

2
b(R − R0)

)
tanh

(
1

2
b(R − R0)

)

− b2
I αI sech2

(
1

2
bI (R − RI )

)
tanh

(
1

2
bI (R − RI )

)]2

= 0. (96)

From the stability condition, we have that F,R > 0 for R > 0 (see Fig. 6) and F,R R < 0
for 0 < R < 2.35 in suitable units (see Fig. 7). Observational constraints from VLBI
and Cassini experiments are fulfilled for

RI � R0, αI � α, bI � b. (97)

Plots for b = 2, bI = 0.5, α = 1.5 and αI = 2, verifying the constraints, are reported
in Figs. 6 and 7.

Considering now the relation for β given by Eq. (82), one can easily verify that it is

dγ

d R
= − d

d R

[
F ′′(R)2

F ′(R) + 2F ′′(R)2

]
= 0, (98)

and this result implies

4(β − 1) = 0. (99)

This means the complete compatibility of the f (R) solutions between the PPN-param-
eters β and γ .

Now we want to see if the parameter values, obtained for these models, are com-
patible with bounds coming from the stochastic background of GWs achieved by
interferometric experiments.
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Fig. 6 Plots represent the first derivatives of functions (50) (solid line) and (51) (dashed line). Here, b = 2,
bI = 0.5, α = 1.5 and αI = 2 with RI with the Solar System value and R0 the today cosmological value.
It is F, R > 0 for R > 0

5 Stochastic backgrounds of gravitational waves to constrain f (R)-gravity

As we said before, also the stochastic background of GWs can be taken into account
in order to constrain models. This approach could reveal very interesting because
production of primordial GWs could be a robust prediction for any model attempt-
ing to describe the cosmological evolution at primordial epochs. However, bursts of
gravitational radiation emitted from a large number of unresolved and uncorrelated
astrophysical sources generate a stochastic background at more recent epochs, immedi-
ately following the onset of galaxy formation. Thus, astrophysical backgrounds might
overwhelm the primordial one and their investigation provides important constraints
on the signal detectability coming from the very early Universe, up to the bounds of
the Planck epoch and the initial singularity [85,94–96,98].

It is worth stressing the unavoidable and fundamental character of such a mecha-
nism. It directly derives from the inflationary scenario [99,100], which well fits the
WMAP data with particular good agreement with almost exponential inflation and
spectral index ≈ 1, [101,102].

The main characteristics of the gravitational backgrounds produced by cosmolog-
ical sources depend both on the emission properties of each single source and on the
source rate evolution with redshift. It is therefore interesting to compare and contrast
the probing power of these classes of f (R)-models at hight, intermediate and zero
redshift [103].

To this purpose, let us take into account the primordial physical process which
gave rise to a characteristic spectrum �sgw for the early stochastic background of
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Fig. 7 Second derivatives of Model VI (solid line) and VII (dashed line). Here F,R R is negative in the
range 0 < R < 4 for Model VI and in the range 0 < R < 2.35 for Model VII. As above, we have used
b = 2, bI = 0.5, α = 1.5 and αI = 2 with the value of RI taken in the Solar System and R0 for the today
cosmological value

relic scalar GWs by which we can recast the further degrees of freedom coming from
fourth-order gravity. This approach can greatly contribute to constrain viable cosmo-
logical models. The physical process related to the production has been analyzed, for
example, in [94–97] but only for the first two tensorial components due to standard
GR. Actually the process can be improved considering also the third scalar–tensor
component strictly related to the further f (R) degrees of freedom [87].

Before starting with the analysis, it has to be emphasized that the stochastic back-
ground of scalar GWs can be described in terms of a scalar field � and characterized by
a dimensionless spectrum (see the analogous definitions for tensorial waves in [85,94–
96,98]). We can write the energy density of scalar GWs in terms of the closure energy
density of GWs per logarithmic frequency interval as

�sgw( f ) = 1

ρc

dρsgw

d ln f
, (100)

where

ρc ≡ 3H2
0

8πG
(101)
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is the critical energy density of the Universe, H0 the today observed Hubble expansion
rate, and dρsgw is the energy density of the gravitational radiation scalar part contained
in the frequency range from f to f + d f . We are considering now standard units.

The calculation for a simple inflationary model can be performed assuming that the
early Universe is described by an inflationary de Sitter phase emerging in the radiation
dominated era [94–96,98]. The conformal metric element is

ds2 = a2(η)[−dη2 + d−→x 2 + hµν(η,
−→x )dxµdxν], (102)

and a GW with tensor and scalar modes in the z+ direction is given by [87]

h̃µν(t − z) = A+(t − z)e(+)
µν + A×(t − z)e(×)

µν + �(t − z)e(s)
µν . (103)

The pure scalar component is then

hµν = �e(s)
µν, (104)

where e(s)
µν is the polarization tensor.

It is possible to write an expression for the energy density of the stochastic relic
scalar gravitons in the frequency interval (ω, ω + dω) as

dρsgw = 2h̄ω

(
ω2dω

2π2c3

)
Nω = h̄ H2

ds H2
0

4π2c3

dω

ω
= h̄ H2

ds H2
0

4π2c3

d f

f
, (105)

where f , as above, is the frequency in the standard comoving time. Equation (105)
can be written in terms of the today and de Sitter values of energy density being

H0 = 8πGρc

3c2 , Hds = 8πGρds

3c2 . (106)

Introducing the Planck density ρPlanck = c7

h̄G2 , the spectrum is given by

�sgw( f ) = 1

ρc

dρsgw

d ln f
= f

ρc

dρsgw

d f
= 16

9

ρds

ρPlanck
. (107)

At this point, some comments are in order. First of all, such a calculation works for
a simplified model which does not include the matter dominated era. If such an era
is also included, the redshift at equivalence epoch has to be considered. Taking into
account also results in [97], we get

�sgw( f ) = 16

9

ρds

ρPlanck
(1 + zeq)−1, (108)

for the waves which, at the epoch in which the Universe becomes matter dominated,
have a frequency higher than Heq , the Hubble parameter at equivalence. This situation
corresponds to frequencies f > (1 + zeq)1/2 H0. The redshift correction in Eq. (108)
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Fig. 8 The spectrum of relic scalar GWs in inflationary models is flat over a wide range of frequencies.
The horizontal axis is log10 of frequency, in Hz. The vertical axis is log10 �gsw . The inflationary spectrum
rises quickly at low frequencies (wave which re-entered in the Hubble sphere after the Universe became
matter dominated) and falls off above the (appropriately redshifted) frequency scale fmax associated with
the fastest characteristic time of the phase transition at the end of inflation. The amplitude of the flat region
depends only on the energy density during the inflationary stage; we have chosen the largest amplitude con-
sistent with the WMAP constrains on scalar perturbations. This means that, at LIGO and LISA frequencies,
we have �sgw < 2.3 ∗ 10−12

is needed since the today observed Hubble parameter H0 would result different with-
out a matter dominated contribution. At lower frequencies, the spectrum is given by
[94–96]

�sgw( f ) ∝ f −2. (109)

Nevertheless, since the spectrum falls off ∝ f −2 at low frequencies, this means that
today, at LIGO-VIRGO and LISA frequencies (indicated in Fig. 8), one gets

�sgw( f )h2
100 < 2.3 × 10−12. (110)

It is interesting to calculate the corresponding strain at ≈ 100H z, where interferome-
ters like VIRGO and LIGO reach a maximum in sensitivity (see, e.g. [104,105]). The
well known equation for the characteristic amplitude [94–96], adapted to the scalar
component of GWs, can be used. It is

�c( f ) � 1.26 × 10−18
(

1H z

f

)√
h2

100�sgw( f ), (111)

and then we obtain the values in Table 2.
In summary, the above results point out that a further scalar component of GWs,

coming, e.g. from f (R)-gravity, should be seriously considered in the signal detec-
tion of interferometers. As discussed in [103], this fact could constitute either an
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Table 2 Upper limits on the
expected amplitude for the GW
scalar component

�c(100H z) < 2 × 10−26 LIGO

�c(100H z) < 2 × 10−25 VIRGO

�c(100H z) < 2 × 10−21 LISA

independent test for alternative theories of gravity or a further probe of GR capable of
ruling out other theories.

At this point, using the above LIGO, VIRGO and LISA upper bounds, calculated
for the characteristic amplitude of GW scalar component, let us test the f (R)-gravity
models, considered in the previous sections, to see whether they are compatible both
with the Solar System and GW stochastic background.

Before starting with the analysis, taking into account the discussion in Sect. 2, we
have that the GW scalar component is derived considering

� = −δσ

σ0
, σ = − ln(1 + f ′(A)) = ln F ′(A), δσ = f ′′(A)

1 + f ′(A)
δA. (112)

As standard, we are assuming small perturbations in the conformal frame [87]). This
means

gµν = ηµν + hµν, σ = σ0 + δσ. (113)

These assumptions allow to derive the “linearized” curvature invariants R̃µνρσ , R̃µν

and R̃ and then the linearized field equations [93]

R̃µν − R̃

2
ηµν = −∂µ∂ν� + ηµν��,

�� = m2�.

(114)

As above, for the considered models, we have to determine the values of the charac-
teristic parameters which are compatible with both Solar System and GW stochastic
background.

Let us start, for example, with the model (12). Starting from the definitions (112),
it is straightforward to derive the scalar component amplitude

�I I I =
s(2s + 1)

(
Rc
R

)2s+1
λ[

s Rc

(
Rc
R

)2s
λ − R

]
log

[
2 − 2s

(
Rc
R

)2s+1
λ

] . (115)

Such an equation satisfies the constraints in Table. 2 for the values s = 0.5, R
Rc

∼ 1,

λ = 1.53 and s = 1, R
Rc

∼ 1, λ = 0.95 (LIGO); s = 2, R
Rc

= √
3, λ = 2 (VIRGO);

s = 1, λ = 2 and R
Rc

= 3.38 (LISA).
It is important to stress the nice agreement with the figures achieved from the PPN

constraints. In this case, we have assumed Rc ∼ ρc ∼ 10−29 g/cm3, where ρc is the
present day cosmological density.
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Considering the model (9), we obtain

�I = −
n

[
(2n + 1)

(
R
Rc

)2n − 2n + 1

] (
R
Rc

)2n−1
λ

[(
R
Rc

)2n +1

]{
R

[(
R
Rc

)2n +1

]2

−n
(

R
Rc

)2n
Rcλ

}
log

⎛
⎜⎝1− 2n

(
R

Rc

)2n−1
λ((

R
Rc

)2n+1

)2

⎞
⎟⎠

.

(116)

The expected constraints for GW scalar amplitude are fulfilled for n = 1 and λ = 2
and for n = 1 and λ = 1.5 when 0.3 < R

Rc
< 1.

Furthermore, considering the model (11), one gets

�I = −
2p
(

1 + R2

R2
c

)−p
Rc
(
(1 + 2p) R2 − R2

c

)
λ

(
R2 − R2

c

)2
⎡
⎢⎣2 −

2p

(
1+ R2

R2
c

)−1−p

λ

Rc

⎤
⎥⎦ ln

⎡
⎢⎣2 −

2pR

(
1+ R2

R2
c

)−1−p

λ

Rc

⎤
⎥⎦

.

(117)

The LIGO upper bound is fulfilled for p = 1, R
Rc

>
√

3, λ > 8
3
√

3
; the VIRGO one

for p = 1, R
Rc

= 3.38, λ = 2; finally, for LISA, we have p = 2, R
Rc

= √
3 and

0.944 < λ < 0.966. Besides, considering LISA in the regime R >> Rc, we have
λ = 2 and p = 1.5.

Finally, let us consider Models VI and VII. We have

�VI = b2α tanh
[ 1

2 b(R − R0)
]

[bα + cosh(b(R − R0)) + 1] ln
[

bα
cosh(b(R−R0))+1

] , (118)

and

�VII = log
[
0.5
(

bαsech2(0.5b(R − R0)) − bI αI sech2(0.5bI (R − RI )) + 2
)]

×
[
bαsech2(0.5b(R − R0)) − bI αI sech2(0.5bI (R − RI )) + 4

]

×
[
b2αsech2(0.5b(R − R0)) tanh(0.5b(R − R0))

− b2
I αI sech2(0.5bI (R − RI )) tanh(0.5bI (R − RI ))

]
. (119)

These equations satisfy the constraints for VIRGO, LIGO and LISA for b = 2,
bI = 0.5, α = 1.5 and αI = 2 with RI valued at Solar System scale and R0 at
cosmological scale.
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6 Conclusions

In this paper, we have investigated the possibility that some viable f (R) models could
be constrained considering both Solar System experiments and upper bounds on the
stochastic background of gravitational radiation. Such bounds come from interfero-
metric ground-based (VIRGO and LIGO) and space (LISA) experiments. The underly-
ing philosophy is to show that the f (R) approach, in order to describe consistently the
observed universe, should be tested at very different scales, that is at very different red-
shifts. In other words, such a proposal could partially contribute to remove the unpleas-
ant degeneracy affecting the wide class of dark energy models, today on the ground.

Beside the request to evade the Solar System tests, new methods have been recently
proposed to investigate the evolution and the power spectrum of cosmological per-
turbations in f (R) models [46,47]. The investigation of stochastic background, in
particular of the scalar component of GWs coming from the f (R) additional degrees
of freedom, could acquire, if revealed by the running and forthcoming experiments,
a fundamental importance to discriminate among the various gravity theories [103].
These data (today only upper bounds coming from simulations) if combined with
Solar System tests, CMBR anisotropies, LSS, etc. could greatly help to achieve a
self-consistent cosmology bypassing the shortcomings of �CDM model.

Specifically, we have taken into account some broken power law f (R) models ful-
filling the main cosmological requirements which are to match the today observed
accelerated expansion and the correct behavior in early epochs. In principle, the
adopted parameterization allows to fit data at extragalactic and cosmological scales
[32]. Furthermore, such models are constructed to evade the Solar System experi-
mental tests. Beside these broken power laws, we have considered also two models
capable of reproducing the effective cosmological constant, the early inflation and the
late acceleration epochs [36]. These f (R)-functions are combinations of hyperbolic
tangents.

We have discussed the behavior of all the considered models. In particular, the
problem of stability has been addressed determining suitable and physically consistent
ranges of parameters. Then we have taken into account the results of the main Solar
System current experiments. Such results give upper limits on the PPN parameters
which any self-consistent theory of gravity should satisfy at local scales. Starting
from these, we have selected the f (R) parameters fulfilling the tests. As a general
remark, all the functional forms chosen for f (R) present sets of parameters capable
of matching the two main PPN quantities, that is γexp and βexp. This means that, in
principle, extensions of GR are not a priori excluded as reasonable candidates for
gravity theories. To construct such extensions, the reconstruction method developed
in [106] may be applied.

The interesting feature, and the main result of this paper, is that such sets of param-
eters are not in conflict with bounds coming from the cosmological stochastic back-
ground of GWs. In particular, some sets of parameters reproduce quite well both the
PPN upper limits and the constraints on the scalar component amplitude of GWs.

Far to be definitive, these preliminary results indicate that self-consistent mod-
els could be achieved comparing experimental data at very different scales without
extrapolating results obtained only at a given scale.
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