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Abstract We have constructed star models consisting of four parts: (i) a homoge-
neous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating
the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic
pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exte-
rior Schwarzschild spacetime. We have analyzed all the energy conditions for the core,
envelope and the two thin shells. We have found that, in order to have static solutions,
at least one of the regions must be constituted by dark energy. The results show that
there is no physical reason to have a superior limit for the mass of these objects but
for the ratio of mass and radius.

Keywords Dark energy · Star model · Gravastar

1 Introduction

Over the past decade, one of the most remarkable discoveries is that our universe is
currently accelerating. This was first observed from high red shift supernova Ia [1–7],
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1836 R. Chan et al.

and confirmed later by cross checks from the cosmic microwave background radiation
[8,9] and large scale structure [10–15].

In Einstein’s general relativity, in order to have such an acceleration, one needs to
introduce a component to the matter distribution of the universe with a large negative
pressure. This component is usually referred as dark energy. Astronomical observa-
tions indicate that our universe is flat and currently consists of approximately 2/3
dark energy and 1/3 dark matter. The nature of dark energy as well as dark matter is
unknown, and many radically different models have been proposed, such as, a tiny
positive cosmological constant, quintessence [16–18], DGP branes [19,20], the non-
linear F(R) models [21–23], and dark energy in brane worlds, among many others
[24–43]; see also the review articles [44,45], and references therein.

On the other hand, another very important issue in gravitational physics is black
holes and their formation in our universe. Although it is generally believed that on
scales much smaller than the horizon size the fluctuations of dark energy itself are
unimportant [46], their effects on the evolution of matter overdensities may be signif-
icant [47,48]. Then, a natural question is how dark energy affects the process of the
gravitational collapse of a star. It is known that dark energy exerts a repulsive force on
its surrounding, and this repulsive force may prevent the star from collapse. Indeed,
there are speculations that a massive star does not simply collapse to form a black hole,
instead, to the formation of stars that contain dark energy. In a recent work, Mazur
and Mottola [49] have suggested a solution with a final configuration without neither
singularities nor horizons, which they called “gravastar” (gravitational vacuum star).
In this case, the gravastar is a system characterized by having a thin shell but not infin-
itesimal made of stiff matter, which separates an inner region with de Sitter spacetime
from the Schwarzschild exterior spacetime. The elimination of the apparent horizon
is done using suitable choice of the inner and outer radius of the thin shell, in such
way that the inner radius be shorter than the horizon radius of de Sitter spacetime and
the outer radius longer than the Schwarzschild horizon radius. In a later work, Visser
and Wiltshire [50] have shown that the gravastar is dynamically stable. The possibility
of the existence of objects like the gravastar brings all the discussions about the fact
that is unavoidable that gravitational collapse always forms a black hole. As a result,
black holes may not exist at all [51,52]. Another related issue is that how dark energy
affects already-formed black hole is related to the fact that it was shown that the mass
of a black hole decreases due to phantom energy accretion and tends to zero when the
Big Rip approaches [53,54]. Gravitational collapse and formation of black holes in
the presence of dark energy were first considered by several works [55–58].

Based on the discussions about the gravastar picture some authors have proposed
alternative models [59–63]. Among them, we can find a Chaplygin dark star [64], a
gravastar supported by non-linear electrodynamics [65], a gravastar with continuous
anisotropic pressure [66]. Beside these ones, Lobo [67] has studied two models for a
dark energy fluid. One of them describes a homogeneous energy density and another
one which uses an ad-hoc monotonic decreasing energy density, both of them with
anisotropic pressure. In order to match an exterior Schwarzschild spacetime he has
introduced a thin shell between the interior and the exterior spacetimes.

Since all the works cited previously are based in particular solutions, the inves-
tigation of more general solutions or others particular ones is important in order to
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Star models with dark energy 1837

establish the generality of these results. Our aim with this work is to construct another
alternative model to black holes considering the possibility of gravitational trapping of
dark energy by standard energy, i.e., not dark energy. In this context we could have the
dark energy sustaining the collapse of the standard energy, while the standard matter
would trap the dark energy. In our model the mass function is a natural consequence of
the Einstein’s field equations and the energy density as well as the pressure decreases
with the radial coordinate (envelope), as expected for known stellar models. In order
to eliminate the central singularity present in this model, we have considered a core
with a homogeneous energy density, described by the Lobo’s first solution [67]. The
junction between the envelope and the Schwarzschild exterior spacetime has imposed
a presence of a thin shell, as well as, the junction between the core and the envelope.

The paper is organized as follows. In Sect. 2 we show the Einstein field equations. In
Sect. 3 we present a particular solution that represents an isotropic and inhomogeneous
dark energy fluid. In order to construct a more realistic model we consider it as the
envelope of the star with a core constituted by a regular anisotropic and homogeneous
fluid and a Schwarzschild exterior. In Sect. 4 we show the junction conditions between
the core and envelope regions and between the envelope and the exterior spacetime.
Finally, in Sect. 5 we present our final considerations.

2 The field equations

We consider here a static spherically symmetric spacetime given by the following
metric

ds2 = −exp

[
2

∫
g(r̃)dr̃

]
dt2 + dr2

1 − 2m(r)/r
+ r2(dθ2 + sin2 θdφ2), (1)

where g(r) and m(r) are arbitrary functions of the radial coordinate, r .
The stress-energy tensor for an isotropic distribution of matter is given by

Tµν = (ρ + p)vµvν + pgµν, (2)

where vµ is the four-velocity, ρ is the energy density, p is the radial pressure measured
in the radial direction.

Thus, the Einstein field equation, Gµν = 8πTµν , where Gµν is the Einstein tensor,
provides the following relationships

m′ = 4πr2ρ, (3)

g = m + 4πr3 p

r(r − 2m)
, (4)

p′ = − (ρ + p)(m + 4πr3 p)

r(r − 2m)
, (5)

where the prime denotes a derivative with respect to the radial coordinate, r . Equation
(5) corresponds to the Tolman–Oppenheimer–Volkoff (TOV) equation.
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The standard cosmology considers the Universe constituted of a perfect fluid
described by an equation of state of the type p = ωρ. Using this type of equation of
state with a sufficiently negative pressure could explain the positive acceleration of
the Universe in the context of the General Relativity theory. We consider this kind
of equation of state in order to investigate the conditions of existence of dark energy
star. Assuming an equation of state of the type p = ωρ and substituting it in Eq. (5)
we have

ωρ′ + (ρ + ωρ)
(m + 4πr3ωρ)

r(r − 2m)
= 0. (6)

Solving Eq. (6) in terms of m we get

m = ωr2
(
ρ′ + 4πrωρ2 + 4πrρ2

)
2ωρ′r − ωρ − ρ

. (7)

Differentiating Eq. (7) and substituting into Eq. (3) we obtain

r

(2ωρ′r − ωρ − ρ)2

(
−24πr2ω2ρ2ρ′ − 12πr2ρ2ωρ′ + 28πrω2ρ3 + 20πrωρ3

+ 4πrρ3 − 3ω2ρ′2r + 2ρ′ω2ρ + 2ρ′ωρ − ωρ′2r + 12πrω3ρ3 + rρ′′ω2ρ

+ 8πr3ω3ρ2ρ′′+8πr3ω2ρ2ρ′′−16πr3ω3ρρ′2−12πr2ω3ρ2ρ′+rρ′′ωρ
)

= 0.

(8)

Below we work with a particular solution of this equation.

3 Solution of the physical equations

Solving Eq. (8) in terms of ρ we can obtain a particular solution written as

ρ = ω

2π(ω2 + 6ω + 1)r2 , (9)

where we can note that the values of ω cannot be −3 + 2
√

2 or −3 − 2
√

2, in order to
avoid the singularities for these values. Since ρ ≥ 0 thus −3−2

√
2 < ω < −3+2

√
2

or ω ≥ 0. Besides, our envelope with ω = 1 reproduces the same rigid fluid used by
Mazur and Mottola [49], with the pressure proportional to r−2.

Thus, using Eqs. (3) and (4) we obtain that

m(r) = 2ωr

ω2 + 6ω + 1
, (10)

g(r) = 2ω

(ω + 1)r
. (11)
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The metric can be rewritten as

ds2+ = −r4ω/(ω+1)dt2 + ω2 + 6ω + 1

(ω + 1)2 dr2 + r2
(

dθ2 + sin2 θdφ2
)
, (12)

where the subscript (+) denotes the envelope spacetime as we consider it (see below).
Since the metric function grr is negative for −3−2

√
2 < ω < −3+2

√
2, this interval

is not allowed. Thus, this solution implies ω ≥ 0.
The Kretschmann scalar for (12) is given by

K = Rαβµν Rαβµν = 16ω2(3ω2 + 2ω + 7)

r4(ω2 + 6ω + 1)
, (13)

where Rαβµν is the Riemann tensor. We can note that limr→∞ K = 0, i.e., this solu-
tion is asymptotically flat. But, we can see also that limr→0 K → +∞, the solution
is singular at the origin. Then, we consider the metric (12) as an envelope solution.
Below we present a core solution.

3.1 Core solution

In order to avoid the singularity at r = 0 we cut the spacetime (12) around its origin
and fit another one, an anisotropic fluid with the density of energy µ constant. We
have chosen an anisotropic solution for the core since it was shown that gravastars
solutions must exhibit anisotropic pressures to be finite-sized objects [66]. Using the
results from [67] we have

µ = µ0 = constant, (14)

pr = kµ0, (15)

and

pt = pr

[
1 + (1 + k)(1 + 3k)M(r)

2k(r − 2M(r))

]
. (16)

In this case, we have as isotropic pressure limits, k = −1/3 and k = −1, otherwise
we have anisotropic pressures. Here we point out that the anisotropy in the pressure
changes the ranges where the energy conditions are satisfied, which depend on the
values of M(r)/r [68].

The core metric can be written as

ds2− = −
[

1 − 2M(r)
r

]−(1+3k)/2

dv2+
[

1 − 2M(r)
r

]−1

dr2+r2(dθ2+sin2 θdφ2),

(17)

where M(r) = 4πµ0r3/3 and the subscript (-) means the core spacetime (see Fig. 1).
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1840 R. Chan et al.

Fig. 1 The regions of the star: the core, the envelope and the exterior. The radius of the core is r	 and the
total mass inside r	 is M(r	). The density of the core is homogeneous and the pressure can be isotropic
or anisotropic. The outer radius of the envelope is r̄	̄

Note from Eq. (16) that the anisotropy of the core |pt − pr | decreases with the r
coordinate. Then, the supposition of an isotropic envelope is physically reasonable.

3.2 Exterior solution

In order to limit the matter of the star we match the exterior spacetime with a Schwarzs-
child solution. The Schwarzschild exterior metric can be written as

ds2
e = −

(
1 − 2M̄

r̄

)
du2 +

(
1 − 2M̄

r̄

)−1

d r̄2 + r̄2(dθ2 + sin2 θdφ2), (18)

where M̄ is the total mass of the star, including the mass of the core, and the subscript
(e) denotes the exterior spacetime.

4 Junction conditions

The metric of the hypersurface 	 at the frontier of the core and the envelope is given by

ds2
	 = −dτ 2 + R(τ )2(dθ2 + sin2 θdφ2), (19)

where τ is the time coordinate define only on 	.
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The metric of the hypersurface 	̄ at the frontier of the envelope and the exterior is
given by

ds2
	̄

= −d τ̄ 2 + R̄(τ̄ )2(dθ2 + sin2 θdφ2), (20)

where τ̄ is the time coordinate define only on 	̄.
From the conditions (ds2−)	 = (ds2+)	 and (ds2+)	̄ = (ds2

e )	̄ and using Eqs. (12),
(17) and (18), we get the following relations

r	 = r	 = R(τ ), (21)

r̄	̄ = r	̄ = R̄(τ̄ ), (22)
(

dv

dτ

)2

=
[

1 − 2M(r	)

r	

](1+3k)/2

, (23)

(
dt

dτ

)2

= r−4ω/(ω+1)
	 , (24)

(
du

d τ̄

)2

=
(

1 − 2M̄

r̄	̄

)−1

, (25)

(
dt

d τ̄

)2

= r−4ω/(ω+1)

	̄
. (26)

The core extrinsic curvature is given by

K −
ττ = − 1

2r	

[−2M(r	) + r	

r	

]−3k/2 (
dv

dτ

)2

× 1

2M(r	) − r	

[
M(r	) − M ′(r	)r	

]
(3k + 1), (27)

K −
θθ = −

[−2M(r	) + r	

r	

]−1/2

[2M(r	) − r	], (28)

K −
φφ = −

[−2M(r	) + r	

r	

]−1/2

[2M(r	) − r	] sin2 θ, (29)

and the envelope extrinsic curvature is given by

K +
ττ = −2r−4/(ω+1)

	 r3
	

√
ω2 + 6ω + 1

(
dt

dτ

)2 1

ω2 + 6ω + 1
ω, (30)

K +
θθ =

√
ω2 + 6ω + 1(ω + 1)

1

ω2 + 6ω + 1
r	, (31)

K +
φφ =

√
ω2 + 6ω + 1(ω + 1)

1

ω2 + 6ω + 1
r	 sin2 θ. (32)
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The core extrinsic curvature can be rewritten as

K −
ττ = (1 + 3k)

2r2
	

[
1 − 2M(r	)

r	

]− 1
2 [

M(r	) − M ′(r	)r	

]

= −(1 + 3k)
M(r	)

r2
	

[
1 − 2M(r	)

r	

]− 1
2

, (33)

K −
θθ = r	

[
1 − 2M(r	)

r	

] 1
2

, (34)

K −
φφ = K −

θθ sin2 θ, (35)

the envelope extrinsic curvature can be rewritten as

K +
ττ = −2ω

r	

(
ω2 + 6ω + 1

)− 1
2
, (36)

K +
θθ = r	(ω + 1)

(
ω2 + 6ω + 1

)− 1
2
, (37)

K +
φφ = K +

θθ sin2 θ, (38)

and the Schwarzschild exterior extrinsic curvature can be written as

K e
τ̄ τ̄ = − M̄

r̄2
	̄

[
1 − 2M̄

r̄	̄

]− 1
2

, (39)

K e
θθ = r̄	̄

[
1 − 2M̄

r̄	̄

] 1
2

, (40)

K e
φφ = K e

θθ sin2 θ. (41)

4.1 Junction conditions between core-envelope: without a thin shell

Using the junction conditions K −
ττ = K +

ττ and K −
θθ = K +

θθ we get two equations in
terms of M(r	) and r	

− (1 + 3k)
M(r	)

r2
	

[
1 − 2M(r	)

r	

]− 1
2 + 2ω

r	

(
ω2 + 6ω + 1

)− 1
2 = 0, (42)

and

r	

[
1 − 2M(r	)

r	

] 1
2 − r	(ω + 1)

(
ω2 + 6ω + 1

)− 1
2 = 0. (43)
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We can solve these two equations, obtaining the total mass of the core and the radius
of the core as a function of ω and k giving

ω = 3k, (44)

and

M(r	)

r	

= 2ω

(ω2 + 6ω + 1)
≤ 1

4
. (45)

Note that although there is a negative interval for ω where the mass is positive, this
same interval is forbidden by the metric’s signature, Eq. (12). Consequently, k is also
non-negative. We note that the solution can represent a star model with an upper limit
for the ratio of mass to radius of the core.

4.2 Junction conditions between core-envelope: with a thin shell

So, we match a thin shell of energy density σ and pressure P at the frontier between
the core and the envelope. Thus, we can write

σ = − 1

4π
κθ
θ , (46)

P = 1

8π

(
κθ
θ + κτ

τ

)
, (47)

where

κi j = K +
i j − K −

i j . (48)

Since

κτ
τ = 2ω

r	

(
ω2 + 6ω + 1

)− 1
2 − (1 + 3k)

M(r	)

r2
	

[
1 − 2M(r	)

r	

]− 1
2

, (49)

κθ
θ = 1

r	

(ω + 1)
(
ω2 + 6ω + 1

)− 1
2 − 1

r	

[
1 − 2M(r	)

r	

] 1
2

, (50)

then

σ = − 1

4πr	

{
(ω + 1)

(
ω2 + 6ω + 1

)− 1
2 −

[
1 − 2M(r	)

r	

] 1
2
}

, (51)

P = 1

8πr	

{
(3ω + 1)

(
ω2 + 6ω + 1

)− 1
2

−
[

1 + (1 + 3k)
M(r	)

r	

] [
1 − 2M(r	)

r	

]− 1
2
}

, (52)
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where ω < −3 − 2
√

2 or ω > −3 + 2
√

2 (in order to have σ and P real) and
r	 > 2M(r	). Since σ ≥ 0 and ρ ≥ 0 then ω ≥ 0, which represents a not dark energy
envelope, but no restriction is imposed to the core, i.e., we can have any values for k.

4.2.1 Energy conditions for the thin shell: core-envelope

The energy conditions [69] for a thin shell can be written as

1. Weak: σ ≥ 0 and σ + P ≥ 0
2. Dominant: σ + P ≥ 0 and σ − P ≥ 0
3. Strong: σ + P ≥ 0 and σ + 2P ≥ 0

The characterization of dark energy fluid is the violation of one of the strong energy
conditions, more specifically, that one related the Raychaudhuri equation [68]. If the
second of the weak energy conditions is violated, we have a phantom dark energy fluid.

For the inner thin shell, that is, between the core and the envelope, we have

σ ≥ 0, (53)

σ + P = 1

8πr	

{
(ω − 1)

(
ω2 + 6ω + 1

)− 1
2

+
[

1 − (5 + 3k)
M(r	)

r	

] [
1 − 2M(r	)

r	

]− 1
2
}

, (54)

σ − P = 1

8πr	

{
− (5ω + 3)

(
ω2 + 6ω + 1

)− 1
2

+ 3

[
1 − (1 − k)

M(r	)

r	

] [
1 − 2M(r	)

r	

]− 1
2
}

, (55)

σ + 2P = 1

4πr	

{
2ω

(
ω2 + 6ω + 1

)− 1
2 − 3

[
(1 + k)

M(r	)

r	

] [
1 − 2M(r	)

r	

]− 1
2
}

.

(56)

In Table 1, we summarize the results of the energy conditions of the inner thin
shell for different limits and k ≥ −1/3. We analyzed only the case where k ≥ −1/3
because we are interested to check if it is possible to have all the structures constituted
by standard energy.

4.3 Junction conditions between envelope-exterior: without thin shell

Using the junction conditions K +
τ̄ τ̄ = K e

τ̄ τ̄ and K +
θθ = K e

θθ we get two equations in
terms of M̄ and r̄	̄

− M̄

r̄2
	̄

[
1 − 2M̄

r̄	̄

]− 1
2

+ 2ω

r̄	̄

(
ω2 + 6ω + 1

)− 1
2 = 0, (57)
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Table 1 This table summarizes the results of the energy conditions of the inner thin shell for different
limits and k ≥ −1/3

Case 8πr	(σ + P) 8πr	(σ − P) 4πr	(σ + 2P)

ω → 0 −(4 + 3k)
M(r	)

r	
≤ 0 3k M(r	)

r	
≥ 0 −3(1 + k)

M(r	)
r	

≤ 0

M(r	)/r	 � 1

ω → 0 −1 + 1−(5+3k)/2√
1−2

M(r	)
r	

≤ 0 −3 + 3[1−(1−k)/2]√
1−2

M(r	)
r	

≥ 0 −3(1+k)/2√
1−2

M(r	)
r	

≤ 0

M(r	)/r	 → 1/2

ω → 1 1 − (4 + 3k)
M(r	)

r	
≥ 0 − 4√

2
+ 3

[
1 + k M(r	)

r	

]
≥ 0 1√

2
− 3(1 + k)

M(r	)
r	

≥ 0

M(r	)/r	 � 1 M(r	)
r	

≤ 1
4+3k

M(r	)
r	

≤ 1
3k

(
4√
2

− 3
)

M(r	)
r	

≤ 1
3
√

2(1+k)

ω → 1 1−(5+3k)/2√
1−2

M(r	)
r	

≤ 0 − 4√
2

+ 3[1−(1−k)/2]√
1−2

M(r	)
r	

≥ 0 1√
2

− 3(1+k)/2]√
1−2

M(r	)
r	

≤ 0

M(r	)/r	 → 1/2

and

r̄	̄

[
1 − 2M̄

r̄	̄

] 1
2

− r̄	̄(ω + 1)
(
ω2 + 6ω + 1

)− 1
2 = 0. (58)

Considering these two equations we have the equation

(ω + 1)2 = 1, (59)

which gives us

ω = 0,
(60)

ω = −2,

where only the first one is solution of the original equations (57) and (58). This solution
implies that

M̄ = M(r	) = 0, (61)

which means that all the spacetime is Minkowski. Then we can conclude that for
this kind of fluid distribution, it is not possible to have structures surrounded by a
Schwarzschild spacetime without the introduction of a thin shell.

However, in a Lobo’s work [67] it was necessary the introduction of a thin shell
on the junction hypersurface. The authors have suggested that it is possible to match
the interior and exterior spacetime without a thin shell. However, eliminating the thin
shell, vanishing its energy density and pressure (equations 25 and 26 in the original
work), we get the same junction conditions considered in this present work, i.e., giving
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a Minkowski spacetime. In order to do that we assume m = M and ω = 0 or m′ = 0
with also ȧ = 0. Thus, the unique interior solutions that admits a matching with
Schwarzschild spacetime, without the introduction of a thin shell, is the Minkowski
(m′ = 0) and the dust (ω = 0) solution.

4.4 Junction Conditions between envelope-exterior: with a thin shell

Since as seen in the above subsections, we cannot match an exterior Schwarzschild
spacetime directly with the envelope, we build a thin shell of energy density σ̄ and
pressure P̄ in order to do this match. Thus,

σ̄ = − 1

4π
κ̄θ
θ , (62)

P̄ = 1

8π

(
κ̄θ
θ + κ̄ τ̄

τ̄

)
, (63)

where

κ̄i j = K e
i j − K +

i j . (64)

Since

κ̄ τ̄
τ̄ = M̄

r̄2
	̄

(
1 − 2M̄

r̄	̄

)− 1
2

− 2ω

r̄	̄

(
ω2 + 6ω + 1

)− 1
2
, (65)

κ̄θ
θ = 1

r̄	̄

(
1 − 2M̄

r̄	̄

) 1
2

− 1

r̄	̄

(ω + 1)
(
ω2 + 6ω + 1

)− 1
2
, (66)

then

σ̄ = − 1

4π r̄	̄

⎡
⎣(

1 − 2M̄

r̄	̄

) 1
2

− (ω + 1)
(
ω2 + 6ω + 1

)− 1
2

⎤
⎦ , (67)

P̄ = 1

8π r̄	̄

⎡
⎣(

1 − M̄

r̄	̄

)(
1 − 2M̄

r̄	̄

)− 1
2

− (3ω + 1)
(
ω2 + 6ω + 1

)− 1
2

⎤
⎦ , (68)

where ω < −3−2
√

2 or ω > −3+2
√

2 (in order to have σ and P real) and r̄	̄ > 2M̄ .
Since ρ ≥ 0 then the unique physical system must have ω ≥ 0.

Since σ̄ ≥ 0 then we must have

2ω

ω2 + 6ω + 1
≤ M̄

r̄	

≤ 1

2
, (69)
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Table 2 This table summarizes the results of the energy conditions of the outer thin shell for different
limits

Case 8πr	(σ̄ + P̄) 8πr	(σ̄ − P̄) 4πr	(σ̄ + 2 P̄)

ω → 0 −2 M̄
r̄
	̄

≤ 0 −2 M̄
r̄
	̄

≤ 0 − M̄
r̄
	̄

≤ 0

M̄/r̄	̄ � 1

ω → 0 −3 + 1/2√
1−2 M̄

r̄
	̄

≥ 0 −1 − 1/2√
1−2 M̄

r̄
	̄

≤ 0 −2 − 1/2√
1−2 M̄

r̄
	̄

≥ 0

M̄/r̄	̄ → 1/2

ω → 1 M̄
r̄
	̄

≤ 3
√

2−4
2
√

2
M̄
r̄
	̄

≤ 1
2

2
√

2−3√
2

− M̄
r̄
	̄

≤ 0

M̄/r̄	̄ � 1

ω → 1 − 4√
2

+ 1/2√
1−2 M̄

r̄
	̄

≥ 0 − 1/2√
1−2 M̄

r̄
	̄

≤ 0 − 3√
2

+ 1/2√
1−2 M̄

r̄
	̄

≥ 0

M̄/r̄	̄ → 1/2

for ω ≥ 0, and where

2ω

ω2 + 6ω + 1
≤ 1

4
. (70)

4.4.1 Energy conditions for the thin shell: envelope-exterior

The energy conditions [69] for the thin shell between the envelope and the exterior
can be written as

σ̄ ≥ 0 (71)

σ̄ + P̄ = 1

8π r̄	̄

⎧⎨
⎩−(5ω + 3)

(
ω2 + 6ω + 1

)− 1
2 +

[
3 − 5

M̄

r̄	̄

] [
1 − 2M̄

r̄	̄

]− 1
2

⎫⎬
⎭ ,

(72)

σ̄ − P̄ = 1

8π r̄	̄

⎧⎨
⎩(ω − 1)

(
ω2 + 6ω + 1

)− 1
2 +

[
1 − 3

M̄

r̄	̄

] [
1 − 2M̄

r̄	̄

]− 1
2

⎫⎬
⎭ ,

(73)

σ̄ + 2 P̄ = 1

4π r̄	̄

⎧⎨
⎩−2(2ω + 1)

(
ω2 + 6ω + 1

)− 1
2 +

[
2 − 3

M̄

r̄	̄

] [
1 − 2M̄

r̄	̄

]− 1
2

⎫⎬
⎭.

(74)

In Table 2 we summarize the results of the energy conditions of the outer thin shell
for different limits.
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Comparing the Tables 1 and 2 we can have the following conclusions:

1. Limits ω → 0,
M(r	)

r	
� 1, M̄

r̄	
� 1: both (inner and outer) thin shells are

phantom;
2. Limits ω → 0,

M(r	)
r	

→ 1/2, M̄
r̄	̄

→ 1/2: the inner thin shell is made of dark
energy and the outer thin shell violates the dominant energy condition;

3. Limits ω → 1,
M(r	)

r	
� 1, M̄

r̄	̄
� 1: the inner thin shell is constituted by dark

and not dark energy, depending on M(r	)
r	

and M̄
r̄	̄

, and the outer thin shell is made
of dark energy;

4. Limits ω → 1,
M(r	)

r	
→ 1/2, M̄

r̄	̄
→ 1/2: the inner thin shell is made of dark

energy and the outer thin shell is constituted by not dark energy, violating the
dominant energy condition.

We can conclude with these limits that we always have one or both thin shells
constituted by dark energy.

5 Conclusions

We have constructed a star model consisting of four parts: (i) a homogeneous inner
core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and
the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure;
(iv) an infinitesimal thin shell matching the envelope boundary and the exterior
Schwarzschild spacetime. We have analyzed all the energy conditions for the core,
envelope and the two thin shells.

In our model the mass function is a natural consequence of the Einstein’s field equa-
tions and the energy density as well as the pressure decreases with the radial coordinate
(envelope), as expected for known stellar models. In order to eliminate the central sin-
gularity present in this model, we have considered a core with a homogeneous energy
density, described by the Lobo’s first solution [67].

We have proposed in this work an alternative model and a generalization to gra-
vastars. Note that for k = −1 we get a vacuum core with a cosmological constant

 = 8πµ0, i.e., a de Sitter solution. Thus, we have constructed models with the same
structures of the Mazur and Mottola’s one [49], with five regions (an interior de Sitter
solution + an infinitesimal shell + a non-infinitesimal shell + infinitesimal shell + an
exterior Schwarzschild solution). However, in our models each one of these regions
is made of more general kind of fluids.

In Table 3 we summarize the results of the match of the core’s spacetime with
envelope’s spacetime and the results of the match of the envelope’s spacetime with
the exterior spacetime.

Combining the results of Tables 1, 2 and 3 we can see that in the analyzed cases we
always have the presence of the dark energy at least in one of the thin shell or in the
core. Note also that from the results that there is no physical reason to have a superior
limit for the mass of these objects but for the ratio of mass and radius, in order to find
out which one is made of dark energy.
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Table 3 This table summarizes the results of the match of the core’s spacetime with envelope’s spacetime
and the results of the match of the envelope’s spacetime with the exterior spacetime

We have standard energy core and envelope, but in all the cases we have at least one of thin shells made of
dark energy
DEC dominant energy condition
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