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Abstract We derive, for the square operator of Yau, an analogue of the Omori–Yau
maximum principle for the Laplacian. We then apply it to obtain nonexistence results
concerning complete noncompact spacelike hypersurfaces immersed with constant
higher order mean curvature in a conformally stationary Lorentz manifold.
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1 Introduction

The interest in the study of spacelike hypersurfaces in Lorentz manifolds has increased
very much in recent years, from both the physical and mathematical points of view. For
example, Marsden and Tipler in [18], and Stumbles in [24], point out that spacelike
hypersurfaces with constant mean curvature in an arbitrary Lorentz manifold play an
important role in the general relativity, in that they serve as convenient initial data for
the Cauchy problem for Einstein’s equations.

From a mathematical point of view, a basic question related to this topic is the
existence and uniqueness of spacelike hypersurfaces in Lorentz manifolds, with some
reasonable geometric properties, like the vanishing of the mean curvature, for instance.
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A first relevant result in this direction was the proof of the Calabi-Bernstein conjecture
for maximal hypersurfaces (that is, hypersurfaces with vanishing mean curvature) in
Lorentz-Minkowski space, given by Cheng and Yau in [10]. As for the case of de
Sitter space, Goddard in [13] conjectured that every complete spacelike hypersurface
with constant mean curvature should be totally umbilical. Although the conjecture
turned out to be false in its original form, it motivated a great deal of work of several
authors trying to find a positive answer to the conjecture under appropriate additional
hypotheses (see, for example, [1,19]).

More recently, Alías, Brasil Jr. and Colares, in [2], developed general Minkowski-
type formulae for compact spacelike hypersurfaces immersed into conformally statio-
nary spacetimes, that is, spacetimes endowed with a timelike conformal vector field;
then, they applied these formulae to the study of the umbilicity of compact spacelike
hypersurfaces under certain conditions on their r -mean curvatures. Furthermore, the
first author in [8] computed Lr (Sr ) for a spacelike hypersurface �n immersed in a

Lorentz ambient M
n+1

of constant sectional curvature, applying the resulting for-
mula to study both r -maximal spacelike hypersurfaces of M , and, in the presence of a
constant higher order mean curvature, constraints on the sectional curvature of� that
also suffice to guarantee the umbilicity of it. Here, by Lr we mean the linearization
of the second order differential operator associated to the r th elementary symme-
tric function on the eigenvalues of the second fundamental form of such immersion
(cf. Sect. 2). Let us also remark that Alías and Colares in [3] studied the problem
of uniqueness for spacelike hypersurfaces with constant higher order mean curvature
in Generalized Robertson-Walker Lorentz manifolds (cf. Sect. 4). Their approach is
based on the use of the Newton transformations Pr , together with their associated
differential operators Lr and the above mentioned Minkowski formulae for spacelike
hypersurfaces.

Back to the case of complete noncompact spacelike hypersurfaces, in [9] the first
author applied the standard formula for the Laplacian of the squared norm of the second
fundamental form and the Omori-Yau maximum principle to classify complete space-
like hypersurfaces with constant mean curvature in a Lorentz manifold of nonnegative
constant sectional curvature, under appropriate bounds on the scalar curvature. For
the de Sitter space, Brasil Jr., Colares and Palmas also used the Omori-Yau maximum
principle in [6] to characterize the hyperbolic cylinders as the only complete hypersur-
faces in the de Sitter space with constant mean curvature, nonnegative Ricci curvature
and having at least two ends (see also [7] for the case of the scalar curvature).

The discussion of related questions involving higher order mean curvatures faces
a first difficulty: there is no corresponding version of maximum principle for the
appropriate second order partial differential operators. In this paper we overcome
this obstacle by developing, for the square operator, an analogue of the Omori-Yau
maximum principle for the Laplacian. The square operator is the metric contraction
of the compound of a symmetric tensor with the Hessian of a smooth function on a
manifold; it was introduced by Cheng and Yau in [11] (see also Sect. 3), in order to study
constant scalar curvature hypersurfaces in constant sectional curvature Riemannian
manifolds. As already made explicit in Cheng and Yau’s paper, it is a natural object
to work with, for an appropriate choice of the involved symmetric tensor allows one
to capture the influence of several different kinds of curvatures on the manifold. The
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Complete spacelike hypersurfaces in conformally stationary Lorentz manifolds 175

maximum principle for the square operator is the content of Corollary 3.4. With the
aid of a suitable consequence of it (see Proposition 4.1), we obtain nonexistence
results on complete noncompact spacelike hypersurfaces in the class of conformally
stationary Lorentz manifolds (cf. Sect. 4). These are the content of our main results,
i.e., Theorems 4.4, 4.6 and 4.7.

This paper is organized in the following way: in Sect. 2 we set notation and recall
a few results which will be needed later; Sect. 3 is devoted to the statement and proof
of the maximum principle and its corollaries; applications are collected in Sect. 4.

2 Preliminaries

In what follows, if M
n+1

is a connected semi-Riemannian manifold with metric g =
〈 , 〉, we let D(M) denote the ring of smooth functions f : M → R and X(M) the
algebra of smooth vector fields on M . We also write ∇ for the Levi-Civita connection
of M .

In what follows, unless stated to the contrary � is a connected, n−dimensional,
orientable differentiable manifold. If M is a Lorentz manifold, we recall (cf. [22])
that a vector field X ∈ X(M) is said to be timelike if 〈X, X〉 < 0 on M ; spacelike if
〈X, X〉 > 0 on M ; a unit vector field if 〈X, X〉 = ±1 on M . We consider spacelike

immersions ψ : �n → M
n+1

, namely, we assume that ψ induces a Riemannian
metric on �, and furnish � with this metric. In this setting, we say that ψ (or �) is a
spacelike hypersurface of M , which is said to be complete if � is complete with the
induced metric. Finally, we let ∇ denote the Levi-Civita connection of� with respect
to the induced metric.

Let us orient � by the choice of a unit, timelike normal vector field N on it, and A
denote the corresponding shape operator. At each p ∈ �, A restricts to a self-adjoint
linear map Ap : Tp� → Tp�. For 1 ≤ r ≤ n, let Sr (p) denote the r th elementary
symmetric function on the eigenvalues of Ap; this way one gets n smooth functions
Sr : �n → R, such that

det(t I − A) =
n∑

k=0

(−1)k Sktn−k,

where S0 = 1 by definition. If p ∈ � and {ek} is a basis of Tp� formed by eigenvectors
of Ap, with corresponding eigenvalues {λk}, one immediately sees that

Sr = σr (λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the r th elementary symmetric polynomial on the inde-
terminates X1, . . . , Xn .

Now, let Ai
j be the components of the shape operator A with respect to some

orthonormal frame; we use |A|2 as a shorthand for the contraction
∑n

i, j=1 Ai
j A j

i , i.e.,

the trace tr(A2) of the operator A2. Working with a basis with respect to which A is
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diagonal, it is immediate to check that

2S2 + |A|2 = S2
1 . (2.1)

For 1 ≤ r ≤ n, one defines the r th mean curvature Hr of ψ by

Hr = (−1)r(n
r

) Sr = 1(n
r

)σr (−λ1, . . . ,−λn).

In particular, H1 = H is the mean curvature of x . It is a classical fact that such functions
satisfy a very useful set of inequalities, usually refered to as Newton’s inequalities
(see [14]). It turns out, however, that such inequalities remain true for arbitrary real
numbers. For future reference, we collect them here. A proof can be found in [8],
Proposition 1.

Proposition 2.1 Let n > 1 be an integer, and λ1, . . . , λn be real numbers. Define, for
0 ≤ r ≤ n, Sr = Sr (λi ) as above, and Hr = Hr (λi ) = (n

r

)−1
Sr (λi ).

(a) For 1 ≤ r < n, one has H2
r ≥ Hr−1 Hr+1. Moreover, if equality happens for

r = 1 or for some 1 < r < n, with Hr+1 �= 0 in this case, then λ1 = · · · = λn.
(b) If H1, H2, . . . , Hr > 0 for some 1 < r ≤ n, then H1 ≥ √

H2 ≥ 3
√

H3 ≥ · · · ≥
r
√

Hr . Moreover, if equality happens for some 1 ≤ j < r , then λ1 = · · · = λn.
(c) If, for some 1 ≤ r < n, one has Hr = Hr+1 = 0, then Hj = 0 for all r ≤

j ≤ n. In particular, at most r − 1 of the λi are different from zero.

When the ambient space M has constant sectional curvature c, Gauss equation
allows one to immediately check that the scalar curvature R of � relates to H2 in the
following manner:

R = n(n − 1)(c − H2). (2.2)

For 0 ≤ r ≤ n one defines the r th Newton transformation Pr on � by setting
P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

Pr = (−1)r Sr I + APr−1. (2.3)

A trivial induction shows that

Pr = (−1)r (Sr I − Sr−1 A + Sr−2 A2 − · · · + (−1)r Ar ),

so that Cayley-Hamilton Theorem gives Pn = 0. Moreover, since Pr is a polynomial
in A for every r , it is also self-adjoint and commutes with A. Therefore, all bases of
Tp� diagonalizing A at p ∈ � also diagonalize all of the Pr at p. Let {ek} be such a
basis. Denoting by Ai the restriction of A to 〈ei 〉⊥ ⊂ Tp�, it is easy to see that

det(t I − Ai ) =
n−1∑

k=0

(−1)k Sk(Ai )t
n−1−k,
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where

Sk(Ai ) =
∑

1≤ j1<...< jk≤n
j1,..., jk �=i

λ j1 · · · λ jk .

With the above notations, it is also immediate to check that Pr ei = (−1)r Sr (Ai )ei ,
and hence (Lemma 2.1 of [5])

(a) Sr (Ai ) = Sr − λi Sr−1(Ai );

(b) tr(Pr ) = (−1)r
∑n

i=1 Sr (Ai ) = (−1)r (n − r)Sr = br Hr ;

(c) tr(APr ) = (−1)r
∑n

i=1 λi Sr (Ai ) = (−1)r (r + 1)Sr+1 = −br Hr+1;

(d) tr(A2 Pr ) = (−1)r
∑n

i=1 λ
2
i Sr (Ai ) = (−1)r (S1Sr+1 − (r + 2)Sr+2),

where br = (n − r)
(n

r

)
.

The next two results will be extremely useful in Sect. 4.

Proposition 2.2 (Proposition 1.5 of [16]) With respect to a spacelike immersion

ψ : �n → M
n+1

,

(a) if Hr = 0 on �, then Pr−1 is semi-definite on �.
(b) if Hr = 0 and Hr+1 �= 0 on �, then Pr−1 is definite on �.

If p ∈ � is such that all eigenvalues of Ap are either positive or negative, we say
that p is an elliptic point of �.

Proposition 2.3 (Proposition 3.2 of [5]) With respect to a spacelike immersion

ψ : �n → M
n+1

, if Hr > 0 on � and ψ has an elliptic point, then Pr−1 is posi-
tive definite on �.

Associated to each Newton transformation Pr one has the second order linear
differential operator Lr : D(�) → D(�), given by

Lr ( f ) =
n∑

i, j=1

(Pr )
i
j (Hess f ) j

i = tr(Pr Hess f ),

where, as before, we write (Pr )
i
j and (Hess f )ij for the components of the correspon-

ding operators with respect to some orthonormal frame, and tr( · ) for the trace of the
operator in parenthesis. Therefore, for f, g ∈ D(�), it follows from the properties of
the Hessian of functions that

Lr ( f g) = f Lr (g)+ gLr ( f )+ 2〈Pr∇ f,∇g〉. (2.4)

3 The generalized maximum principle

Let�n be a complete n−dimensional Riemannian manifold. Let also� : T� → T�
denote a field of self adjoint linear transformations on�. We consider the second order
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linear differential operator � : D(�) → D(�) by setting

� f =
n∑

i, j=1

φi
j (Hess f ) j

i = tr (φHess f ). (3.1)

For fixed p ∈ �, let ρ(x) = ρp(x) = d(x, p) be the distance function from p and
Cm(p) denote the cut locus of p. Set also

K (x) = s′
c(ρ(x))sc(ρ(x))tr(�x ), (3.2)

where sc : [0,+∞] → R is defined by

sc(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sinh(
√−ct)√−ct

, if c < 0

t, if c = 0

sin(
√

ct)√
ct

, if c > 0

.

Lemma 3.1 If� is positive semi-definite on� and� has sectional curvature K� ≥ c
then, for all x ∈ �\Cm(p), one has �ρ(x) ≤ K (x).

Proof Let γ : [0, l] → � be the only minimizing normalized geodesic joining p to
x , with length l = ρ(x). Decompose any unit vector u ∈ Tx� as u = v + w, where
u is collinear with γ ′(l) and w ⊥ γ ′(l). Then |v|2 + |w|2 = 1 and, at x ,

Hess ρ(u, u) = Hess ρ(v, v)+ 2Hess ρ(v,w)+ Hess ρ(w,w)

= 〈∇vγ ′, v〉 + 2〈∇vγ ′, w〉 + Hess ρ(w,w)

= Hess ρ(w,w).

It follows from the Hessian comparison theorem (cf. [23], chapter I) and from the
characterization of Jacobi fields in spaces of constant sectional curvature (cf. [12],
chapter 5) that if K� ≥ c then, at x ,

Hess ρ(w,w) ≤ s′
c(ρ)sc(ρ)|w|2 ≤ s′

c(ρ)sc(ρ).

Now take a moving frame {e1, . . . , en} on a neighborhood of x , diagonalizing� at
x , with �(ei ) = λi ei . Then, one has at x

�ρ = tr(�Hess ρ) =
∑

i

λi Hess ρ(ei , ei )

≤
∑

i

λi s
′
c(ρ)sc(ρ) = s′

c(ρ)sc(ρ)tr(�).

��
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Theorem 3.2 Let � be a complete Riemannian manifold with sectional curvature
K� ≥ c, and f ∈ D(�)be a function bounded from above. If� is positive semi-definite
at every x ∈ � then, for every p ∈ �, there exists a sequence (pk)k≥1 in � such that

lim
k→+∞ f (pk) = sup

�

f, (3.3)

|∇ f (pk)| = 2( f (pk)− f (p)+ 1)ρ(pk)

k(ρ(pk)2 + 2) log(ρ(pk)2 + 2)
(3.4)

and

� f (pk) ≤ 4tr(�pk )ρ(pk)
2( f (pk)− f (p)+ 1)

k2(ρ(pk)2 + 2)2 log(ρ(pk)2 + 2)2

+ 2( f (pk)− f (p)+ 1)

k(ρ(pk)2 + 2) log(ρ(pk)2 + 2)

{
tr(�pk )+ ρ(pk)K (pk)

}
, (3.5)

where K is given as in (3.2).

Proof The proof parallels that of the classical Omori-Yau maximum principle in [26].
For positive integer k, let

g(x) = f (x)− f (p)+ 1

[log(ρ(x)2 + 2)]1/k
.

One has that g is continuous, g(p) = 1
(log 2)1/k > 0 and, since f is bounded above,

lim sup
ρ(x)→+∞

g(x) ≤ 0.

Therefore, g attains its maximum at some pk ∈ �. In particular, f (pk)− f (p)+1 > 0.
One now has to consider two cases separately: pk /∈ Cm(p) and pk ∈ Cm(p). Here,
we treat only the first case; for the second one and the conclusion of the proof of the
theorem, copy the corresponding steps in [26].

Suppose pk /∈ Cm(p). Since (omitting x for clarity)

v(g) = v( f )

[log(ρ2 + 2)]1/k
− 2( f − f (p)+ 1)ρv(ρ)

k(ρ2 + 2)[log(ρ2 + 2)]1/k+1 , (3.6)

one gets at pk

0 = ∇g = ∇ f

[log(ρ2 + 2)]1/k
− 2( f − f (p)+ 1)ρ∇ρ

k(ρ2 + 2)[log(ρ2 + 2)]1/k+1 ,

from where (3.4) follows.
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For the estimate on � f , it follows from (3.6) that

v(v(g)) = v(v( f ))

[log(ρ2 + 2)]1/k
− 2ρv( f )v(ρ)

k(ρ2 + 2)[log(ρ2 + 2)]1/k+1

−2
{
ρv( f )v(ρ)+ ( f − f (p)+ 1)[v(ρ)2 + ρv(v(ρ))]}

k(ρ2 + 2)[log(ρ2 + 2)]1/k+1

+ 4( f − f (p)+ 1)ρ2v(ρ)2

k(ρ2 + 2)2[log(ρ2 + 2)]1/k+2

(
1

k
+ 1 + log(ρ2 + 2)

)
.

Now take a moving frame {e1, . . . , en} on a neighborhood of pk , geodesic at pk

and diagonalizing � at pk , with �(ei ) = λi ei . Then, one has at pk

� f =
∑

i

λi ei (ei ( f )).

On the other hand, since Hess f pk ≤ 0 and�pk ≥ 0, one has �g = tr(�Hess g) ≤ 0
at pk , and it follows at once from the above computations that

0 ≥ �g = � f

[log(ρ2 + 2)]1/k
− 4ρ〈�∇ f,∇ρ〉

k(ρ2 + 2)[log(ρ2 + 2)]1/k+1

−2( f − f (p)+ 1)(〈�∇ρ,∇ρ〉 + ρ�ρ)
k(ρ2 + 2)[log(ρ2 + 2)]1/k+1

+4( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉
k(ρ2 + 2)2[log(ρ2 + 2)]1/k+2

(
1

k
+ 1 + log(ρ2 + 2)

)
.

One also has at pk that

〈�∇ f,∇ρ〉 = 2( f − f (p)+ 1)ρ〈�∇ρ,∇ρ〉
k(ρ2 + 2) log(ρ2 + 2)

,

from where, substituting into the above and taking into account Lemma 3.1, we get at
pk

� f ≤ 8( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉
k2(ρ2 + 2)2[log(ρ2 + 2)]2 + 2( f − f (p)+ 1)(〈�∇ρ,∇ρ〉 + ρK )

k(ρ2 + 2) log(ρ2 + 2)

−4(k + 1)( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉
k2(ρ2 + 2)2[log(ρ2 + 2)]2 − 4( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉

k(ρ2 + 2)2 log(ρ2 + 2)

= 2( f − f (p)+ 1)(〈�∇ρ,∇ρ〉 + ρK )

k(ρ2 + 2) log(ρ2 + 2)

+4( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉
k2(ρ2 + 2)2[log(ρ2 + 2)]2 [2 − (k + 1)− k log(ρ2 + 2)]

≤ 2( f − f (p)+ 1)(〈�∇ρ,∇ρ〉 + ρK )

k(ρ2 + 2) log(ρ2 + 2)
+ 4( f − f (p)+ 1)ρ2〈�∇ρ,∇ρ〉

k2(ρ2 + 2)2[log(ρ2 + 2)]2 .

123



Complete spacelike hypersurfaces in conformally stationary Lorentz manifolds 181

Now, since |∇ρ| = 1 and � is positive semi-definite, one has 〈�∇ρ,∇ρ〉 ≤ tr(�),
so that the desired estimate follows. ��
Corollary 3.3 Let � be a complete Riemannian manifold with sectional curvature
K� ≥ 0, and f ∈ D(�) be a function bounded from above. If � is positive semi-
definite and tr(�) is bounded from above on �, then there exists a sequence (pk)k≥1
in � such that

f (pk) > sup
M

f − 1

k
, |∇ f (pk)| < 1

k
, � f (pk) <

1

k
. (3.7)

Proof Letting C1 = sup� f , it follows from (3.4) that

|∇ f (pk)| ≤ 2(C1 − f (p)+ 1)

k
· ρ(pk)

ρ(pk)2 + 2
· 1

log(ρ(pk)2 + 2)

≤ 2(C1 − f (p)+ 1)

k
· 1

2
√

2
· 1

log 2
,

so that

lim
k→+∞ |∇ f (pk)| = 0. (3.8)

If f attains its maximum at some point of �, there is nothing to do. Otherwise,
since (�, d) is a metric space, the sequence (pk)k≥1 whose existence is assured by
the previous theorem is such that limk→+∞ ρ(pk) = +∞. Hence, since K� ≥ 0, it
follows from Lemma 3.1 that, for sufficiently large k, one has K (pk) ≤ ρ(pk)tr(�pk ).
Therefore, (3.5) gives

� f (pk) ≤ 2tr(�pk )(C1 − f (p)+ 1)

k

(
ρ(pk)

2 + 1

ρ(pk)2 + 2

)
1

log(ρ(pk)2 + 2)

+4tr(�pk )(C1 − f (p)+ 1)

k2

(
ρ(pk)

ρ(pk)2 + 2

)2 1

[log(ρ(pk)2 + 2)]2 .

≤ 2C2(C1 − f (p)+ 1)

k log 2
+ C2(C1 − f (p)+ 1)

2k2 log2 2
,

so that

lim
k→+∞ � f (pk) = 0. (3.9)

The statement of the corollary follows from (3.4), (3.8) and (3.9), passing to a
subsequence, if necessary. ��
Corollary 3.4 Let � be a complete Riemannian manifold with sectional curvature
K� ≥ 0, and f ∈ D(�) be a function bounded from below. If � is positive semi-
definite and tr(�) is bounded from above on �, then there exists a sequence (pk)k≥1
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in � such that

f (pk) < inf
�

f + 1

k
, |∇ f (pk)| < 1

k
, � f (pk) > −1

k
. (3.10)

Proof Apply the previous corollary to − f . ��

4 Applications

Throughout this section, ψ : �n → M
n+1

denotes, as before, a spacelike immersion
into a Lorentz manifold M . In all that follows we set � = Hr−1 Pr−1, where Hr−1
and Pr−1 are as in Sect. 2. If Hr = 0 on �, or else Hr > 0 on � and ψ has an elliptic
point, then propositions 2.2 and 2.3 assure the semi-definiteness of Pr−1 (actually,
Pr−1 is definite when Hr > 0). Moreover, since

tr� = br−1 H2
r−1 ≥ 0, (4.1)

� is positive semi-definite in each of the above cases. In addition, if Hr−1 is bounded
on �, then the same is true of tr�, so that we can apply Corollaries 3.3 and 3.4 to
such a �.

The following proposition is the analogue, in our context, of Lemma 3 of [1] due
to K. Akutagawa.

Proposition 4.1 Let M
n+1

be a Lorentz manifold and ψ : �n → M
n+1

a complete
spacelike hypersurface of sectional curvature K� ≥ 0. Suppose that, for some
0 < r ≤ n, Hr−1 is bounded on � and one of the following is true:

(a) Hr = 0 on �.
(b) Hr > 0 on � and ψ has an elliptic point.

If f ∈ D(M) is nonnegative and such that � f ≥ a f β , for some a > 0, β > 1, then
f ≡ 0.

Proof Let φ : R
∗+ → R

∗+ be a smooth function to be chosen later, and g = φ ◦ f .
Then ∇g = φ′( f )∇ f , and it follows from (2.4) that

�g = tr(�Hess g) = Hr−1Lr−1(g)

= φ′( f )Hr−1Lr−1( f )+ φ′′( f )Hr−1〈Pr−1∇ f,∇ f 〉
= φ′( f )� f + φ′′( f )〈�∇ f,∇ f 〉

= φ′( f )� f + φ′′( f )

φ′( f )2
〈�∇g,∇g〉,

so that

− φ′′( f )

φ′( f )2
〈�∇g,∇g〉 + �g = φ′( f )� f.
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Letting φ(t) = 1
(1+t)α , α > 0, one gets

φ′(t) = −αφ(t) α+1
α ,

φ′′( f )

φ′( f )2
=

(
α + 1

α

)
1

φ(t)
,

and hence

(
α + 1

α

)
〈�∇g,∇g〉 − φ( f )�g = αφ( f )

2α+1
α � f ≥ aα

f β

(1 + f )2α+1 .

If one now takes α = β−1
2 > 0, we arrive at

(
α + 1

α

)
〈�∇g,∇g〉 − g�g ≥ aα

(
f

1 + f

)β
. (4.2)

Since g is bounded from below, by corollary 3.4 we get a sequence (pk) of points
in M such that

g(pk) < inf
M

g + 1

k
, |∇g|(pk) <

1

k
, �g(pk) > − 1

k
.

Therefore, f (pk) → supM f , and taking into account that

〈�∇g,∇g〉 ≤ (tr�)|∇g|2 = br−1 H2
r−1|∇g|2,

we get from (4.2) that

br−1 H2
r−1

(
α + 1

αk2

)
− 1

k

(
inf
M

g + 1

k

)
≥ aα

(
f (pk)

1 + f (pk)

)β
.

Making k → +∞, we get supM f = 0, and since f ≥ 0 this gives f ≡ 0. ��

For what follows, a vector field V on M
n+1

is said to be conformal if

LV 〈 , 〉 = 2φ〈 , 〉 (4.3)

for some function φ ∈ D(M), where L stands for the Lie derivative of the metric
of M . The function φ is called the conformal factor of V ; also, V is called a Killing
vector field if φ ≡ 0.

Since LV (X) = [V, X ] for all X ∈ X(M), it follows from the tensorial character
of LV that V ∈ X(M) is conformal if and only if

〈∇X V,Y 〉 + 〈X,∇Y V 〉 = 2φ〈X,Y 〉, (4.4)
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for all X,Y ∈ X(M). A particular class of conformal vector fields is that of the closed
ones, i.e., those vector fields V on M satisfying the relation

∇X V = φX,

for some φ ∈ D(M) and all X ∈ X(M).
Following [25], Chap. 6, we say that a Lorentz manifold is stationary if there exists

a one-parameter group of isometries whose orbits are timelike curves; for spacetimes,
this group of isometries express time translation symmetry. Mathematically, a statio-
nary Lorentz manifold is furnished with a timelike Killing vector field. A conformally
stationary Lorentz manifold is one furnished with a timelike conformal vector field.
Our interest in conformally stationary Lorentz manifolds is due to the fact that, under
an appropriate conformal change of metric, the conformal vector field turns into a
Killing one, so that the new Lorentz manifold is now stationary.

A particular class of conformally stationary Lorentz manifolds is that of Generalized
Robertson-Walker Lorentz manifolds, a member of which we shall refer to as a GRW.
More precisely, let Mn be a connected, n-dimensional oriented Riemannian manifold

and I ⊂ R an interval. In the product manifold M
n+1 = I × Mn , let πI and πM denote

the projections onto the I and M factors, respectively. If f : I → R is a positive

smooth function, we obtain a particular class of Lorentz metrics in M
n+1

by setting

〈v,w〉p = −〈(πI )∗v, (πI )∗w〉 + ( f ◦ πI )(p)
2〈(πM )∗v, (πM )∗w〉,

for all p ∈ M and all v,w ∈ Tp M . Furnished with such a metric, M is a GRW, and

will be denoted by writing M
n+1 = −I × f Mn ; one calls f the warping function

of M . In Cosmology, GRW spacetimes give simple, yet physically plausible, static
relativistic models (cf. [22]), so are natural spaces to work with.

In a GRW M
n+1 = −I × f Mn one has the globally defined conformal vector

field V = f ∂t , which is even closed; moreover, one can easily prove that div V =
(n + 1) f ′. Conversely, S. Montiel proved in [20] that every conformally stationary
Lorentz manifold whose timelike conformal vector field V is closed is locally a GRW;
obviously, the warping function f can be recovered from V as f ◦ πI = √−〈V, V 〉.
Due to this fact, from now on we shall restrict our attention to a GRW.

If ψ : �n → M
n+1

is a spacelike immersion, we orient � by choosing a timelike
unit normal vector field N . For future use, we quote Lemma 5.4 of [2].

Lemma 4.2 Let M
n+1 = −I × f Mn be a GRW, and ψ : �n → M

n+1
a spacelike

immersion. If the restriction of f ◦ πI to ψ(�) attains a local minimum at some
p ∈ ψ(�), such that f ′(πI (p)) �= 0, then p is an elliptic point for �.

The following proposition is due to L. J. Alías and A. G. Colares, as Lemma 4.1
of [3]. Here, and for the sake of completeness, we present a more direct proof.

Proposition 4.3 Let M
n+1 = −I × f Mn be a GRW, andψ : �n → M

n+1
a spacelike

immersion. If h = πI|� : �n → I is the height function of �, then
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Lr (h) = −(log f )′{br Hr + 〈Pr (∇h),∇h〉} − br Hr+1〈N , ∂t 〉. (4.5)

Proof One has

∇h = ∇(πI|� ) = (∇πI )
� = −∂�

t

= −∂t − 〈N , ∂t 〉N ,

where ∇ denotes the gradient with respect to the metric of the ambient space and X�
the tangential component of a vector field X ∈ X(M) in�. Now fix p ∈ M , v ∈ Tp M
and let A denote the shape operator with respect to N . Write v = w − 〈v, ∂t 〉∂t , so
that w ∈ Tp M is tangent to the fiber of M passing through p. By repeated use of the
formulae of item (2) of Proposition 7.35 of [22], we get

∇v∂t = ∇w∂t − 〈v, ∂t 〉∇∂t ∂t = ∇w∂t

= (log f )′w = (log f )′(v + 〈v, ∂t 〉∂t ).

Thus,

∇v∇h = ∇v∇h + 〈Av,∇h〉N

= ∇v(−∂t − 〈N , ∂t 〉N )+ 〈Av,∇h〉N

= −(log f )′w − v(〈N , ∂t 〉)N + 〈N , ∂t 〉Av + 〈Av,∇h〉N

= −(log f )′w + (〈Av, ∂t 〉 − 〈N ,∇v∂t 〉)N + 〈N , ∂t 〉Av + 〈Av,∇h〉N

= −(log f )′w + (〈Av, ∂�
t 〉 − 〈N , (log f )′w〉)N + 〈N , ∂t 〉Av + 〈Av,∇h〉N

= −(log f )′w − (log f )′〈v, ∂t 〉〈N , ∂t 〉N + 〈N , ∂t 〉Av

= −(log f )′{v − 〈v, ∂t 〉(−∂t − 〈N , ∂t 〉N )} + 〈N , ∂t 〉Av

= (log f )′(−v + 〈v, ∂�
t 〉∇h)+ 〈N , ∂t 〉Av

= −(log f )′(v + 〈v,∇h〉∇h)+ 〈N , ∂t 〉Av.

Now, by fixing p ∈ � and an orthonormal frame {ei } at Tp�, one gets

Lr h = tr(Pr Hess h) =
n∑

i=1

〈∇ei ∇h, Pr ei 〉

=
n∑

i=1

〈−(log f )′(ei + 〈ei ,∇h〉∇h)+ 〈N , ∂t 〉Aei , Pr ei 〉

= −(log f )′{tr(Pr )+ 〈Pr (∇h),∇h〉} + 〈N , ∂t 〉tr(APr ).

The result follows from the formulae for the traces of Pr and APr . ��
As before, let M

n+1 = −I × f Mn be a GRW. For a fixed t0 ∈ I , we say that

Mt0 = {t0} × M is a slice of M
n+1

. It was proved by S. Montiel in [20] that Mt0 has
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constant mean curvature, equal to f ′(t0)
f (t0)

with respect to ∂t . Whenever we talk about
the mean curvature of the slices of a GRW, we shall assume that it is computed with

respect to ∂t . A spacelike immersion ψ : �n → M
n+1

is said to be r-maximal if
Hr = 0 on �. Also, if the height function h : � → I is such that h ≥ t0 for some
t0 ∈ R, then we say that ψ is a spacelike hypersurface over the slice Mt0 . With such
notations and conventions we have the following

Theorem 4.4 If the mean curvature of the slices of M
n+1 = −I × f Mn is always

greater than or equal to one, then there exists no r-maximal complete spacelike hyper-

surface ψ : �n → M
n+1

over a slice of M, with sectional curvature K� ≥ 0 and
such that C1 ≤ |Hr−1| ≤ C2, for some positive constants C1,C2.

Proof Suppose, by contradiction, the existence of such a hypersurface. Given a smooth
function ϕ : R → R, a straightforward computation shows that

Lr−1(ϕ ◦ h) = ϕ′′(h) 〈Pr−1∇h,∇h〉 + ϕ′(h)Lr−1(h),

so that Eq. (4.5) gives

Lr−1

(
e−h+t0

)
= e−h+t0

{〈Pr−1∇h,∇h〉 + (log f )′(br−1 Hr−1 + 〈Pr−1∇h,∇h〉)} .

Consequently, since � = Hr−1 Pr−1, we have that

�(e−h+t0) = tr(�Hess(e−h+t0)) = Hr−1Lr−1(e
−h+t0)

= e−h+t0

{
〈�(∇h),∇h〉 + f ′

f
(br−1 H2

r−1 + 〈�(∇h),∇h〉)
}

≥ e−h+t0
{

2〈�(∇h),∇h〉 + br−1 H2
r−1

}
,

where the above inequality uses the hypothesis on the mean curvature of the slices.
Therefore, since � is positive semi-definite and h − t0 ≥ 0, we get

�(e−h+t0) ≥ C2
1 br−1eβ(−h+t0), ∀β > 1,

and Proposition 4.1 allows us to conclude that e−h+t0 ≡ 0, which is in turn an absurd.
��

The above result can be applied to two interesting particular models of GRW space-
times, which we now describe. The first one is the steady state model of the universe,
as proposed by Bondi, Gold and Hoyle (cf. [15], Chap. 5; see also [17,21]), namely

Hn+1 = −R ×et R
n .

Such a space appears naturally in physical context as an exact solution to the Einstein’s
equations, and is a cosmological model where matter is supposed to travel along
geodesics normal to horizontal hyperplanes (i.e., to the slices); these, in turn, serve as
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the initial data for the Cauchy problem associated to those equations. For Hn+1, all
slices have mean curvature one with respect to ∂t .

Remark 4.5 As a consequence of Bonnet-Myers Theorem (cf. [12], Theorem 9.3.1),
a complete spacelike hypersurfaceψ : �n → Hn+1 having (not necessarily constant)
mean curvature H satisfying |H | ≤ ρ < 2

√
n − 1/n (ρ a real constant), has to be

compact; in fact, for such a bound on H , Gauss’ equation would give

Ric� ≥ (n − 1)− n2ρ2/4 > 0,

where Ric� denotes the Ricci curvature of �. However, since Hn+1 is not spatially
closed (i.e., since its Riemannian fiber is not compact), such a hypersurface does not
exist (cf. [4], Proposition 3.2(i)). As a special case of this reasoning, we see that there
are no complete maximal spacelike hypersurfaces in Hn+1. Thus, in the case of Hn+1,
Theorem 4.4 can be seen as a sort of generalization of this situation for higher order
mean curvatures.

As a second particular case we have a suitable open subset of de Sitter space, so
let us first of all describe such a space. If we modify Einstein’s equations by setting
the cosmological constant to be positive and the stress-energy tensor to be identically
zero, de Sitter space appears as a particular exact solution (cf. [25], Chap. 5). The
subset of it we are interested in has the GRW model

−(0,+∞)×sinh t H
n,

where H
n stands for the n−dimensional hyperbolic space (cf. [20], Example 2). In

this case, all slices have mean curvature cosh t
sinh t > 1.

Back to the general setting, if M
n+1 = −I × f Mn , we say that a spacelike hyper-

surface ψ : �n → M
n+1

has the same time-orientation of ∂t if � is oriented by the
choice of a timelike unit normal vector field N , such that 〈N , ∂t 〉 ≤ −1; otherwise we
say that � has time-orientation opposite to that of ∂t .

Theorem 4.6 Suppose that all slices of M
n+1 = −I × f Mn have mean curvature

greater than or equal to one, and let ψ : �n → M
n+1

be a complete spacelike

hypersurface over a particular slice Mt0 of M
n+1

, with sectional curvature K� ≥ 0
and time-orientation opposite to that of ∂t . If Hr > 0 and C1 ≤ Hr−1 ≤ C2 for some
positive constants C1 and C2, then the height function h = πI|� does not attain a local
minimum on �.

Proof Suppose, for some such hypersurface ψ : �n → M
n+1

, that the height func-
tion do attains a local minimum, at p ∈ ψ(�), say. Since the warping function f
satisfies f ′ ≥ f > 0, we conclude that p is also a local minimum for ( f ◦ πI )|� , and
hence Lemma 4.2 assures the existence of an elliptic point for ψ(�); therefore, by
Proposition 2.3, Pr−1 is positive definite. Now, Eq. (4.5) gives

Lr−1

(
e−h+t0

)
= e−h+t0{〈Pr−1∇h,∇h〉 + (log f )′(br−1 Hr−1 + 〈Pr−1∇h,∇h〉)}

+e−h+t0 br−1 Hr 〈N , ∂t 〉.
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Substituting � = Hr−1 Pr−1 and taking into account that � is positive definite,
〈N , ∂t 〉 ≥ 1 and h − t0 ≥ 0 we obtain, as in the previous theorem, the inequality

�(e−h+t0) ≥ C2
1 br−1eβ(−h+t0), ∀β > 1.

Proposition 4.1 gives, again as in our previous application, an absurd. ��
When r = 2 and � has time-orientation opposite to that of ∂t , Lemma 3.2 of [3]

assures the ellipticity of L1 whenever H2 > 0. Since, by Gauss’ equation, this is the
same as asking that � has scalar curvature R < n(n − 1). One can then reason as in
the previous result to obtain the following

Theorem 4.7 If the mean curvature of the slices of M
n+1 = −I × f Mn is always

greater than or equal to one, then there exists no complete spacelike hypersurface

ψ : �n → M
n+1

over a slice of M
n+1

, with sectional curvature K� ≥ 0 and
satisfying the following conditions:

(a) � has scalar curvature R < n(n − 1);
(b) If the time-orientation of � is opposite to that of ∂t , then its mean curvature H

is such that C1 ≤ H ≤ C2, for some positive constants C1 and C2.

Finally, we point out that, as remarked right after Theorem 4.4, the last two results
can be immediately applied to the particular cases of the spacetime Hn+1 and the
GRW −(0,+∞)×sinh t H

n .
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