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Abstract The probability representation, in which cosmological quantum states are
described by a standard positive probability distribution, is constructed for minisu-
perspace models selected by Noether symmetries. In such a case, the tomographic
probability distribution provides the classical evolution for the models and can be
considered an approach to select “observable” universes. Some specific examples,
derived from Extended Theories of Gravity, are worked out. We discuss also how to
connect tomograms, symmetries and cosmological parameters.
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1 Introduction

The main issue of Quantum Cosmology is to find out methods, derived from some
quantum gravity approach, to achieve the so called Wave Function of the Universe
(or the corresponding density matrix), a quantity related to the initial conditions from
which dynamical systems (representing “classical universes”) can emerge [1,2].
Different representations of the density matrix such as the Wigner quasi-distribution
were applied to study cosmological models in the minisuperspace [3,4]. Recently, a
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tomographic probability representation of quantum states was suggested: the quantum
state can be associated to a standard positive probability distribution (tomogram). The
tomographic probability of quantum states was introduced in Quantum Cosmology in
[5]. In this framework, cosmological models described by the solutions of the Wheeler-
de Witt equation can be mapped onto solutions of the Fokker—Planck-like equations
for standard probability distributions. The tomographic probabilities are connected to
the Wigner function of the Universe by the Radon integral transform [5] and by the
wave function of the Universe with the wave related to the fractional Fourier transform
[5,6] considered in quantum mechanics in [7-9].

Some important remarks are in order to point out why the tomographic approach
is useful to improve the Wigner picture. As we said, the Wigner function [10] can be
used to describe quantum states which are “universes”. It has been introduced in order
to deal with mixed quantum states with some remarkable properties. In contrast to the
standard wave function and density matrix representation, where complex functions
are used, the Wigner function is a real one. It depends on two real variables, p and
q, which label a point in the phase space. The marginals constructed by the Wigner
function W(p, ¢q) are integrals either over g or over p. They are positively defined
probability densities in position and in momentum, respectively. These properties make
the Wigner function to be very similar to the probability distribution density used to
describe the classical states of a particle in the phase space as in classical statistical
mechanics. The Wigner function was introduced, namely, to find a rigorous description
of quantum states in terms of objects which have a classical probability distribution.
However, such a function cannot play this role since it can take negative values and
this feature does not allow to interpret the function as a fair probability distribution
density. The necessity to find out such a kind of probability density, which rigorously
describes the quantum state, is known as the Pauli problem [11]. Pauli supposed that
the probability distribution in momentum, together with the one in position, determines
completely the quantum state. But it was shown that different quantum states can exist
having the same probability distribution density, so the Pauli problem was proved to
have no solution, if one has only these two probability distributions (namely the one
in momentum and the one in position). Nevertheless, this problem got a complete
solution in the tomographic probability approach to quantum state description. In
short, one needs a family of marginal probability densities in the phase space obtained
from rotations in phase space of the Pauli distribution pair: such rotations can be
parameterized by a given angle 8. This family, which is nothing else but the Radon
integral transform [12] of the Wigner function, is sufficient to completely describe
the quantum state, i.e. to find the density matrix of Wigner function if one knows the
tomographic probability distribution. The tomographic probability contains the same
information on the quantum state as the Wigner function of density matrix. On the
other hand, like the Wigner function, being completely equivalent to density matrix
in position and momentum representations, the tomographic probability density has
its own merit: it is a fair “positive” probability distribution.

Itis well known that the Wigner function has been intensively used in Quantum Cos-
mology [13-16]. Besides, some applications of tomographic probability, based on its
property to be the fair positive measurable probability distribution, have been conside-
red for cosmological problems [5,6]. For example, the notion of tomographic entropy,
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using the Shannon construction of entropy and information [17], provides extra cha-
racteristics of cosmological quantum states [5,6]. The Shannon entropy cannot be
used for the Wigner function since such a function is not a probability distribution.

Furthermore, using the properties of tomographic probability, related to its own fea-
tures, it is possible to address several problems of Quantum Cosmology whose solu-
tions cannot be achieved by the Wigner function. In particular, it has been shown that
symmetries can play an important role to select viable cosmological models [18-21].
In the framework of the so-called Noether Symmetry Approach [21-23] it is possible,
in principle, to find out cyclic variables related to conserved quantities and then to
reduce cosmological dynamics. Besides, the existence of symmetries fixes the forms
of couplings and self-interaction potential giving the relation between them in the
interaction Lagrangians. The existence of Noether symmetries for minisuperspace
cosmological models can be viewed as a sort of selection rule to recover classical
behaviors in cosmic evolution [24]. In fact, it was shown in [1] that the form of the
wave function with specific picks provides a classical regime in the evolution of the
Universe. The picks (as oscillations) are characteristic properties of such regime and
are selected in cosmological models where Noether symmetries are present [24].

In the framework of minisuperspace approach to Quantum Cosmology, the aim of
this paper is to study cosmological models in order to seek for conditions to select
classical (observable) behaviors by tomographic probability representation. We find
out that, according to [24], if tomograms are related to extra symmetries (Noether
symmetries), they allow oscillatory behaviours of the wave function and then give
rise to classical solutions of dynamics. In the framework of the Hartle criterion, such
solutions are observable universes. The approach is worked out for general classes
of Extended Theories of Gravity (see for example [25-27] which have acquired a
huge interest in recent years as possible schemes capable of explaining cosmological
dynamics at all epochs, starting from inflation, through matter dominated era, up to
the today observed accelerated behavior [28,30].

The paper is organized as follows. In Sect. 2, the tomographic approach and its
relation to the Wave Function of the Universe, considering the Wigner function and
density is reviewed. Section 3 is devoted to the semiclassical limit of Quantum Cosmo-
logy and the Hartle criterion to select observable universes. In Sect. 4, the stationary
phase method is discussed in view of the WKB approximation for the Wave Function
of the Universe. Section 5 is a short summary of the minisuperspace cosmological
models, coming from Extended Theories of Gravity, which we are going to analyze
in the tomographic representation. Exact solutions (wave function of the universe)
are obtained if Noether symmetries exist. Such solutions show oscillatory behaviors
and then the possibility to implement the Hartle criterion. In Sect. 6, we give the
related tomograms in stationary phase approximation for the previous selected solu-
tions. Conclusions and a discussion of possible relations to the observed universe the
classical regime evolution related to initial are presented in Sect. 7.

2 Tomograms of cosmological quantum states

We consider here the tomographic map of the wave function of the universe (or its
density matrix) in the framework of the minisuperspace approach. Let us take into
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account first the minisuperspace model in which the pure space of the universe is
described by a vector |W > | in the Hilbert space of quantum states. The wave func-
tion W(x) =< x|V >, x € N can be mapped onto a fair probability distribution
W(X, , v) called tomogram

1 in 2 i 2
WX, 1, v) = —— / Wiy Tay| (1)
27 |v|

This probability distribution is positive and normalized for all the parameters i, v € %

/W(X, w,v)dX =1, 2)

if the wave function is normalized, i.e.

/ w® =1 3)
The tomographic map of the wave function of the universe onto the universe tomogram
V(x) — WX, 1, v) 4)

is invertible (up to a constant phase factor). One has the inverse formula determining
the density matrix of the universe pure state in the positive representation

1 . /
VO = / W,y x — x)el OmrE+02) gy . )
T
Thus one has the relation

| N
POP =5 / Wiy, 1, 0)edy dpe ©)

In view of Eq. (5), one has the connection of the wave function of the universe with
its tomogram

1

YO = o)

/W(y, 1, x)e! O dy dp ©)

or in view of Eq. (6)

1 , 1 iy —1/2
W= / Wy, e ) O Ry dp [E / WO, 06 dy' du’} ®)

Equation (8) determines the wave function of the universe in terms of the universe
tomogram (up to a constant phase factor). This constant phase factor of the wave
function is not essential. In fact, the wave function can be written in form of a modulus
and a phase factor
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W(x) = |W(x)|e S, 9)

In view of Eq. (8) one can obtain both the amplitude and the phase of the wave function
in terms of the tomogram. For the amplitude, one has

1 v
WP = o / W, s )02 dy dp. (10)

Since the amplitude squared is a real (positive) function, it is expressed in terms of
the real part of the right hand side of Eq. (10), i.e.

1
WP = 5 / Wy, 1 x) cos (y — x/2) dy . (11)

We point out that the tomogram W(y, u, x) is a real non negative function. On the
other hand, the phase of the wave function S(x) is also determined by the universe
tomogram since

X) = —1
|W ()]
one has
o IO 0el O Pay dp
S(x)=—iln |:|J‘W(y’ M7x)€i()’_ﬂx/2)dy dul . (13)

In quasi classical approximation (WKB) for the wave function of the universe, which
corresponds to a stationary state with energy E, the amplitude and the phase are
connected. In this case the phase S(x) satisfies the Hamilton—Jacobi equation. One
can consider the tomogram given by Eq. (1) as follows

in 2 iX 2

1 7 ] Lyc—2y
WX, 1, v) = m‘ / [ ()| STy =5y ay (14)

The approach outlined above is in complete agreement with the semiclassical limit of
Quantum Cosmology and it provides a physical interpretation of the wave function of
the universe, as we are going to discuss below.

3 The semiclassical limit of Quantum Cosmology and the Hartle criterion

Semiclassical limit occupies an important role in Quantum Gravity due to the lack of
a self-consistent and definitive theory. Only thanks to such a limit, we can obtain the
solution of the Wheeler-De Witt (WDW) equation, the wave function of the universe
W, and search for interpretative criteria which allow physically motivated previsions.
Furthermore, cosmological observations are based on a “classical universe” since we
are not able, at least considering today’s facilities, to obtain data toward and before the
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Planck epoch. Taking into account also the fact that the main goal of Quantum Cos-
mology is to give self-consistent laws for initial conditions, the correct identification
of a semiclassical limit is crucial. In standard quantum mechanics, the wave function
can be developed as a power law series in /i in the WKB approximation. Formally, the
semiclassical limit corresponds to the limit 7 — 0. Analogously, we can write down
the WDW equation as

1
(—2v2 — m%gU)\Il[h,-j(x), d(x)] =0 (15)

mp

where U (h;j, ¢) is the superpotential, /;; are the components of the spatial three-
metric, the geometrodynamical variables, and ¢ is a generic scalar field describing
the matter content. The semiclassical limit can be achieved by using m;z, the squared
Planck mass, as an expansion parameter.

The wave function can be represented as

Wihij(x), $(x)] ~ &™PS (16)

where S is the an action. A state with classical correlations has to be a superposition
of states of the form (16). The WKB approximation is achieved by the expansion

S =So+mp>S) + 0(mp*) (17)

and inserting it into the WDW equation. Then equating terms of the same order in
m p, we obtain the Hamilton—Jacobi equation at any order in S. At the lowest order in
So, we get

VSy-VSy+ U =0. (18)
In the same way, we obtain equations at higher orders which can be solved taking into
account results from the previous orders. It can be shown that we need only V.S, to

recover the semi-classical limit of Quantum Cosmology [30], that is the wave function
of the Universe is given by

W~ eimpSo, (19)

If Sy is a real number, we have oscillating WKB modes and W is peaked on a phase-
space region defined by the equations

M, = m2 250 20

ij—mpw, (20)
880

My = ms>— 21

¢ mP3¢ (21

where I1;; and Iy are respectively the classical momenta conjugate to h'/ and ¢.
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Using the Hamilton—Jacobi Eq. (18), Egs. (20) and (21) are first integrals of classical
field equations defining a set of solutions. This fact, in principle, can solve the problem
of initial conditions. In fact, for a given action Sy, solutions (20) and (21) involve n
arbitrary parameters, while the general solution of the field equations involves {2n — 1}
parameters. Then the wave function is peaked (or oscillates, being Sy real) on a subset
of the general solution. In other words, the boundary conditions on the wave function
imply initial conditions for the classical solution. Besides, if the wave function W is
sufficiently peaked, oscillating about some region of the configuration space Q =
{hij , @}, it is possible to find correlations among the observables that characterize this
region. If it is not peaked, correlations among the observables are not present.

At this point a discussion on what we mean as “classical universe” and how the
concept is related to an oscillating W is due.

Let us take as an example a cosmological model characterized by a set of obser-
vable parameters as Hj, the Hubble constant, g, the deceleration parameter, €2y, the
density parameter for matter, 2 the density parameter for the cosmological constant
A (or dark energy) and €2, the amount of spatial curvature.! All of them are related by
some cosmological model, solution of the Einstein—Friedmann equations and can be
measured with a certain accuracy, by observations (see e.g. [31] and references therein
for a discussion). A “good” wave function of the universe is that one which is “pea-
ked” about such a solution of the cosmological equations (which can be alternatively
derived from the momenta (20) and (21) and then “correlates” the set of observables
{Ho, g0, 2, Qa, Q}. Itis worth noticing that ¥ does not predict any specific value
of the set of observables, but guarantees the correlations among them. This is the
so-called Hartle criterion [1]. On the other hand, such a correlation allows to define
a parameter able to label the points along the classical trajectories, solutions of (20)
and (21). Defining a tangent vector in the configuration space of classical trajectories,
where W is peaked, it is

d
— =2VS5, -V (22)
dt

where 7 is the “proper time” along the classical trajectories. From these considerations,
we can state that

1. time emerges as a parameter which labels points along trajectories where the wave
function is peaked;

2. time parametrization invariance (a symmetry of classical theory) comes out as
the freedom to choose such a parameter. For example, assuming the redshift z, in
principle, every classical cosmological solution can be expressed in terms of z;

3. classical time, and in general, classical spacetime are proper notions which emerge
only in a superspace regions where the wave function is oscillating;

4. the existence of oscillating wave function, and then of classical spacetimes,
depends on the boundary conditions of the theory, in particular on the shape of
superpotential U (h;;, ¢).

1 Actually, one should consider also the age of the universe 1, but, usually, it is referred as 19 ~ H," I
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At this point it is clear what is the semiclassical limit of the theory. It is the super-
space region where the wave function oscillates with big values of the phase which indi-
cates strong correlation among the dynamical variables of the form (20) and (21). Such
variables describe the classical trajectories in the superspace and make the concept
of classical spacetime emerge. The tangent vector to this classical paths defines the
proper time. Formally, in analogy with standard quantum mechanics, the semiclassical
limit is obtained for m p — oo, which means low energies with respect to the Planck
scale. Furthermore, the limiting conditions for the wave function select a particular set
of classical universes and the “measure” defined by the W itself indicates a “typical”
universe. In principle, this is the way in which Quantum Cosmology approaches the
problem of initial conditions.

The semiclassical region of superspace, defined by the oscillating structure of
this wave function, is called the “Lorentzian” region. This can be identified as the
“ ensemble” of all three-geometries embedded in a classical spacetime. The region
outside the Lorentzian one is called “Euclidean”. Here the action is imaginary, i.e.
So = il and the wave function is exponential

W~ el (23)

The wave function of this form is not “classical” since it corresponds to an Euclidean
spacetime.

If W is a WKB solution , / is the action of Euclidean solutions of field equations
called “instantons”. Unlike the Lorentzian case, the wave function (23) is not peaked
on a set of instantons. It is not “classical” since it cannot predict classical correlations
among Lorentzian momenta and their conjugate variables. With these considerations
in mind, it is clear that any method by which conserved quantities, corresponding to
conserved momenta, can be achieved is useful to define a semiclassical limit in Quan-
tum Cosmology. I other words, conserved momenta like I1;; = X or [Ty = X allow,
in principle, to select classical trajectories corresponding to observable universes.

In general, the Hamiltonian constraint gives the WDW equation, so that if | > is
a state of the system (i.e. the wave function of the universe), dynamics is given by

H|W >= 0. (24)

In [24], itis shown that if Noether symmetries exist, a reduction procedure of dynamics
can be implemented and then, we get

— 0|V > = |V >,
—iR|¥V > = |V >, (25)

which are translations along the ¢/ axes of configuration space (minisuperspace)
singled out by the corresponding symmetry. Egs. (25) can be immediately integrated

and, being X real constants, we obtain oscillatory behaviors for [ > in the directions
of symmetries, i.e.
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m
W= Q) > m<izn, (26)
j=1

where m is the number of symmetries, [ are the directions where symmetries do
not exist, n is the total dimension of minisuperspace. Viceversa, dynamics given by
(24) can be reduced by (25) if and only if it is possible to define constant conjugate
momenta, that is oscillatory behaviors of a subset of solutions |¥ > exist only if
Noether symmetry exists for dynamics.

The m symmetries give first integrals of motion and then the possibility to select
classical trajectories. In one and two-dimensional minisuperspaces, the existence of
a Noether symmetry allows the complete solution of the problem and to get the full
semi-classical limit of Quantum Cosmology. As we shall see below, the tomographic
probability representation gives results strictly related to this method since quantum
tomograms become “classical” as soon as Noether symmetries exist. This occurrence
allows, in principle, to trace back the cosmic evolution from quantum to classically
observable states for several Extended Theories of Gravity.

It is worth noticing that the present approach has to be compared with previous
results where minisuperspace method has been applied to similar models. For example,
in [32], it is studied the quantum-to-classical transition in Jordan—Brans—Dicke quan-
tum gravity showing the relevance of the method for inflation. In [33,34] the scale
factor duality and the cosmological constant problem are faced from the same mini-
superspace point of view. As we are going to demonstrate, the tomographic approach
is fully coherent with these results.

4 The stationary phase method

Let us now evaluate the integral (14) using the stationary phase approximation in view
to select classical state by tomographic representation. The method is connected with
the evaluation of an integral of the form

= 7( A(2)e O dz @7

where z is a complex variable and a series decomposition of the function ®(z) is used
near its extremum

2

10°®
() ® D(z0) + =

2
2 a_Z2 ‘Z:ZO (Z B ZO) . (28)

The point(s) zg is(are) the solutions of the equation

ad
5, @) =0. (29)
<

The function A(z) is considered slowly varying near the point zo. Then the integral
(27) reads
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ﬁ ei®(zo) )
—L"(20)

I~ A(z0) (30)

In the case of N points 79 — z(()k) (with k = 1, ... N), the integral assumes the form
of a sum over these points.

Let us consider, in an explicit exact expression (14), the modulus |W(y)| to be a
slowly varying amplitude function and the function

X
c1>(q>—S<q)+’“‘2i—Tq. (31)

The point yg is determined by the expression

s u X
—+—qg——=0. (32)
aqg v v

One can see that using the notation

aS

g 7 (33)

the relation (32) is equivalent to
ug +vp =X (34)
One can remind that in classical mechanics the tomogram is defined as [35]
WX, u,v) = / f(q, p) (X —ng —vp)dqdp. (35)

In quantum mechanics, the tomogram is determined via the Wigner function W (g, p)
as [36]

qdp
WX, u, V)=/W(q,p)5(X—uq—vp)—n (36)

Both relations mean the validity of (34). The Wigner function is determined by the
wave function [10]

W(g, p) = / v (q + g) w* (q - g) e gy, 37)

In WKB approximation, the expression for the Wigner function is given just by the
stationary phase method of evaluating the integral (37) that is

W(q, p) = / ‘\Il g+ )’ ‘\1: (q - 2) ’ iSa+8) =iS(a=%) g=iun g, (38)
This expression was studied and applied in the cosmological context [3,4].
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Since the Wigner function determines the tomograms by (36), one can get the quasi
classical approximation for the tomogram inserting into (36) the Berry’s expression
for the Wigner function. But as it is clear, one can get the approximation directly using
in (30) expression the function ®(g) given by (31). Then the point gq is defined by
(32) and " (qo) reads

@' (qo) = + 2 (39)

97S(q) ‘ 1
g% lg=q0 v
Thus one has

225 - W (g0) 2
FICORS ﬁ’ = 4o
C] v

1
WX, 1. v) % — [W(qo) oy
g2 @0V + 1

[v]

More generally, if Eq. (32) has more solutions qél) e qéN), the tomogram takes the

form

2
N @)
Yigy)
WX, )~ | 0 (41)
i=l1 3%s
il

The relation with the semiclassical limit of quantum cosmology is straightforward. In
fact, the existence of such stationary points means that the wave function of the universe
is peaked on conserved momenta and then classical trajectories in the minisuperspace
can be found out.

5 Minisuperspace models from extended theories of gravity

The previous discussion can be applied to several classes of minisuperspaces, in par-
ticular one can take in to account Extended Theories of Gravity as the scalar—tensor
theories or higher-order theories of gravity. Such theories are interesting since they are
directly related to the issue of recovering suitable effective actions in quantum gravity
[37]. Starting from pioneering works of Sakharov [38], the effects of vacuum polariza-
tion on the gravitational constant, i.e. the fact that gravitational constant can be induced
by vacuum polarization, have been extensively investigated. All these attempts led to
take into account gravitational actions extended beyond the simple Hilbert—Einstein
action of General Relativity (GR) which is linear in the Ricci scalar R. The moti-
vation is to investigate alternative theories in order to cure the shortcomings of GR,
essentially due to the emergence of singularities in high-curvature regimes.

The Brans—Dicke approach is one of this attempt which, asking for dynamically
inducing the gravitational coupling by a scalar field, is more coherent with the Mach
principle requests [39].
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Besides, it has been realized that corrective terms are inescapable if we want to
obtain the effective action of quantum gravity at scales close to the Planck length
(see e.g. [40]). In other words, it seems that, in order to construct a renormali-
zable theory of gravity, we need higher-order terms of curvature invariants such as
R2, RM Ry, RHveB R,vep, RUR, RCFR or nonminimally coupled terms between
scalar fields and geometry as (sz (see [41-43] for a review).

Stelle [44,45] constructed a renormalizable theory of gravity by introducing qua-
dratic terms in curvature invariants. Barth and Christensen gave a detailed analysis of
the one-loop divergences of fourth-order gravity theories providing the first general
scheme of quantization of higher-order theories [46,47]. Several results followed and
today it is well known that a renormalizable theory of gravity is obtained, at least at
one-loop level, if quadratic terms in the Riemann curvature tensor and its contractions
are introduced [37]. Any action, where a finite number of terms involving power laws
of curvature tensor or its derivatives appears, is a low-energy approximation to some
fundamental theory of gravity which, up to now, is not available. For example, String
Theory or Supergravity present low-energy effective actions where higher-order or
nonminimally coupled terms appear [48,49].

However, if Lagrangians with higher-order terms or arbitrary derivatives in curva-
ture invariants are considered, they are expected to be non-local and give rise to some
characteristic length [y of the order of Planck length. The expansion in terms of R and
LR, for example, at scales larger than [y produces infinite series which should break
near [y [S0]. With these facts in mind, taking into account such Lagrangians, means to
make further steps toward a complete renormalizable theory of gravity. Cosmologi-
cal models coming from such effective theories have been extensively studied by the
Noether Symmetry Approach. In particular, nonminimally coupled theories of the form

1
L=V-¢ [F(ﬁﬂ)R + EVMVWP - V(w)} ; (42)

where F (@) and V (¢) are respectively the coupling and the potential of the scalar
field, and fourth-order theories like

L=-gfR), (43)

where f(R) is a generic function of the scalar curvature.? In [18-20,23,51], it was
shown that asking for the existence of a Noether symmetry

LxL=0— XL=0, (44)
where Ly is the Lie derivative with respect to the Noether vector X, it is possible to

select physically interesting forms of the interaction potential V (¢), the gravitational
coupling F(¢) and the function f(R).

2 The field equations of f(R) theories are of fourth-order in metric derivatives. They reduce to the standard
second order Einstein equations for f(R) = R.
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As we said above, the existence of Noether symmetries allows to select constants of
motion so that the dynamics results simplified. Often such a dynamics is exactly sol-
vable by a straightforward change of variables where a cyclic one is present. This
occurrence reveals extremely useful in Quantum Cosmology since allows to for-
mulate minisuperspace models exactly solvable. Considering the above cases, i.e.
scalar—tensor and fourth-order gravity, suitable 2-dimensional configuration spaces
(minisuperspace) can be achieved adopting a Friedmann—Robertson—Walker (FRW)
metric which gives the pointlike Lagrangians.

In the case of scalar—tensor theories, we have

L = 6ad*F + 6a*aF — 6kaF +a° [% - v], (45)

in terms of the scale factor a.

The configuration space of such a Lagrangian is Q = {a, ¢}, i.e. atwo-dimensional
minisuperspace. A Noether symmetry exists if (44) holds. The related Noether vector
has to be

0 d a . 0
X=a— — 4o — — 46
a8a+'33g0+a8d+ﬂ8¢) (46)
where «, 8 depend on a, ¢. The condition (44) gives rise to a set of partial differential

equations whose solutions are «, 8, F(¢) and V () (see [24] for details). For example,
a solution is

o= —%p(s)ﬂoa”%om(”—l, B = Poa'y"". (47)
F(p) = D(s)¢?, V(p) = rp*P®, (48)
where
2 2
D)= 253 p(s) = 34D = B IS

T 48(s+ D(s+2)’ 25 +3 T 2543

and s, X are free parameters. A suitable change of variables gives

W= 00a ), 1= g S, (50)
Box (s)

where oy is an integration constant and

6s
= _ . 51
x(s) 5 +3 (51)
Lagrangian (45) becomes, for k = 0,
L=y)w3zm — rw, (52)
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where 7 is cyclic and

25 +3
y(s) = — . (53)
12045 (s +2)(s + 1)
The conjugate momenta are
oL oL
mo= > =yeOwh =%, 1= _— =yuwl, (54)
0z Jw
and then the WDW equation is
[(iaz)(iaw) + I\w1+s/3] W >=0, (55)
where 1 = y(s)A.
The quantum version of the first of momenta (54) is
— 0|V >= Y|V >, (56)

so that dynamics results reduced. A straightforward integration of Eqs. (55) and (56)
gives

W >= Q) > [x(2) >oc e F07 e R (57)
which is an oscillating wave function.
Analogously, in fourth-order gravity case, the pointlike FRW Lagrangian is
L = 6ad’p + 6a*ap — 6kap — a>W(p), (58)

which is of the same form of (45) a part the kinetic term., being p = f’(R). This is
an Helmhotz-like Lagrangian [52] and the configuration space is now Q = {a, p};
p has the same role of the above ¢. Condition (44) is now realized by the vector field

a a 0 .0
X=oala,p)—+pap—+a—-+p—= (59
da ap da ap

The solution of this system, i.e. the existence of a Noether symmetry, gives «, § and
W (p). It is satisfied for

a=ala), Pla,p)=pPoa’p, (60)

where s is a parameter and S is an integration constant. In particular,

S=0—>0t(a)=—%a, Bp)=pop. W(p)=Wop, k=0, (6l)

S=—2—>Ol(a)=—%, ﬁ(a,p)=ﬂo£2, W(p)=Wip’, Yk (62
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Table 1 Summary of the changes of variables induced by the Noether symmetry for scalar—tensor and
fourth-order minisuperspace models

Gravitational theory P z w
25+3)2 =5,1-
Scalar-Tensor mwz ma Spl=m(s) opad @A ®)
Fourth order gravity s = —2 f(R) Inp ap
Fourth order gravity s = 0 f(R) a? a’ P

The parameters as functions of s are x(s) = —6s/(2s + 3), m(s) = (2s2 + 6s 4+ 3)/(2s + 3) and
I(s) =3(s+1)/(2s +3)

Table 2 Summary of the
solutions of the WDW equation ~
for the minisuperspace models Scalar-Tensor el Z0zp—iAw

Gravitational theory W(z, w)
2+s5/3

Fourth order gravity s = —2 ei[Z12+9%kw?+Gwy /]

Fourth order gravity s = 0 el Zole—(/Inwly, 1/2 7.5 )
Fourth order gravity s = 0 e [Foz=(Zo/4) Inwrw]

The Z; (A, w) are Bessel and w > 0

function

where Wy and W are constants. As above, the new set of variables Q = {z, w} adapted
to the foliation induced by X can be achieved. The procedure to achieve the solution
for the WDW equation is exactly the same. The results are summarized in Table 1.
The solutions for the respective WDW equations are given in Table 2.

By arapid inspection of the wave functions in Table 2, it is clear that the oscillatory
behavior, i.e. the presence of peaks, is strictly related to the Noether constant ¥¢. In
other words, the Hartle criterion can be immediately implemented when conserved
quantities are found out.

6 Minisuperspace tomograms in stationary phase approximation

The above results can be immediately translated in the tomographic representation. If
Noether symmetries are present, the solutions of the WDW equation, take the following
form

m
W(Q1,..., Q) =D ™% x(Q) m<l<n (63)
j=1
then we find, according to the results of Sect. 4, that the corresponding tomograms are

W(Xl~"X}’lvl’l’17-~~7Mn7vls-~-vn)

n 2

=ZH / x (@ B @0l )| (64)
1 M

I=m+1
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It is then straightforward to study the form of the tomograms satisfying the Hartle
criterion.

Let us consider first the tomograms resulting from the scalar—tensor theories. From
Table 2, the wave function takes the form

W(z, w) oc el Tz (65)
If we consider the case s = 0, the corresponding two variable tomogram is
1 1
W(X1, X2, 11, p2, vy, v2) & —_— (66)
|M1| o — 2Av2|
For the fourth order gravity models, we have considered the two cases s = —2 and
s = 0. In the first case, the wave function is
(7, w) o e i[Z1 2% w2 +Bw; /4w (67)
and the corresponding tomogram is
W(X1, Xo, i1, 12, Vi, v2)
3 3W| 4 2
1 Z exp(i (9ka (X2, 2, v2) + o (X2, pn2, v2)) 68)
il | = VOwiva + 18ku2 + 2
where o1, oy, a3 are the solutions of equation
X2
3wiw? + + 18k —— =0 (69)
V2 V2

—3.213 (u+18kv)

o1 = 1/3
(—81 X 12 4+ /6561 X2 v + 29163 (1 + 18kv)3)
1
(—81 X v2 4 /6561 X204 1291613 (11 + 18Kk v)3) 3
+ 3.21/3y ’
3 (1+i«/§) (1 + 18k v)
o) =

173
22/3 (_81 X v2 4+ /6561 X204 1+ 291613 (11 + 18Kk v)3)

1/3
(1 _i ﬁ) (—81 X v2 + /6561 X204 1291613 (11 + 18k v)3)
6-213yp

@ Springer



Tomographic representation of minisuperspace quantum cosmology and noether symmetries 2643

Y 3(1—1’«/5) (u+ 18k v)

= 13
22/3 (—81 X v2 4 /6561 X204 1 291613 (1 + 18k v)3)

1/3
(1 —|—i«/§) (—81 X v+ /6561 X2 ¥ 4291603 (u + 18k )° ) /
6217y

The second interesting case is for s = 0. When w >> 0 the wave function takes the
form

W (z, w) = ¢! [Z0z=(Zo/4) InwEiw]

(70)
and the corresponding tomogram is
W(X1, X2, 1, 12, Vi, 12)
2
. P by . P by
1 lexpli|—F InBi =181 expli|—FInBxArf
( ) el D o

Il ((Zov2/4B}) + Mz)l/2 ((Zov2/483) + Mz)l/z

which can be rewritten in the form

1 1 !
W(X1, X2, i1, 2, V1, v2) o —— "
1 X2, 1, 2, V1, v2 m]l(((Eovz/m%)wz) ((Zov2/483) + 2)

" cos(B1 — fa) )
((Zov2/4B3) + Mz)l/2 ((Zov2/483) + ,uz)l/2

(72)
where 81 and B, are the solutions of equation
d X 1 X
oM mwErw+ 220 - 220 = —(So/d— £ a+ B2 - 220
Jw 2v) 1% w %) %)
(73)

(. — Xa) =/ (Hivs — X202 — Sopavs
212

B =

’

(A — X2) + \/(:l:XV2 — X2)? — Sopava
212 '

B2 =

In general, if we are able to achieve the WDW wave function in an explicit form it is
always possible to construct the tomographic counterpart.
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At this point, we have to make a remark. If one takes the wave function W(x) in

the form of the De Broglie wave \/Lge””‘ , the probability density |W(x)|? is %
Also the tomogram calculated for this wave function is proportional to the value

“1—‘. Using the tomogram for reconstructing the wave function, we get divergent inte-

grals. Due to this fact,one can use a “regularized” wave packet U(x) = A(x)etk* with
the amplitude A(x), e.g., of the Gaussian form ~ e’gxz. In this case, the tomogram
assumes the form of a Gaussian distribution and the density matrix for the pure state
1/~f(x)1}* (x) can be reconstructed since all the integrals do diverge. The “regularized”
wave packet, having a highly oscillatory behavior for g — 0, corresponds to the
Hartle criterion and then to the presence of Noether symmetries. In summary, when
we have the tomograms as in the above examples containing |x| in the denominator,
the reconstruction formula can be explained in the described sense.

7 Discussion and conclusions

In this paper, we discussed the realization of minisuperspace Quantum Cosmology
adopting a tomographic probability representation for the wave function of the uni-
verse. The physical meaning of the results is recovered if, in semiclassical WKB
approximation, it is possible to select conserved quantities (stationary phases) where
the wave function is peaked. In this case, the interpretative Hartle criterion can be
applied and classical trajectories, corresponding to observable universes, are reco-
vered. As a matter of fact the existence of Noether symmetries lead to oscillating
components of the wave function, which present the picks required for a transition
from the quantum cosmological states to the classical universes. In our approach, we
found that a Noether symmetry Xy implies a factor of the form 1/|x| in the tomo-
gram. Noteworthy the tomograms assume a form which is very close to classical ones,
showing in a natural way the transition from the quantum initial stages of the universe
to its classical evolution. This fact is crucial in our discussion since tomograms can
allow, in principle, a full description of the universe from its initial quantum states
up to the today observed. Specifically, considering the above considered models, it
is easy to find out, either from tomograms or from Noether constants, exact classical
solutions. In the case of scalar—tensor models, we get

w(t) = [kit + ka]¥/ 6, (74)

2(1) = [kit + kp]6TO/CT 470 (75)

which can be immediately translated into the original configuration space Q = {a, ¢},
that is

a(t) = ap(t — 10)°), (76)

o(t) = go(t — 10)1", (77)
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where

252495+ 6 25 +3
b(s) ="—" " 4(s)=— ) 78
(s) S 1 3) q(s) g (78)

Depending on the value of s, we get Friedman, power—law, or pole-like behaviors, that
is all the standard classical cosmological behaviors. Analogously, for the fourth-order
models, we have, for s = 0,

a(t) = aoe()‘/())t exp {—%1 e_(2k/3)’}, (79)

(1/6)[ eXp {Z] e—(z)»/:i)t}’ (80)

p(t) = poe
where ag, po and z; are integration constants. It is clear that A plays the role of
a cosmological constant and inflationary behavior is asymptotically recovered. For
s = —2, we get power-law behaviors for a(¢) and p(¢).

Such solutions, in principle, give rise to “observable universes” since the set of
parameters { Hy, qo, 21, 24, 2k} can be obtained, in a standard way, from the solu-
tions a(t), ¢(t) and p(¢) [53]. This fact could be extremely relevant, also in view of the
recent observational trends which have given rise to the so called Precision Cosmo-
logy (see for example [54-56]). In fact, the possibility to trace back the dynamics, via
tomograms, from the today observed parameters up to the initial quantum conditions
could be an interesting approach to formulate comprehensive cosmological models
enclosing early and late evolution. In other words, due to this feature, the tomographic
approach could be, with respect to other approaches included the Wigner function one,
the most suitable to allow a connection between inflation and dark energy cosmology.

To conclude, we point out that all the main results of Quantum Cosmology can be
obtained using, arbitrarily, some well known formulation of Quantum Mechanics [57]
including the density matrix and the Wigner function. This means that, in principle, also
other approaches could be successfully used with significant results [58—60]. However,
as emphasized here, the formulation based on tomographic probability distribution has
some interesting properties which are convenient to be used as soon as the quantum-
classical transitions or the comparison between classical and quantum pictures are
relevant: in this framework, tomograms assume a fundamental role being objects
which fairly describe states both in classical and quantum domains.
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