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Abstract In systems with a large degeneracy of states such as black holes, one
expects that the average value of probe correlation functions will be well approxi-
mated by the thermal ensemble. To understand how correlation functions in individual
microstates differ from the canonical ensemble average and from each other, we study
the variances in correlators. Using general statistical considerations, we show that the
variance between microstates will be exponentially suppressed in the entropy. How-
ever, by exploiting the analytic properties of correlation functions we argue that these
variances are amplified in imaginary time, thereby distinguishing pure states from the
thermal density matrix. We demonstrate our general results in specific examples and
argue that our results apply to the microstates of black holes.
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1 Introduction

Our usual understanding of effective field theory suggests that the well-known clas-
sical geometry of a black hole spacetime is valid past the horizon through to a Planck
distance away from the singularity. Recently, however, it has been proposed that the
microstates of black holes form a sort of spacetime foam that extends throughout the
interior of the horizon [1,2]. Such a magnification of the characteristic length scale of
quantum gravity recalls macroscopic manifestations of quantum mechanics such as
Bose condensation that appear due to the statistical interactions of many microscopic
constituents.

The proposed non-singular, horizon-free, spacetime foam microstates have only
been constructed for certain extremal black holes in string theory.1 In the classical
limit, they are characterized by a large topologically complex region within which the
characteristic scale is microscopic. However, the foam itself extends out to macro-
scopic distances, behaving in some cases like an incompressible fluid. These solutions
should be understood as a classical moduli space of candidate microstates which must
be quantized. A key question is whether a semiclassical observer probing such quan-
tized microstates makes measurements that are different from those expected from
the usual black hole spacetimes. If they are not, the usual classical geometries are the
correct effective description of a black hole for a semiclassical observer, even though
observers with more precise tools or greater patience might observe a horizon- and
singularity-free universe [11–15].

These questions are most efficiently studied when the black holes and their micro-
states are asymptotic to AdS spacetime. In this case, the dual field theory can be used to
enumerate the microstates and quantize them. We can then ask whether the correlation
functions of probe operators can distinguish the microstates from each other or tell
them apart from a mixed state. This involves computing the variance of correlation
functions over a suitable ensemble of pure microstates with given macroscopic quan-
tum numbers. In Sect. 2 we discuss different natural notions of variance and show that,
if the entropy associated to the ensemble of microstates is S, the variance over these
microstates of any local correlation function will be suppressed by a factor of e−S (rel-
ative to a natural ensemble of the basis microstates). This result, which applies equally
to free and interacting theories,2 occurs for statistical reasons—almost all microstates
are statistically random quantum superpositions of a basis of states and thus lie very
close to a certain typical state. This drives the universality of local correlators.

1 The conjectures of [1,2] and results cited there mostly concern extremal black holes of vanishing area.
The half-BPS extremal black hole of AdS5 has been similarly analyzed in [3–5]. A large set of candidate
microstates for asymptotically flat finite area black holes in five and four dimensions was constructed in
[6–10].
2 Free theories typically have a highly degenerate spectrum with large gaps, unlike the interacting theories
describing black holes, which typically have non-degenerate spectra with gaps that scale with e−S . In both
cases we imagine some energy resolution�E of the macroscopic measuring device and states falling within
this resolution contribute to the entropy.
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To detect the differences between microstates, an observable must defeat the e−S

suppression of variance. Since correlation functions that oscillate in real time grow
exponentially in imaginary time, it is possible that the analytic structure of orrelators
could help with separating microstates. Indeed, several authors [16–24] have sug-
gested that in the AdS/CFT correspondence the structure of correlators in the complex
time plane can probe the region behind a horizon and in the vicinity of a black hole
singularity. Many of these articles study the physics of an eternal black hole in AdS
spacetime. Such spacetimes have two asymptotic regions, and in the dual description,
the vacuum configuration is a pure entangled state in a product of two CFTs, one
associated to each asymptotic region [25]. Tracing over one CFT produces a thermal
density matrix. Here we are examining how the pure underlying microstates, possi-
bly described by a horizon-free, singularity-free, and second-asymptotic-region-free
spacetime, are described in terms of a single CFT. In this context, we examine how
local correlation functions computed in the underlying pure states behave in the com-
plex time plane, and extract the timescales at which they differ significantly from the
thermal averages computed from the eternal black hole.

Even within a single CFT we can construct a thermal density matrix. What is the
dual description of this ensemble in the AdS/CFT correspondence? Sometimes the
dual is taken to be a single geometry, i.e., an eternal black hole. Our results sug-
gest that the dual is not described in this way by a single geometry, but rather by
an ensemble of universes (in a quantum cosmological sense) corresponding to each
microstate. This is because, in both CFT and spacetime, each time a measurement is
performed, one element of the ensemble is probed, and as we will see, there is some
large timescale at which typical elements of the ensemble give different probe mea-
surements from the thermal average. Of course, the average over many measurements
in the same ensemble of universes will accurately reproduce the thermal expectation
value. This average will thus agree with computations made in the thermo-field for-
malism, the two entangled CFTs of this formalism being dual to the eternal black hole.
Also, semiclassical observers having access only to coarse grained observables will
be unable to measure the differences between the microstates and hence will describe
their results in terms of the eternal black hole even if this description is microscopically
incorrect.

In Sect. 2 we discuss different natural ensembles and show how the entropic sup-
pression of variance arises in a general theory. In Sects. 3 and 4 we use these results
to extract the timescales at which correlation functions computed in microstates of
a theory differ from the thermal average and from each other. To build intuition,
Sect. 3 focuses on a simple example, the free boson on a circle. Section 4 discusses
the microstates of the BTZ M = 0 black hole.3 While the latter computations are
done in the free limit of the dual symmetric product sigma model, the “fractionation”
of string bits associated to different winding sectors of this CFT effectively models
the large entropy and narrow gap structure associated to theories that describe black
holes.

3 This extends results of [26] by showing how the entropic suppression of variance arises.
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2 Ensembles and variances of observables

Let us suppose that a measuring device with energy resolution�E measures the mass
of a black hole to be E . In quantum mechanics a “measurement” of this kind implies
that the device registered an energy eigenvalue lying between E and E + �E .4 All
pure microstates consistently giving such energy measurements are superpositions of
a basis of energy eigenstates

Mbas = {|s〉 : H |s〉 = es |s〉; E ≤ es ≤ E +�E} , (2.1)

and are thus elements of the ensemble

Msup =
{

|ψ〉 =
∑

s

cψs |s〉
}
, (2.2)

with |s〉 as in (2.1) and
∑

s |cs |2 = 1. The expectation value of the Hamiltonian H in
any state in Msup also lies between E and E +�E . If entropy of the system5 is S(E),
then the basis in (2.1) has dimension eS(E):

1 + dim Msup = |Mbas| = eS(E) . (2.3)

It has been argued [31] that generic “foam” microstates of the BTZ M = 0 black
hole [1,2] correspond to quantum superpositions of the chiral primary operators in the
dual CFT. In that case, all the superposed basis states have the same energy, while in
the ensemble (2.2) we are also permitting superpositions of microstates of different
energies that lie within the measurement resolution �E . We would like to evaluate
the spread in observables, taken to be finitely local correlation functions of Hermi-
tian operators, measured in the different microstates of a black hole, as well as the
differences with measurements made in a thermal state.6

4 The ensemble of microstates associated to a black hole may not always be specified by macroscopic local
conserved charges. See [27,4,5,28] for a discussion within the AdS/CFT correspondence, where states are
also characterized by non-conserved dipole charges.
5 We are working in the microcanonical ensemble of states of fixed energy (within the resolution �E). It
is worth mentioning that in flat space (unlike AdS space [29]) the canonical ensemble is ill-defined for the
physics of black holes because the growth of the density of states is too rapid to give a convergent partition
function [30]. In the context of this paper where we will test to what extent the variance in observables
can distinguish black hole microstates, the canonical ensemble is also awkward to use because, for some
observables, the variance may be dominated by the deviations in energy within the ensemble rather than by
deviations in structure between states of a fixed energy. We will return to this briefly in Appendix A.
6 We collect the basic definitions of various special states and ensembles used in the text in Appendix C.
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2.1 The variance in quantum observables

2.1.1 Variances in quantum mechanics

To begin, consider quantum mechanical measurements, made by a Hermitian operator
O, taken in an ensemble of microstates. If the microstate |α〉 is an eigenstate of O, the
measurement gives the eigenvalue oα , i.e.,

O |α〉 = oα |α〉. (2.4)

In general, O and the Hamiltonian will not commute ([O, H ] �= 0); hence there will
not be a basis of simultaneous eigenstates of O and H . Thus, to characterize measure-
ment by O we have to take a perspective wherein the universe is repeatedly prepared
in an identical microstate which is repeatedly probed by O, leading each time to a
different eigenvalue ot . Any given microstate has an expansion

|ψ〉 =
∑
α

cψα |α〉 (2.5)

so that the probability of measuring eigenvalue oα when the underlying state is |ψ〉 is
|cψα |2.

Over the entire ensemble of states Msup, repeated measurement gives a spectrum
of measured eigenvalues. The spread in these eigenvalues over Msup can be char-
acterized by the variance and mean of the distribution of eigenvalues over the entire
ensemble. The ensemble average is

〈O〉Msup =
∑
α

Pr(α) oα =
∑
α

(∫
Dψ |cψα |2

)
oα =

∫
Dψ 〈ψ |O|ψ〉 . (2.6)

Here Pr(α) is the probability of |α〉 appearing in any state within the ensemble Msup,
and

∫
Dψ indicates an integral over all states in the ensemble with the normalization

that
∫

Dψ = 1. The variance in eigenvalues of O over the ensemble Msup is likewise

var[O]Msup =
∑
α

Pr(α) o2
α−

(∑
α

Pr(α) oα

)2

=
∫

Dψ 〈ψ |O2|ψ〉−〈O〉2
Msup

(2.7)

= 〈O2〉Msup − 〈O〉2
Msup

. (2.8)

This ensemble variance in eigenvalues of O characterizes how widely the ensemble
Msup is spread over eigenvectors of O. However, it does not characterize how dif-
ferent the individual states in Msup are from each other in their responses to being
probed by O. Hence a different notion of variance is necessary.

Any given state in Msup responds to O by producing the eigenvalue ot with prob-

ability |cψt |2. Thus we really want to characterize the differences in the probabilities
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for measuring ot in the different states. These probability distributions are equally
characterized by their moments:

c0
ψ = 〈ψ |1|ψ〉 , c1

ψ = 〈ψ |O|ψ〉 , c2
ψ = 〈ψ |O2|ψ〉 , c3

ψ = 〈ψ |O3|ψ〉 , . . . (2.9)

We would like to measure how these moments vary over the ensemble Msup. The
ensemble averages of the moments (2.9) and their variances over the ensemble are
given by

〈ck〉Msup =
∫

Dψ ck
ψ (2.10)

var[ck]Msup =
∫

Dψ (ck
ψ)

2 − 〈ck〉2
Msup

. (2.11)

To compute these quantities, we first construct the generating function

Cψ(θ) =
∑

n

θ n

n! cn
ψ = 〈ψ |eθO|ψ〉 , (2.12)

and its ensemble average

〈C(θ)〉Msup =
∫

Dψ Cψ(θ) =
∑

t

Pr(t) eθ ot =
∑

n

θ n

n! 〈cn〉Msup . (2.13)

We can also define

〈C2(θ1, θ2)〉Msup =
∫

Dψ Cψ(θ1)Cψ(θ2)− 〈C(θ1)〉Msup〈C(θ2)〉Msup . (2.14)

In terms of (2.13, 2.14) the ensemble averages (2.10, 2.11) are

〈ck〉Msup =
[

dk〈C(θ)〉Msup

dθk

]
θ=0

(2.15)

var[ck]Msup = dk

dθk
1

dk

dθk
2

[
〈C2(θ1, θ2)〉Msup

]
θ1=θ2=0

. (2.16)

The differences between states in the ensemble of microstates in their responses to
local probes are quantified by the standard-deviation to mean ratios

σ [ck]Msup

〈ck〉Msup

=
√

var[ck]Msup

〈ck〉Msup

. (2.17)

123



Typicality versus thermality: an analytic distinction 1869

2.1.2 Variances in quantum field theory

We would like to extend the quantum mechanical definition of variance to the finitely
local correlation functions that are the observables of relevance to us:

ck
ψ(x

1, . . . , xk) = 〈ψ |O(x1) · · · O(xk)|ψ〉 . (2.18)

These are the field theory analogues of the moments (2.9) of the eigenvalue distribu-
tion in a quantum mechanical state. Following the previous section, the differences in
the correlation function responses of states in Msup are quantified by the means and
variances

〈ck(x1, . . . , xk)〉Msup =
∫

Dψ ck
ψ(x

1, . . . , xk) (2.19)

var[ck(x1, . . . , xk)]Msup =
∫

Dψ (ck
ψ(x

1, . . . , xk))2 − 〈ck(x1, . . . , xk)〉2
Msup

. (2.20)

The only difference from the quantum mechanical case is that the observables are
now functions of spacetime coordinates. As before, we imagine preparing the uni-
verse repeatedly in a black hole microstate |ψ〉 and making repeated measurements
with a local operator O to probe the state. These quantities (2.19, 2.20) are written
more efficiently in terms of the generating function

Zψ [J ] = 〈ψ |e
∫

dx J (x)O(x)|ψ〉 = 〈ψ | Z [J ] |ψ〉 (2.21)

and the associated ensemble averages

〈Z [J ]〉Msup =
∫

Dψ Zψ [J ] (2.22)

〈Z2[J1, J2]〉Msup =
∫

Dψ Zψ [J1]Zψ [J2] − 〈Z [J1]〉Msup 〈Z [J2]〉Msup . (2.23)

Following (2.15, 2.16), appropriate functional derivatives of (2.22, 2.23) give (2.19,
2.20). Below we will show that the standard deviation to mean ratio

σ [ck(x1, . . . , xk)]Msup

〈ck(x1, . . . , xk)〉Msup

=
√

var[ck(x1, . . . , xk)]Msup

〈ck(x1, . . . , xk)〉Msup

(2.24)

is heavily suppressed because generic states are statistically random quantum super-
positions and hence lie very close to a certain “typical” state.

2.2 Entropic suppression of variance

The integrals Dψ in the generating functions of the means and variances of the
moments ck (2.22, 2.23) can be evaluated in the energy basis (2.1) by integrating
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over the superposition coefficients cψs in (2.2). This gives

〈Z [J ]〉Msup =
∫

d�cψ
∑
s t

cψs cψ ∗
t 〈t |e

∫
JO|s〉 (2.25)

〈Z2[J1, J2]〉Msup =
∫

d�cψ
∑

s t m n

cψs cψ ∗
t cψm cψ ∗

n 〈t |e
∫

J1O|s〉 〈n|e
∫

J2O|m〉

− 〈Z [J1]〉Msup 〈Z [J2]〉Msup (2.26)

Here
∑

s |cψs |2 = 1 and the measure is normalized to
∫

d�cψ = 1. With these conven-
tions,

∫
d�cψ |cψs |2 = 1

eS
,

(2.27)
∫

d�cψ |cψs |2 |cψt |2 = 1 + δst

eS(eS + 1)
.

Many terms in (2.25, 2.26) vanish due to integrations over the phases of cψs , leaving

〈Z [J ]〉Msup = 1

eS

∑
s

〈s|e
∫

JO|s〉 (2.28)

〈Z2[J1, J2]〉Msup = 1

eS + 1
〈Z2[J1, J2]〉Mbas , (2.29)

where

〈Z2[J1, J2]〉Mbas = 1

eS

∑
s

〈s|e
∫

J1O|s〉〈s|e
∫

J2O|s〉

− 1

e2S

∑
s �=t

〈s|e
∫

J1O|s〉〈t |e
∫

J2O|t〉

+ 1

eS

∑
s

〈s|e
∫

J1O P
s
E e

∫
J2O|s〉 . (2.30)

Here P
s
E = ∑

t |t〉〈t | − |s〉〈s| is a projector onto the subspace of Msup that is orthog-
onal to |s〉. Taking the correlation functions in each term in (2.30) to be of O(1),
〈Z2[J1, J2]〉Mbas is also a quantity of O(1). Then 〈Z2[J1, J2]〉Msup is exponentially
suppressed by a factor of e−S . This entropic suppression is inherited by the variances
of all correlation functions.

The first line in (2.30) is precisely the generating function of the variance of corre-
lation functions in the ensemble of basis elements Mbas. The second line can be taken
to vanish if [O, H ] = 0 because we could pick |s〉 to be a basis of joint eigenstates of
O and H . When [O, H ] �= 0, the second line in (2.30) leads to a contribution to the
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variance of any k-point correlator that is of the general form

1

eS

∑
s �=t

〈s|ck |t〉〈t |ck |s〉 ≤ 1

eS

∑
s

〈s|ckck |s〉 . (2.31)

The inequality follows by recognizing that each term in the sum is positive definite
and by extending the sum over t ∈ Mbas to a complete sum over all states in the Hil-
bert space. Thus we recognize that the only avenue to having a variance large enough
to distinguish microstates by defeating the eS suppression in (2.29) is to find probe
operators that have exponentially large correlation functions.

Summary Given the macroscopic quantum numbers of a system (with some mea-
surement resolution) the generic microstate can be written as a random superposition
of some basis of states with eigenvalues in the measured range. We have shown on
general grounds that the variance of local correlators in the ensemble of all micro-
states is suppressed relative to the variance in the ensemble of basis elements by a
factor of e−S . In Appendix A we demonstrate the conditions under which this con-
clusion continues to hold even in ensembles where only the expectation value (as
opposed to the actual eigenvalues) of macroscopic observables are fixed. For black
holes with their enormous entropy, this means that unless a probe correlation function
is intrinsically exponentially large, a semiclassical observer will have no hope of tell-
ing microstates apart from each other.7 Correlation functions in real time typically do
not grow in this way and hence will not provide suitable semiclassical probes. How-
ever, correlations can grow exponentially with imaginary time. Hence, and motivated
by previous attempts to probe the singularities of black holes [17,21,20,23,18,19], in
the sections below we will explore whether the imaginary time behavior of correlation
functions will more readily separate the microstates from each other and from the
thermal ensemble average.

3 Free scalar toy model

The entropic suppression of variance described above can be illustrated in a simple toy
model: the free chiral boson on a circle of circumference 2π . This theory, being free,
has a highly degenerate spectrum with O(1) gaps. We will pick the energy resolution
of the ensemble (2.1) so as to focus on the degenerate states of a fixed energy E . The
Lagrangian is

L =
∫

dt dx ∂µϕ ∂
µϕ . (3.1)

7 Of course a high energy observer with access to very high resolution will be able to separate the tiny
differences between microstates.
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The mode expansion for right-movers reads:

ϕ(t, x) = a0

2
+

∞∑
n=1

1√
n

(
an ein σ + a†

n e−in σ
)

(3.2)

with σ = x − t , and the canonical commutation relations are

[am, a†
n] = δmn , [am, an] = [a†

n, a†
m] = 0 . (3.3)

3.1 Correlation functions in a typical state

We investigate the correlation functions of local time-ordered right-moving operators
O built out of ϕ(σ) and its derivatives. The states

|s 〉 =
∞∏

n=1

(a†
n)

Nn

√
Nn ! |0 〉 , (3.4)

normalized to 〈s|s〉 = 1 and subject to the microcanonical constraint
∑∞

n=1 n Nn = E ,
span the E-eigenspace of the Hamiltonian and form the ensemble Mbas. For simplic-
ity we concentrate on the primary operator ∂ϕ. The two point function at zero spatial
separation is

O(t) =
〈
s| T

[
∂ϕ†(t) ∂ϕ(0)

]
|s

〉
=

∞∑
n=1

n
(

e−int + 2 Nn cos nt
)
. (3.5)

(The spatial periodicity translates into 2π -periodicity in lightcone coordinates.) The
correlation functions (3.5) are linear combinations of the occupancies Nn . We will be
interested in comparing correlation functions in a generic microstate with the result for
a thermal ensemble. While the elements of Mbas are characterized by integer values
of Nn , we can define a “thermal state” that is obtained by the substitution:

Nn → 〈Nn〉 = κ(n) = 1

eβ n − 1
�−→

∞∑
n=1

n Nn = E (3.6)

This is a formal manipulation because the occupation numbers of a specific micro-
state must be integers, but the expectation values in (3.6) are not so constrained. The
“thermal state” is useful because it will reproduce the behavior of expectation values
taken in the thermal ensemble. A more precise statistical derivation of the “thermal
state” is given in Appendix B where it is shown that

β =
√
ζ(2)

E
(3.7)
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and that the entropy associated to the states of energy E is

S = 2ζ(2)

β
+ O(logβ) (3.8)

We are also interested in the behavior of the correlation function in the complex time
plane since this might help us to defeat the entropic suppression of variances demon-
strated in Sect. 2. Continuing to imaginary time t → −iτ , at zero spatial separation
(x = x ′) we get

O(τ ) =
〈
s| T

[
∂ϕ†(τ ) ∂ϕ(0)

]
|s

〉
=

∞∑
n=1

n
(
e−n τ + 2 Nn cosh n τ

)
. (3.9)

Thermal state correlators As a check, we can compare the correlator (3.9) subject to
(3.6), with the thermal answer in two-dimensional field theory. The thermal propagator
Oϕ

thermal(τ, x) = 〈ϕ(0, 0) ϕ(τ, x) 〉 in momentum space is

Oϕ
thermal (i ωn, p) = 1

ω2
n + p2 (3.10)

with ωn = 2π n
β

, the Matsubara frequency. Fourier transforming, we get:

Oϕ
thermal (τ, p) =

∑
n

e−iωn τ Oϕ
thermal (iωn, p)

= 1

2|p|
[
e−|p| τ + 2 κ(p) cosh pτ

]

with κ(p) = 1

eβ |p| − 1
.

(3.11)

The correlation function of the primary operator ∂ϕ is found by taking two
τ -derivatives:

Othermal (τ, p) = 〈 ∂ϕ(0, 0) ∂ϕ(τ, p) 〉 = |p|
2

[
e−|p| τ + 2 κ(p) cosh pτ

]
(3.12)

This reproduces the (3.9) after recognizing that p takes discrete values and that the
position space correlator involves a Fourier transform with respect to p. The sum over
p can be carried out explicitly, giving the result for zero spatial separation:

Othermal (τ, 0) =
∑

p

Othermal (τ, p) = π2

β2 csc2 π τ

β
. (3.13)
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3.2 Variance in the microcanonical ensemble

We would like to calculate the variance in the correlation functions in the microcanon-
ical ensemble. As we have seen in Sect. 2, it suffices to compute the variance in Mbas
since the variance in Msup can then be obtained using the exponential suppression
factor.

Variance in Mbas From the expression for the correlation function (3.5), we can
write down the variance in the basis ensemble Mbas:

var(O(τ ))Mbas =
E∑

n=1

(2 n cosh nτ)2 var(Nn)Mbas

+ 2
∑
m<n

4 n m cosh nτ cosh mτ cov(Nn, Nm)Mbas . (3.14)

The covariance cov(Nn, Nm) is

cov(Nn, Nm) = 〈 Nn Nm 〉 − 〈 Nn 〉 〈 Nm 〉. (3.15)

Because of the constraint
∑

n nNn = E in the microcanonical ensemble, cov(Nn, Nm)

≤ 0.
To estimate (3.14), it is useful to first evaluate the variances in the occupation num-

bers in the canonical ensemble since the exact distribution function is known. The
standard result gives:

cov(Nn, Nm)can = δnm

4 sinh2 βn
2

. (3.16)

One can use these standard results from the canonical ensemble to estimate the
microcanoncial variance in Mbas. To this end write the microcanonical variance as

var(O(τ ))Mbas =
E∑

n=1

(
n cosh nτ

sinh βn
2

)2

g(n) F(n), (3.17)

where we define the new functions g(n) and F(n) as

g(n) = var(Nn)Mbas

var(Nn)can
(3.18)

F(n) = 1 + 2
∑
m<n

m cosh (mτ) cov(Nn, Nm)Mbas

n cosh (nτ) var(Nn)Mbas

. (3.19)

The point of this exercise has been to rewrite the microcanonical variances in terms
of the canonical variances, in order to extract bounds on var(O(τ ))Mbas .
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To derive an upper bound on var(O(τ ))Mbas , note that g(n) < 1 in general (essen-
tially because the canonical ensemble incorporates more outlying states with energies
greater than E making the variations more spread out) and that F(n) ≤ 1 because
cov(Nn, Nm) ≤ 0. Hence var(O(τ ))Mbas <

∑E
n=1 (n cosh(nτ)/ sinh(βn/2))2. For a

lower bound, first note that on general grounds the canonical ensemble will approxi-
mate Mbas well for small occupation numbers. Hence g(n) ≈ 1 and cov(Nn, Nm) ∝
δnm for n,m below some threshold value nc. Then if all the terms in (3.17) are positive,
or equivalently, if F(n) > 0 ∀n, the lower bound

∑nc
n=1 (n cosh(nτ)/ sinh(βn/2))2 <

var(O(τ ))Mbas follows.
To see that F(n) > 0, consider an auxiliary operator Õ = ∑

n Nn . In a manner
similar to Eqs. (3.17–3.19), the variance in Õ = ∑

n Nn at a fixed energy E may be
re-written in the form:

var(Õ)Mbas =
E∑

n=1

(
sinh

βn

2

)−2

g(n) F̃(n) (3.20)

F̃(n) = 1 + 2
∑
m<n

cov(Nn, Nm)Mbas

var(Nn)Mbas

. (3.21)

On the other hand, Õ counts the total number of excited oscillators in a given state.
Hence, its variance is an increasing function of E . It follows that:

0 < var(Õ)Mbas |E+1 − var(Õ)Mbas |E =
(

sinh
β(E + 1)

2

)−2

g(E + 1) F̃(E + 1) ∀E , (3.22)

so F̃(n) > 0. A quick inspection of the definitions of F, F̃ reveals that F(n) > F̃(n)
so that F(n) > 0 and the lower bound on var(O(τ ))Mbas follows. In summary, we
find

nc∑
n=1

(
n cosh nτ

sinh βn
2

)2

< var(O(τ ))Mbas <

E∑
n=1

(
n cosh nτ

sinh βn
2

)2

. (3.23)

To obtain the relative magnitude of the deviations in O(τ ), we divide the standard
deviation by the mean correlator as in (2.17). For τ not too close to 0 orβ, the canonical
ensemble provides a good estimate of the latter:

〈O(τ )〉Mbas ≈
∫

dn
2n cosh nτ

exp (βn)− 1
. (3.24)

Using the lower bound in (3.23) we see that
√

var(O(τ ))Mbas begins to grow rapidly
at τ = β/2 while 〈O(τ )〉Mbas does not undergo such growth until τ > β. Thus, for
τ > β/2, √

var(O(τ ))Mbas/〈O(τ )〉Mbas � 1 (3.25)
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and the probe can distinguish generic members of Mbas from the thermal mean and
from one another.

Variance in Msup According to (2.29), the variance in the ensemble of all states
Msup will be suppressed by a factor of eS = e2βE relative to the variance in Mbas,
where we have used S = 2βE as shown in Appendix B. Using equation (3.23), this
leads to:

(2τ − β)nc − 2βE < log var(O(τ ))Msup < (2τ − 3β)E . (3.26)

To insure that the variance not be exponentially suppressed, one must wait at least until
τ = 3β/2. However, by that time the mean correlator will also have grown exponen-
tially large making separation of states difficult. In particular the late time growth of
the correlation function is largely determined by the highest energy oscillator level that
is populated. To extract any further information about the state beyond that, despite
the relatively large variance, higher precision measurements will be needed.

Summary for the free chiral boson In the free chiral boson theory in 1+1 dimensions
we can generate a large degeneracy of states by working at energies E � 1. Given
this degeneracy we would like to ask if it is possible to distinguish the states that make
up the microcanonical ensemble at energy E from each other and from the thermal
state with mean energy E . There are two noteworthy points in our discussion:

• Since the thermal correlation functions are required to be periodic in imaginary
time, they diverge at τ = β (for zero spatial separation). This behavior is absent in
each one of the microcanonical states at energy E .

• The variances in the microcanonical ensemble of all superpositions (Msup) start
to grow exponentially at time scales of order τ ∼ 3β

2 . At this point we might be
able to resolve the highest energy oscillator that is excited in the microstate. Further
distinctions would require making either more measurements on the system or a
finer resolution scale of the measuring apparatus.

We derived these results for a particular simple observable in the free boson theory,
but we expect that they will also apply to other finitely local correlators.

4 D1–D5 system and the BTZ M = 0 black hole

We now study the variance of correlation functions measured in microstates associated
to the BTZ M = 0 black hole. We will calculate this variance in the dual field theory,
i.e., the D1–D5 system (reviewed e.g. in [26,32,33]).

4.1 Review

Type IIB string theory on AdS3 × S3 × T 4 is dual to the D1–D5 CFT, a marginal
deformation of the (1+1)-dimensional orbifold sigma model with target space
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M0 = (T4)N/SN , (4.1)

Here SN is the symmetric group of N elements and N is related to the AdS scale.
When this duality arises from a decoupling limit of the theory of N1 D1-branes and
N5 D5-branes wrapped on the S1 × T 4 factor of Rt × R4 × S1 × T 4, we also have
N = N1 N5. At the orbifold point the D1–D5 CFT describes string theory in a highly
curved AdS space. A supergravity description of the latter is only strictly valid at low
curvature, when the marginal deformation of the dual has been turned on. We will be
calculating correlation functions and their variances at the orbifold point where the
theory is free. Hence, exact agreement with supergravity computations is expected
only for quantities that are BPS protected.

The microstates of the BTZ M = 0 black hole embedded in AdS3 × S3 × T 4 are
dual to the ground states of the D1–D5 CFT in the Ramond sector. In the orbifold limit,
these states are constructed in terms of a set of bosonic and fermionic twist operators
{σµn , τµn }. A general ground state is given by

σ(Nnµ, N ′
nµ) =

∏
µ,n

(σµn )
Nnµ(τµn )

N ′
nµ. (4.2)

In the above the subscript n ≤ N and σn (τn) cyclically permutes n ≤ N copies of the
CFT on a single T 4. The superscript µ = 1, . . . , 8 labels the possible polarizations of
the operators. Therefore a ground state in the Ramond sector is uniquely specified by
the numbers Nnµ and N ′

nµ, which must be such that the total twist equals N :

∑
n,µ

n(Nnµ + N ′
nµ) = N , Nnµ = 0, 1, 2, . . . , N ′

nµ = 0, 1. (4.3)

We are interested in the case when the total twist N is large, which translates to an
exponentially large number of Ramond ground states: eS = e2π

√
2
√

N . This enables
us to treat the system statistically, following [26]. While we would prefer to work in
the microcanonical ensemble with only states of total twist N , it is much easier to
consider a canonical ensemble of states of all possible twists. We will see later that
“fractionation” of the CFT simplifies matters for us in this case: due to the fractional
frequencies the canonical variance of the correlator (4.6) remains under control for any
finite value of imaginary time τ unlike in the free boson case.8 This enables us to per-
form the computation using the canonical ensemble, taking the entropic suppression
of (2.29) into account at the end.

In the canonical ensemble the total twist is fixed by introducing a Lagrange multi-
plier β, the inverse ‘temperature’, and it was shown in [26] that this relates N and β

8 In the previous section we focussed on estimating results in the microcanonical ensemble for this reason.
The canonical correlation functions for the free boson can actually give divergent variances at imaginary
time β/2. These divergences arise in this case from the artifact that the canonical ensemble includes states
with unbounded energies, albeit suppressed exponentially in the ensemble.
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as follows:

N = − ∂

∂β
ln Z(β) ≈ 2π2

β2 , for β � 1. (4.4)

Note that 1/β is not a physical temperature. We are dealing with the zero-tempera-
ture, massless BTZ black hole, and β here is simply a parameter introduced to fix the
total twist N using the “trick” of the canonical ensemble. Since the twist operators
are independent, their average distributions are given simply by Bose–Einstein and
Fermi–Dirac distributions:

Nnµ = 1

eβn − 1
, N ′

nµ = 1

eβn + 1
. (4.5)

Note that this situation is completely analogous to the one we encountered in Sect. 3
with the free scalar field. Here the excitation numbers are replaced by the twist num-
bers, which are integers for any given state of the form (4.2), but non-integral for the
“average” state (4.5). Thus the reasoning of Sect. 2 applies also to this system.

The key result we borrow from [26] is the correlation function for a probe graviton
operator A = ∂Xa

A(z)∂̄Xb
A(z̄) in a state specified by twist numbers {Nnµ, N ′

nµ}. The
correlation function was computed to be

Ĝ(Nnµ,N ′
nµ)
(t, φ) = 〈{Nnµ, N ′

nµ}|A†(t, φ)A(0, 0)|{Nnµ, N ′
nµ}〉

= 1

N

∞∑
n=1

nNn(
n sin t

n

)2

[
sin2 φ − t

2
+ sin2 φ + t

2
− 2 sin t sin φ−t

2 sin φ+t
2

n tan t
n

]
,

(4.6)

where Nn = ∑
µ(Nnµ + N ′

nµ) and the normalization was chosen so that for the vac-

uum Ĝ Nn=0 = 1. From now on we shall set φ = 0 for simplicity. This correlator,
evaluated for the typical state (4.5), is plotted in Fig. 1, and for short time scales of order
t � O(√N ) the behavior of the correlator is the universal decay expected from the
BTZ black hole. For larger times the correlation function behaves in a quasi-periodic
way, differing from the expected behavior of the black hole.

The main difference between this system and the free boson is that the D1–D5
system has a much greater degeneracy of states at a given energy scale. This is due to
fractionation: whereas for the free boson the energies come naturally in units of 1

R , for
the D1–D5 system the unit size is 1

N5 R , where R is the size of the S1 factor. The reason
for this is most easily understood by performing a U-duality on the D1–D5 system,
which results in an FP system in type II, with a fundamental string wound N5 times
the S1 and N1 units of momentum going around the string. Since the total length of the
string is N5 R, the energies associated to this system are naturally quantized in units of

1
N5 R . Mathematically this translates to having fractional frequencies in the correlator
(4.6), whereas for the free boson the frequencies were integral (3.5).
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Fig. 1 The normalized correlation function Ĝ(Nnµ,N ′
nµ)
(t, φ = 0;β) as a function of time t for various

values of the temperature β. The graph is reproduced from [26] with kind permission of the authors

4.2 Euclidean variance

We now wish to analyze the variance and the standard deviation to mean ratio of the
correlator (4.6) in both real and imaginary time. We start by rotating to Euclidean
time by t → −iτ . Using the well known results for the canonical variances of the
Bose–Einstein and Fermi–Dirac distributions,

var(Nnµ)can = 1

4 sinh2 βn
2

, var(N ′
nµ)can = 1

4 cosh2 βn
2

, (4.7)

we can compute the variance of the Euclidean correlator. It is given by

var(Ĝ(Nnµ,N ′
nµ)
(τ ))can

= 64β4

π4 sinh4 τ

2

∞∑
n=1

1

n2 sinh4 τ
n

(
1 + sinh τ

n tanh τ
n

)2 cosh βn

sinh2 βn
. (4.8)

As indicated by Fig. 2, this variance is exponentially growing and the time τ0 when
it begins to grow rapidly is much smaller than 1

β
. Analyzing the sum in this regime,

1 � τ � 1
β

, one can see that it is dominated by terms with n ∼ O( 1
β
), for which

the terms behave like 1
64β

2 e4τ

τ 6 . Since there are O( 1
β
) of these we see that the variance
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(a) (b)

Fig. 2 a Variance as a function of Euclidean time. The “temperatures” are 1
β = 100 (left) and 1000 (right).

b Standard deviation to mean-ratio as a function of Euclidean time for “temperatures” 1
β = 100

3 (upper)
and 100 (lower)

approximately behaves as

var(Ĝ Nnµ,N ′
nµ
(τ ))can ∼ 1

π4 β
e4τ

τ 6 . (4.9)

From this we can conclude that the relevant timescale for rapid growth of the variance

is given approximately as 1
4 ln 1

β
∼ ln N

1
8 ∼ ln S

1
4 .

However, the quantity that measures the size of fluctuations in the ensemble is the
standard deviation to mean-ratio. Using results from above we can easily compute this
to be

√
var(Ĝ E (τ ))can

〈Ĝ E (τ )〉
=

√∑∞
n=1

1
n2 sinh4 τ

n

(
1 + sinh τ

n tanh τ
n

)2 cosh βn
sinh2 βn∑∞

n
1

n sinh2 τ
n

(
1 + sinh τ

n tanh τ
n

)
1

sinh βn

. (4.10)

This is also plotted in Fig. 2 and also exhibits exponential growth. However, the rele-
vant timescales are now much longer: τ � 1

β
. Analyzing the sums in this regime we

find that they are dominated by terms with n ∼ O(τ ), which contribute as

√
var(Ĝ E (τ ))can

〈Ĝ E (τ )〉
≈

1

τ
3
2

e(1− β
2 )τ

1
τ

e(1−β)τ = e
βτ
2√
τ
, (4.11)

showing that the time scales are indeed much larger, as they are now in units of 1
β

∼ S.
This is not the whole story, though. As with the toy model of the free boson, the correct
ensemble to use is the ensemble of all possible superpositions of ground states (4.2).
This will again give an additional suppression by eS to the result computed above, and
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(a) (b)

Fig. 3 The standard deviation to mean ratio F(t) in real time. a Short time scale behavior, plotted for
1
β = 100 (upper) and 1

β = 1000 (lower)). b Long time behavior plotted for 1
β = 1000)

the standard deviation to mean-ratio will behave as

√
var(Ĝ E (τ ))Msup

〈Ĝ E (τ )〉
≈ e

βτ
2

e
S
2
√
τ

= e
βτ− 1

β
2√
τ
, (4.12)

showing that the timescale in imaginary time for distinguishing different microstates
will be τ ∼ 1

β2 ∼ S2. Note also that the absence of periodicity in imaginary time
immediately distinguishes correlation functions computed in a microstate from cor-
relation functions computed in the thermal ensemble.

4.3 Lorentzian variance

It can be readily shown that the Lorentzian variance decreases as N increases, and
vanishes in the large N limit. The quantity of interest for us is the standard deviation
to mean ratio. In this case the ratio can be computed using (4.7) and (4.6), and one
finds

F(t) ≡
√

var(Ĝ(t))can

〈Ĝ(t)〉 =
√∑∞

n=1 n2 fn(t)2
cosh βn
sinh2 βn∑∞

n=1 n fn(t)
1

sinh βn

,

where fn(t) =
(

sin t
2

n sin t
n

)2 (
1 + sin t

n tan t
n

)
. (4.13)

This quantity is plotted for small and large timescales in Fig. 3, which shows quasi-
periodic oscillations of period 2π . To understand this behavior, we need to know which
terms contribute to the sums, and how the functions fn(t) behave.

Firstly, the terms are suppressed by 1
sinh βn , and therefore for high n the terms are

negligible. Thus it is enough to include only O( 1
β
) = O(√N ) first terms. Also, for
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small values of n we can approximate cosh βn
sinh2 βn

≈ 1
sinh2 βn

, showing that these terms in

the two sums in (4.13) will scale identically as a function of β. Thus we see that the
terms that determine the behavior of the ratio as a function of β are the intermediate
ones: n �

√
N . The functions fn(t) also play an important role and we must under-

stand their behavior. It is easy to show that these functions fluctuate between 0 and 1
2

reaching fn(t) = 1
2 at t = 2nmπ , where m is any integer, or also half integer in the

case of even n.

F for early times Let us first analyze the behavior of the ratio around t = 0. In this
case fn(t) = 1

2 for all n, and we can compute the sums by approximating them with
integrals:

√
var(Ĝ(0))can

〈Ĝ(0)〉 ≈
√

1
β3

∫ ∞
0 dxx2 cosh x

sinh2 x
1
β2

∫ ∞
0 dxx 1

sinh x

≈ 0.9
√
β. (4.14)

This indicates that for the earliest times at high temperatures, the fluctuations in this
ensemble are small and one can’t tell the thermal state from a typical state.

Peaks Now let us analyze the peaks that occur at t = 2πm for integer m. At these
times both numerators in fn(t) vanish, so to get a non-zero contribution the denomi-
nators should vanish as well. This gives the condition 2πm

n = pπ for some integer p,
or equivalently

n = 2m

p
. (4.15)

For the first and highest peak m = 1, so clearly the only solutions are n = 1, 2. This
means that in the sums in (4.13) only the first two terms contribute, giving

√
var(Ĝ(t))can

〈Ĝ〉

∣∣∣∣∣∣
first peak

≈
√

1
22

cosh β
sinh2 β

+ 22 1
22

cosh 2β
sinh2 2β

1
2

1
sinh β + 2 1

2
1

sinh 2β

≈
√

2

2
≈ 0.707, (4.16)

which matches well with the plot in Fig. 3. Note that the height of the peak is not depen-
dent on the temperature 1

β
for small β (large N ). The other peaks can be analyzed

using the same method.
For later times, t ∼ O( 1

β
), the number of terms that contribute at the peaks is the

number of integers that divide 2m, which for large m is generically proportional to
ln m [34]. In this case the standard deviation to mean ratio goes as

F(t) ≈
√
( 1

2 )
2 1
(β)2

× ln 1
β

( 1
2 )

1
β

× ln 1
β

≈ 1√
ln 1

β

≈ 1√
1
2 ln N

, (4.17)
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where ln 1
β

is the number of contributing terms, all of which are roughly the same
size. This shows that the height of the peaks decreases as N → ∞, although very
slowly. However, even for late times there will be many peaks that remain finite. This
is because the number of divisors of m is only very roughly ln m; for instance when
m is prime the number of divisors is 2, in which case the multiplicity factor is absent
in the computation above and the ratio is finite for all β.

The O(1) height of the peaks in the standard-deviation to mean ratio might have
suggested that the microstates can be easily distinguished from each other and from
the thermal ensemble at early timescales. If so this would contradict the finding in [26]
that the graviton correlator is universal and largely independent of the twist distribu-
tion for a very long period of time, and the result presented there that correlators in
the basis microstates agree with the BTZ result for a time of order 1/β ∼ √

N ∼ S.
The potential tension is resolved, because it can be shown that in the small β (large
N ) limit that is relevant for the validity of classical geometry, at the times t = 2πm
the mean correlator actually vanishes. Hence although the standard deviation to mean
ratio is nominally of O(1) at these instants, the variation between microstates will not
be measurable without very high precision. Likewise, notice from Fig. 3 that the width
in the peaks of the standard-deviation to mean ratio become narrower as β decreases.
This indicates that in addition to precision of measurement, high temporal resolution
would also be needed to resolve the differences in the correlators between different
basis microstates in the ensemble Mbas. In any case, as we will see in the ensemble
of all microstates (i.e. including superpositions of the basis elements) the standard
deviation to mean ratio will be enormously suppressed.

There is one more timescale that is of interest to us. As pointed out in [26], for any
finite N only a finite number of the twist operators are present, and therefore there
is only a finite number of frequencies present in correlator (4.6). Thus the system
will exhibit exact periodicity at timescales when t is of the order of the lowest com-
mon multiple of the frequencies. This timescale was shown to increase as e

√
N ∼ eS ,

and thus the period for this system will be roughly the Poincaré recurrence time, as
expected.

Suppression Finally, as argued in Sect. 2, the correct ensemble to use is Msup, the
ensemble containing the superpositions of the basis states. In this ensemble the vari-
ance is suppressed by a factor of eS from the one computed in the ensemble Mbas, and
taking this into account, we see that the standard deviation to mean ratio computed in

(4.13) needs to divided by e
S
2 , making it virtually vanish. Due to the analysis above

we know that the ratio never grows appreciably, from which we can conclude that
the fluctuations in the ensemble of superpositions are too small to be detected by any
semiclassical measurement, and therefore one cannot hope to tell different microstates
apart from each other.

Summary of the D1–D5 system We have shown that in the D1–D5 system the indi-
vidual microstates can be distinguished from the M = 0 BTZ geometry by excursions
of the correlation functions into the complex plane. Despite the entropic suppression
of the variance we find that at imaginary timescales τ ∼ S2 there is a distinction
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between the microstates and the black hole geometry. On the other hand it is virtually
impossible to tell apart the states from each other in real time since the exponential
suppression of the variance overwhelms the deviations in the correlation functions.
The natural timescale over which we can tell apart states is expected to be t ∼ eS—the
Poincaré recurrence time (cf. [11,12]).

5 Discussion

Our principal finding is that the variances of local correlation functions computed in
generic microstates of a system with entropy S are suppressed by a factor of e−S .
This is a general result arising from statistical considerations and is true both for
free and interacting theories regardless of the strength of the coupling. Our results
were illustrated in two examples: the 1+1 dimensional free boson and the D1–D5
CFT which is dual to the BTZ black hole. Applied to black holes it implies that
extreme precision (and correspondingly long measurement timescales) are necessary
to distinguish microstates from each other. Thus our results suggest that even if there
are non-singular, horizon free black hole microstates as proposed in [1,2], they are
universally described by the semiclassical, coarse-grained observer in terms of the
conventional black hole geometries.9

In order to quantify the distinguishability of individual microstates from each other
and from the thermal state (all having the same set of quantum numbers), we intro-
duced an appropriate notion of variance. The usual variance in eigenvalue measure-
ments familiar from quantum mechanics did not apply here, because (1) it quantifies
the variability of results of one-time measurements, not the distinguishability of states,
and (2) it does not easily generalize to the settings of quantum field theory, in which
we worked. In particular, the natural observables of quantum field theory—correlation
functions—are bona fide expectation values, so the quantity of interest is the variance
in expectation values/correlators. A more exhaustive account of these points may be
found in [40]. Operationally, one can proceed as in any ensemble, by realizing that
the measurement of the expectation value is achieved by performing a suitably large
number of measurements to achieve the ’thermodynamic limit’. Once the expectation
value in a state has experimentally been established, we can, in principle, proceed
to measure the variance over the ensemble, as defined in the main text. Since our
analysis indicates that for physical systems with large degeneracies such variances are
exponentially suppressed in the entropy, one will be forced to consider observables
with large correlators (of the order of the density of states of the system) in order to
get a huge response in the correlation function, and therefore in the variance. In short,
while the individual microstates can in principle be distinguished from each other,

9 In the work of [35] it was shown that perturbative supersymmetric Yang-Mills theory does not reproduce
the thermal behavior required to describe a dual black hole, and strong coupling dynamics was essential
to have a field theory description of black holes. Here we have been able to avoid that issue, because we
have assumed that the Hamiltonian has the requisite gap structure and degeneracy; then the main result
follows from statistical considerations. In the description of the BTZ M = 0 black hole using the D1–D5
CFT, the free orbifold theory already reproduced interesting aspects of the black hole physics because of
the “fractionation" of momenta in the CFT—this is sufficient to produce the right gap structures.
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in practice this is unfeasible and we see a coarse-grained picture as suggested by the
gravitational dual.

In our two examples we investigated whether the structure of correlation functions
in imaginary time can better separate microstates from each other and from the ther-
mal average. Certainly the thermal average correlator differs from the answer in any
individual microstate because the former must be periodic in imaginary time. In par-
ticular, the correlation function at zero spatial separation must therefore diverge at
τ = β in the thermal ensemble, while it is finite for a generic microstate. Furthermore,
while we have seen that the variances in the correlation functions are exponentially
suppressed, making it impossible to distinguish different states in real time-scales less
than the Poincaré time t ∼ eS , correlation functions grow exponentially in imaginary
time, which possibly increases the differences between distinct microstates. While it
is not clear that analytically continued correlation functions are accessible to a sin-
gle observer, we should emphasize that the discussion above indicates an in-principle
possibility of being able to access the information and hence being able to distinguish
microstates.

It is worth emphasizing that in this picture, individual microstates of fixed energy
do not correspond to an eternal black hole geometry. This is because correlators com-
puted in a single asymptotic region of the latter are automatically periodic in imaginary
time, unlike the correlators in individual microstates. Thus, we must conclude that the
canonical (fixed temperature) and microcanonical (fixed energy) ensembles in a CFT
are not dual to eternal black holes as they are sometimes taken to be. Rather, the ensem-
ble in the CFT is dual to an ensemble of microstate spacetimes which may or may
not have a description purely in geometry, but certainly do not have two asymptotic
regions and imaginary time periodicity of correlators. However, our findings imply
that a semiclassical observer with access only to coarse-grained observables would
be able to describe his or her findings approximately in terms of a BTZ geometry.

Finally, our analysis shows the exponential suppression of variances for finitely
local correlation functions; the explicit calculations used specific local correlators that
were easy to compute. One might ask if there are other observables that can separate
the microstates more easily. For example, nonlocal observables like Wilson loops are
infinite sums of local correlators and have been argued to be effective at probing the
underlying states of black holes [36,37]. Our finding that the variance in correlators
is amplified in imaginary time has a related character because to determine the cor-
relator everywhere in the complex plane from measurements just along the real line
will require knowledge of an infinite number of derivatives.10
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10 Note, though, that it is possible to use techniques like Padé approximants to extrapolate from finite data
sets to obtain some information about the analytic properties.
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Appendix A: Ensembles with fixed energy expectation values

We have considered ensembles of states in which the energy eigenvalues fall between
E and E +�E . One might have considered an ensemble of states in which only the
expectation values are so bounded, i.e.

Mexp = {|ψ〉 : E ≤ 〈ψ |H |ψ 〉 ≤ E +�E} . (A.1)

The states |ψ〉 could then be superpositions of energy eigenstates with arbitrarily high
eigenvalues. For example, we could take

|ψ〉 = (1 − ε)1/2 |0〉 + ε1/2 |s〉 �⇒ 〈ψ | H |ψ〉 = ε es = E (A.2)

with es � E and ε = E/es . In general if we take |ψ〉 = ∑
s cs |s〉 to be an element of

Mexp written as a sum of energy eigenstates, then we require that

E ≤
∑

s

|cs |2 es ≤ E +�E . (A.3)

Since this is not a linear constraint on the coefficients cs , it is not possible to write a
linear basis of states for all elements of the ensemble Mexp; i.e. they do not form a
Hilbert space. Of course the superposition coefficients of the eigenstates with energies
much bigger than E will have to be small, but observables such as Hk for large k will
be increasingly sensitive to the energy components of states lying outside the range
E ≤ es ≤ E +�E .

In view of this, the essential finding—that the variance over Msup is suppressed—
will apply to this ensemble when probe operators satisfy a Lipschitz condition with
respect to energy expectations:

|〈ψ | O |ψ〉 − 〈φ | O |φ 〉 | < L |〈ψ | H |ψ〉 − 〈φ | H |φ〉| (A.4)

for some constant L . To see this, consider a family of states |E〉, parametrized by the
real scalar b:

|E〉 =
√

b − E

b − a
|a〉 +

√
E − a

b − a
|b〉, (A.5)

with:

〈 E | H |E 〉 = E

H |a 〉 = a | a 〉
H | b 〉 = b | b 〉.

(A.6)

In the above, the fixed constant a is an energy close to but lower than E

E −�E < a < E (A.7)
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while the parameter b must be greater than E but is otherwise unconstrained. Then:

〈 E | O|E〉 = b − E

b − a
〈 a | O|a〉 + E − a

b − a
〈 b | O|b〉

= 〈 a | O|a〉 + E − a

b − a
(〈 b | O|b〉 − 〈 a | O|a〉)

< 〈 a | O|a〉 + L �E .

(A.8)

In this way, the Lipschitz condition will bound discrepancies in means and variances
between the ensembles Mexp and Msup to O(�E).

Appendix B: Derivation of the “thermal state”

The occupation numbers Nn , which characterize elements of the ensemble Mbas, sat-
isfy

∑
nNn = E and therefore admit a representation in terms of Young tableaux µ.

Such tableaux are conveniently described in a coordinate system, where the horizontal
axis y spans the indices of the bosonic oscillators, while the abscissa x measures the
cumulative population of all the oscillators from infinity down to y(x):

x(y) =
∞∫

y

Nn dn . (B.1)

Using canonical ensemble methods, Vershik showed [38] that for large E , almost all
states (elements of Mbas) lie close to the limit shape given by:

exp (−x
√
ζ(2)/E)+ exp (−y

√
ζ(2)/E) = 1 . (B.2)

The curve (B.2) may be thought of as the average of the ensemble Mbas, and as such
it should be identified with the thermal state (3.6). This is accurate for regimes where
the canonical and the microcanonical treatments agree, i.e. for x, y ≈ √

E , which is
where most of the entropy lies. The occupation numbers obtained from the limit curve
take the form

Nn = −dx

dy

∣∣∣∣
y=n

= 1

exp (n
√
ζ(2)/E)− 1

, (B.3)

leading to the identification:

β =
√
ζ(2)

E
. (B.4)
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The entropy, given by the asymptotic total number of partitions of E due to Hardy and
Ramanujan [39], takes the form:

S = 2 ζ(2)

β
+ O(logβ) . (B.5)

Appendix C: Taxonomy of possible configurations

We collect in this appendix the various states and ensembles that are used in the main
discussion. Since one is generically interested in telling apart microstates from each
other and from the black hole it is useful to keep the subtle distinctions described
below in mind while referring to various macroscopic configurations.

Ensembles:

1. Canonical or thermal ensemble: This is the ensemble of states in the Hilbert space
with the probability of finding an energy eigenstate of energy E is given by e−βE .
This ensemble is best thought of for measurement purposes in the quantum cosmo-
logical sense. Each measurement gives us the eigenvalues of the probe, subject to
the fact that the intrinsic probability distribution of states is given by the canonical
distribution.

2. Microcanonical basis ensemble, Mbas: This is the ensemble defined in (2.1), where
we restrict attention to the basis of energy eigenstates (which for the cases of inter-
est are also number operator eigenstates), with each element being equally probable
in the ensemble. The ensemble has eS elements.

3. Microcanonical superposition ensemble, Msup: This is the ensemble defined in
(2.2), where we allow arbitrary superpositions of energy eigenstates, appropriately
normalized.

States:

1. Hartle–Hawking state: This is a pure entangled state that is constructed in the ten-
sor product of two copies of the Hilbert space. The entanglement is fine tuned so
that we reproduce the average values of the canonical ensemble after tracing over
one of the Hilbert spaces. This is the description of the eternal Schwarzschild-AdS
black hole.

2. “Thermal state”: The “thermal state” a formal construct; it doesn’t belong to any
of the ensembles described above which reproduces thermal averages. This is the
state whose derivation was explained in Appendix B.11

3. Typical microstate: The typical microstate is an element of Msup whose occupation
numbers are tuned by choice of the superposition coefficients to come arbitrarily
close to mimic the “thermal state”, although only up to the energy of the ensemble
Msup.

11 It can be thought of as a superposition of energy eigenstates with the coefficients given by the thermal
distribution. It is also likely that the “thermal state” is the result of the tracing procedure in the Hartle-
Hawking state. Hence, it can also be thought of as the description of the black hole as viewed from a single
Hilbert space.
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4. Typical basis microstates: These states are elements of Mbas, with integral occu-
pation numbers which lie close to the typical microstate. In the geometric picture
they are usually associated with the microstate geometries of [1,2].
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